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Abstract

Panel data are observations of a continuous-time process at arbitrary times, for ex-
ample, visits to a hospital to diagnose disease status. Multi-state models for such data
are generally based on the Markov assumption. This article reviews the range of Markov
models and their extensions which can be fitted to panel-observed data, and their im-
plementation in the msm package for R. Transition intensities may vary between indi-
viduals, or with piecewise-constant time-dependent covariates, giving an inhomogeneous
Markov model. Hidden Markov models can be used for multi-state processes which are
misclassified or observed only through a noisy marker. The package is intended to be
straightforward to use, flexible and comprehensively documented. Worked examples are
given of the use of msm to model chronic disease progression and screening. Assessment
of model fit, and potential future developments of the software, are also discussed.
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1. Markov multi-state models for panel data

1.1. Definitions

A multi-state model describes how an individual moves between a series of states in continuous
time. Suppose an individual is in state S(t) at time t. The movement on the discrete state
space 1, . . . , R is governed by transition intensities qrs(t, z(t)) : r, s = 1, . . . , R. These may
depend on time t, or, more generally, also on a set of individual-level or time-dependent
explanatory variables z(t). The intensity represents the instantaneous risk of moving from
state r to state s 6= r:

qrs(t, z(t)) = lim
δt→0

P(S(t+ δt) = s|S(t) = r)/δt.

http://www.jstatsoft.org/
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The qrs form a R×R matrix Q whose rows sum to zero, so that the diagonal entries are defined
by qrr = −

∑
s 6=r qrs. An example is the general model for disease progression (Figure 1), in

which individuals can advance or recover between adjacent disease states, or die from any
state.

1.2. Panel data

The other articles in this issue focus on fitting multi-state models of this type to continuously-
observed processes, where the state Si(t) of each individual i = 1, . . . ,M is known at all times
t in the study period. Survival analysis is the simplest such example, a two-state model where
individuals remain alive until an observed or censored time of death.

This article focuses on multi-state models for panel data, in which the state Si(t) is only
known at a finite series of times t = (ti1, . . . , tini). Fitting multi-state models to panel data
generally relies on the Markov assumption, that future evolution only depends on the current
state. That is, qrs(t, z(t),Ft) is independent of Ft, the observation history Ft of the process
up to the time preceding t. See, for example, Cox and Miller (1965) for a thorough review of
continuous-time Markov chain theory. In a time-homogeneous Markov model, in which the
qrs are also independent of t, the sojourn time in each state r is exponentially-distributed
with mean −1/qrr. The probability that an individual in state r moves next to state s is
−qrs/qrr.

1.3. The msm package

This article describes the msm package for R (R Development Core Team 2010), available
from http://CRAN.R-project.org/package=msm. msm can be used to fit a Markov model
with any number of states and any pattern of transitions to panel data, and includes sev-
eral extensions such as hidden Markov models and models whose transition intensities vary
with individual-specific or time-varying covariates. msm was motivated by studies of chronic
diseases in medicine, and is frequently used in this area (Jackson et al. 2003; Sharples et al.
2003; Gani et al. 2007; Sweeting et al. 2006; Buter et al. 2008; Skogvoll et al. 2008), but it has
been widely used in other fields, for example geology (Aspinall et al. 2006), zoology (Gautrais
et al. 2007) and econometrics (Rummel 2009).

1.4. Likelihood for panel data

The Markov model for panel data was first described by Kalbfleisch and Lawless (1985)
and Kay (1986). The likelihood for this basic model, used in msm, is calculated from the
transition probability matrix P (u, t + u). The (r, s) entry of P (u, t + u), prs(u, t + u), is the
probability of being in state s at a time t + u, given the state at time u is r. P (u, t + u) is
calculated in terms of Q using the Kolmogorov differential equations (Cox and Miller 1965).
If the transition intensity matrix Q is constant over the interval (u, t + u), as in a time-
homogeneous process, then P (u, t + u) = P (t) and the equations are solved by the matrix
exponential of Q scaled by the time interval,

P (t) = Exp(tQ).

The matrix exponential Exp() is notoriously difficult to calculate reliably, as discussed by
Moler and van Loan (2003). It is defined by the same “power series” Exp(X) = 1 +X2/2! +

http://CRAN.R-project.org/package=msm
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Figure 1: General model for disease progression. Individuals advance between adjacent stages
of disease severity, and optionally recover to an adjacent less severe state or die from any state.

X3/3! + ... as the scalar exponential, except that each term Xk in the series is defined by
matrix products, not element-wise scalar multiplication. For simpler models, an analytic
expression for each element of P (t) can be calculated in terms of entries of Q by hand or by
using symbolic algebra software. Otherwise, msm uses eigensystem decomposition, or, if there
are repeated eigenvalues, the method of Padé approximants (Moler and van Loan 2003).

The full likelihood is then the product of probabilities of transition between observed states,
over all individuals i and observation times j:

L(Q) =
∏
i

Li =
∏
i,j

Li,j =
∏
i,j

pS(tij)S(ti,j+1)(ti,j+1 − tij). (1)

Each component Li,j is the entry of the transition matrix P (t) at the S(tij)th row and
S(ti,j+1)th column, evaluated at t = ti,j+1 − tij . The likelihood L(Q) is maximized in terms
of log(qrs) to compute the estimates of qrs, using standard optimization algorithms, as im-
plemented in the optim function in R. Standard errors are computed from the Hessian at the
optimum. Some of these optimization algorithms make use of the derivatives of the likelihood,
which were given by Kalbfleisch and Lawless (1985).

The likelihood (1) for this and all models in msm assumes that the sampling times are ig-
norable. That is, the fact that a particular observation is made at a certain time does not
implicitly give information about the value of that observation. Sampling times are ignorable
if they are fixed in advance, or otherwise chosen independently of the outcome of the process.
Grüger et al. (1991) also showed that the sampling times are ignorable under a “doctor’s care”
sampling scheme, where the next observation time (such as a visit to a doctor) is chosen on
the basis of the current state. Basing the current observation time on the current state would
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be a non-ignorable sampling scheme. To avoid bias, non-ignorable sampling times should be
modelled as part of the likelihood (Sweeting et al. 2010).

1.5. Likelihood under alternative observation schemes

Exact death times

In observational studies of chronic diseases, it is common that the time of death is known,
but the state immediately before death is unknown. If S(ti,j+1) = D is such a death state,
then the contribution to the likelihood at this time is summed over the unknown state m at
the instant before death:

Li,j =
∑
m6=D

pS(tij),m(ti,j+1 − tij)qm,D

Continuously-observed processes

msm allows Markov models to be fitted to processes which are continuously-observed. How-
ever, the assumption of exponential sojourn times inherent in Markov models is restrictive,
and more flexible models can be fitted to such data with other software. For example, propor-
tional hazards models with non-parametric baseline intensities can be fitted using the mstate
package (de Wreede et al. 2011, 2010)

Generally, msm allows a dataset to be an arbitrary mixture of observations such that states
are panel-observed, continuously-observed, or “exact death times”.

2. Using msm for a basic Markov model

The package is illustrated with a set of data from monitoring heart transplant recipients, which
is provided with msm. Sharples et al. (2003) studied the progression of coronary allograft
vasculopathy (CAV), a post-transplant deterioration of the arterial walls, using these data.
The dataset can be made available to the current R session using the command data("cav").
30 observations from 8 individuals with missing primary diagnosis (reason for transplantation,
variable pdiag) are dropped from the data, giving a dataset with 2816 state observations from
614 individuals.

R> library("msm")

R> data("cav")

R> cav <- cav[!is.na(cav$pdiag),]

2.1. Format of data

Approximately each year after transplant, each patient has an angiogram, at which CAV can
be diagnosed. The result of the test is in the variable state, with possible values:

� 1, representing no CAV.
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� 2, representing mild/moderate CAV.

� 3, representing severe CAV.

� 4, recorded at the date of death.

years gives the time of the test in years since the heart transplant.

Data are supplied to msm as a series of observations, grouped by patient. This should be
a data frame with variables indicating the observed state of the process (state in the CAV
data) and the time of the observation (years in the CAV data) If the data come from more
than one individual, then a subject identification variable (PTNUM in the CAV data) must also
be supplied. This does not need to be numeric, but observations from the same subject must
be adjacent in the dataset, and observations must be ordered by time within subjects. The
first eleven rows of the data cav give the observation series from the first two patients. Other
variables are either individual-specific or time-dependent covariates (see Section 3).

R> cav[1:11,]

PTNUM age years dage sex pdiag cumrej state firstobs

1 100002 52.49589 0.000000 21 0 IHD 0 1 1

2 100002 53.49863 1.002740 21 0 IHD 2 1 0

3 100002 54.49863 2.002740 21 0 IHD 2 2 0

4 100002 55.58904 3.093151 21 0 IHD 2 2 0

5 100002 56.49589 4.000000 21 0 IHD 3 2 0

6 100002 57.49315 4.997260 21 0 IHD 3 3 0

7 100002 58.35068 5.854795 21 0 IHD 3 4 0

8 100003 29.50685 0.000000 17 0 IHD 0 1 1

9 100003 30.69589 1.189041 17 0 IHD 1 1 0

10 100003 31.51507 2.008219 17 0 IHD 1 3 0

11 100003 32.49863 2.991781 17 0 IHD 2 4 0

Multi-state data can be summarized by counting, for each r and s, the number of times
an observation of state r was followed by state s. This is implemented in the function
statetable.msm(). In this example, an observation of severe CAV (state 3) was followed
by a less severe state (states 1–2) on only 17 occasions.

R> statetable.msm(state, PTNUM, data = cav)

to

from 1 2 3 4

1 1348 203 44 147

2 46 134 54 47

3 4 13 107 55

2.2. Specifying the Markov model and initial values

We assume that the patient can advance or recover from consecutive states while alive, and
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die from any state, as in Figure 1 with R = 4 states, giving a transition intensity matrix of

Q =


−(q12 + q14) q12 0 q14
q21 −(q21 + q23 + q24) q23 q24
0 q32 −(q32 + q34) q34
0 0 0 0


As Section 4 will explain, this model is not strictly medically realistic, but we fit it here
for illustration. Note that this matrix represents transitions in an instant rather than the
transitions over an interval summarized by statetable.msm – the 4 individuals who moved
from state 3 to state 1 in successive observations are assumed to have travelled via state 2,
therefore q31 = 0 but q32, q21 6= 0.

To tell msm what the allowed transitions of our model are, we define a matrix twoway4.q of
the same size as Q, containing zeroes in the off-diagonal positions where the entries of Q are
zero. All other off-diagonal positions contain an initial value for the corresponding transition
intensity. Any diagonal entries qrr supplied are ignored, as these are constrained to be minus
the sum of all the other entries in the row. The rows and columns of twoway4.q are given
informative names which will be used when presenting the estimates.

R> twoway4.q <- rbind(c(0, 0.25, 0, 0.25), c(0.166, 0, 0.166, 0.166),

+ c(0, 0.25, 0, 0.25), c(0, 0, 0, 0))

R> rownames(twoway4.q) <- colnames(twoway4.q) <- c("Well", "Mild",

+ "Severe", "Death")

In this example, the initial values represent a guess that the mean period in each state
before moving to the next is about 2 years (qrr = −0.5) and there is an equal probability
of progression, recovery or death (qrr = −

∑
s 6=r qrs). Alternatively, by supplying the option

gen.inits=TRUE to msm(), the initial values for non-zero entries of Q can be set to the
maximum likelihood estimates under the assumption that transitions take place only at the
observation times.

2.3. Running msm and interpreting results

The maximum likelihood estimate of Q is computed by the msm() function, as below, starting
from the supplied initial values. The argument death=4 indicates that entry times into state
4 are observed exactly but the state on the instant before is unknown (Section 1.5). The
optimization in this example takes about 20 seconds on a typical current computer. Printing
the object cav.msm returned by msm() displays the estimated transition intensity matrix with
95% confidence intervals. We see patients are about three times as likely to develop CAV
than die without CAV (first row). After onset of mild disease, progression to severe CAV is
about 50% more likely than recovery, and death from the severe disease state is rapid (mean
of 1 / 0.41 = 2.4 years in state 3).

R> cav.msm <- msm(state ~ years, subject = PTNUM, data = cav,

+ qmatrix = twoway4.q, death = 4)

R> cav.msm
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Call:

msm(formula = state ~ years, subject = PTNUM, data = cav,

qmatrix = twoway4.q, death = 4)

Maximum likelihood estimates:

Transition intensity matrix

Well Mild

Well -0.1682 (-0.188,-0.1505) 0.1276 (0.111,0.1467)

Mild 0.2264 (0.1692,0.303) -0.618 (-0.7195,-0.5309)

Severe 0 0.1226 (0.07308,0.2056)

Death 0 0

Severe Death

Well 0 0.04057 (0.03227,0.051)

Mild 0.3375 (0.2713,0.4199) 0.05405 (0.02233,0.1308)

Severe -0.4144 (-0.5245,-0.3275) 0.2919 (0.2274,0.3746)

Death 0 0

-2 * log-likelihood: 3945.363

To display the fitted transition probability matrix P (t) over an interval of t = 1 year, the
function pmatrix.msm() is used. This suggests a 9%, 15% and 4% probability that in one
year’s time, an individual currently free of CAV will have mild CAV, severe CAV or be dead,
respectively. The option ci="normal" computes a confidence interval for P (t) by repeated
sampling from the asymptotic normal distribution of the maximum likelihood estimates of the
log(qrs). The output below is based on the default 1000 samples, and has converged to within
2 significant figures. Alternatively, intervals can be computed using nonparametric bootstrap
resampling (ci="boot"). The dataset of

∑M
i=1 ni serially-correlated state observations from

M individuals is rearranged as a dataset of
∑M
i=1(ni−1) independent transitions between pairs

of states. Bootstrap datasets of transitions are drawn with replacement and the model refitted
repeatedly to estimate the sampling uncertainty surrounding the estimates. This method is
more accurate but much slower due to the need to refit the model for each resample.

R> pmatrix.msm(cav.msm, t = 1, ci = "normal")

Well Mild

Well 0.8558 (0.8421,0.8691) 0.08785 (0.07671,0.09852)

Mild 0.1559 (0.1194,0.2027) 0.5602 (0.5035,0.6012)

Severe 0.009393 (0.005273,0.01624) 0.07416 (0.04487,0.1198)

Death 0 0

Severe Death

Well 0.01458 (0.01148,0.01824) 0.04175 (0.03482,0.05131)

Mild 0.2042 (0.1678,0.2445) 0.07974 (0.06067,0.1267)

Severe 0.6736 (0.6035,0.7275) 0.2429 (0.197,0.2952)

Death 0 1 (1,1)
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2.4. Controlling numerical optimization

The optimization may occasionally converge to a local rather than a global maximum of
the likelihood surface. Therefore to ensure that the global maximum has been found, it is
recommended to run msm() with diverse sets of initial values. However, if values too far
from the optimum are chosen then the algorithm may not converge. To improve convergence,
the optimization in msm() can be fine-tuned using all the options available to the R function
optim(). For example, the number of iterations can be increased with maxit, and the log-
likelihood can be rescaled during optimization (fnscale).

But if over-complex models are applied with insufficient data, then the parameters of the
model will not be identifiable. The fixedpars option to msm() is useful for profiling like-
lihoods. This allows any parameters to be fixed at their initial values. The model must of
course be realistic. In Markov models for panel data, it is not usually feasible to estimate a
model where instantaneous transitions are allowed between every pair of states. For example,
in chronic disease applications, transitions are generally only plausible between “adjacent”
states of a disease – a patient who is observed as “well” at tj , and “severe” at tj+1 must have
gone through “mild” in the interval (tj , tj+1).

3. Markov models with covariates

3.1. Individual-level covariates

The effect of a vector of explanatory variables zij on the transition intensity for individual i
at time j is modelled using proportional intensities, replacing qrs with

qrs(zij) = q(0)rs exp(β>rszij).

The likelihood is then maximized over the q
(0)
rs and βrs.

In the CAV example, the age of the heart transplant donor (variable dage) and the primary
diagnosis, or reason for transplantation (variable pdiag), are suggested to affect the rate of
onset and progression of CAV. We fit a model in which the intensities are different according
to donor age and a primary diagnosis of ischaemic heart disease (IHD), after creating a bi-
nary variable ihd representing IHD from the categorical pdiag. A “formula” in standard R
linear modelling syntax, ~ dage + ihd, is supplied as the covariates argument to msm().
To facilitate convergence, the “BFGS” quasi-Newton optimization algorithm is used (see the
documentation for the R function optim()), and the maximum number of iterations is in-
creased to 10000. The -2× log-likelihood is also divided by 4000, since it takes values around
4000 for plausible ranges of the parameters. This ensures that optimization takes place on an
approximate unit scale, to avoid numerical overflow or underflow.

R> ihd <- as.numeric(cav[, "pdiag"] == "IHD")

R> cav.cov.msm <- msm(state ~ years, subject = PTNUM, data = cav,

+ covariates = ~ dage + ihd, qmatrix = twoway4.q, death = 4,

+ method = "BFGS", control = list(fnscale = 4000, maxit = 10000))

Instead of printing the fitted model object cav.cov.msm, which shows the relatively uninfor-

mative baseline intensities q
(0)
rs and log hazard ratios βrs, we use the function hazard.msm()
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to display hazard ratios exp(βrs) for each covariate on each transition with 95% confidence
intervals. A primary diagnosis of IHD is associated with a 56% increase in the hazard of CAV
onset, and 1 year of donor age is associated with a 2% greater risk of CAV onset and a 4%
greater risk of death without CAV.

R> hazard.msm(cav.cov.msm)

$dage

HR L U

Well - Mild 1.0192556 1.0068692 1.031794

Well - Death 1.0381769 1.0180960 1.058654

Mild - Well 0.9981484 0.9725701 1.024399

Mild - Severe 0.9856091 0.9674640 1.004095

Mild - Death 0.9320659 0.8448829 1.028245

Severe - Mild 0.9976255 0.9476498 1.050237

Severe - Death 0.9884293 0.9648293 1.012607

$ihd

HR L U

Well - Mild 1.5647641 1.1793343 2.076160

Well - Death 1.3044011 0.8207672 2.073014

Mild - Well 0.9372774 0.5193818 1.691413

Mild - Severe 0.9578794 0.6126934 1.497540

Mild - Death 1.7858347 0.2298841 13.873100

Severe - Mild 0.7669038 0.2706515 2.173058

Severe - Death 0.7572325 0.4562969 1.256641

We can also use qmatrix.msm() to calculate the transition intensity matrix for specified
covariate values as follows, in this case, a donor age of 50 years old and a primary diagnosis
of IHD. Compared with the fitted intensities for the “average” person from the model without
covariates (Section 2.3), we see an approximately doubled risk of CAV onset and death without
CAV. (The average donor is 30 years old and about half of heart transplants are due to IHD).

R> qmatrix.msm(cav.cov.msm, covariates = list(dage = 50, ihd = 1))

Well Mild

Well -0.3438 (-0.4388,-0.2693) 0.2467 (0.1825,0.3335)

Mild 0.2201 (0.1153,0.4201) -0.4811 (-0.6876,-0.3366)

Severe 0 0.112 (0.03684,0.3404)

Death 0 0

Severe Death

Well 0 0.09707 (0.06499,0.145)

Mild 0.2485 (0.1587,0.3891) 0.01257 (0.0007542,0.2096)

Severe -0.3233 (-0.5476,-0.1909) 0.2113 (0.1215,0.3676)

Death 0 0
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3.2. Model comparison

Likelihood ratio tests between nested models fitted in msm can be performed conveniently
using the function lrtest.msm. Comparing a likelihood ratio statistic of 59 to a χ2 distri-
bution with 14 degrees of freedom shows that the model with covariates (cav.cov.msm) fits
significantly better than the model without covariates (cav.msm).

R> lrtest.msm(cav.msm, cav.cov.msm)

-2 log LR df p

cav.cov.msm 58.5785 14 2.079552e-07

Covariate effects may be constrained to equal between different intensities, using the constraint
argument to msm(). For example, in a disease progression model, the effect of a covariate on
all progression rates may be equal. constraint is a list of vectors, one for each covariate. In
the model cav.cov2.msm fitted below, dage = c(1, 2, 3, 1, 2, 4, 2) indicates that the
effect of dage on the 1st and 4th intensities are constrained to be equal, as is the effect on the
the 2nd, 5th and 7th intensities. The parameters are assumed to be ordered by reading across
the rows of the transition matrix, starting at the first row: (q12, q14, q21, q23, q24, q32, q34), so
that in the model cav.cov2.msm, the effect on the CAV onset rate q12 equals the effect on the
CAV progression rate q23, and the effects on all death rates q14, q24, q34 are constrained to be
equal. However, a likelihood ratio test indicates that the bigger model cav.cov.msm without
constraints fits significantly better.

R> cav.cov2.msm <- msm(state ~ years, subject = PTNUM, data = cav,

+ covariates = ~ dage + ihd, constraint = list(dage =

+ c(1, 2, 3, 1, 2, 4, 2), ihd = c(1, 2, 3, 1, 2, 4, 2)),

+ qmatrix = twoway4.q, death = 4)

R> lrtest.msm(cav.cov2.msm, cav.cov.msm)

-2 log LR df p

cav.cov.msm 60.10682 6 4.281631e-11

Some intensities may not be influenced by covariates at all. In msm, models in which covariates
affect some intensities, but not others, can be specified by fixing certain covariate effects at
their default initial values of zero, by instructing the optimizer not to optimize over those
parameters using the fixedpars argument to msm(). See the package help for further details.

3.3. Time-inhomogeneous models

In general, the transition probability matrix P (u, t+ u), hence the likelihood for panel data,
cannot be calculated in closed form if Q varies over the interval (u, t+ u). An exception is if
Q is piecewise-constant. The effect of time-dependent variables, including time itself, on the
transition intensities can be modelled in msm under this assumption. For example, suppose a
covariate varies continuously through time, but is only observed at the same times as the state
of the Markov process. The approximate effect of that covariate can be estimated assuming
that it is constant in between the times that it is observed, so that P (u, t+ u) = P (t). More



Journal of Statistical Software 11

generally, time-inhomogeneous Markov models can be constructed in which piecewise-constant
covariates change at times other than (ti1, . . . , tini). This is accomplished by summing the like-
lihood over the unknown observed state at the times when the covariates change (Equation 2,
Section 3.4).

msm provides a convenient facility for constructing time-inhomogeneous models in which
intensities change at the same times for every individual. A vector of change points is specified
in the pci argument to msm(). The following command fits an inhomogeneous model to the
CAV data in which all intensities change 5 years after transplantation. This constructs a
model with a single binary covariate called timeperiod, a factor in R, with levels (-Inf, 5]

(the baseline) representing the first time period, and [5, Inf), representing the second time
period. A likelihood ratio test against the time-homogeneous model suggests significant time-
inhomogeneity. The estimated hazard ratios from this fitted model show an increased onset
rate of mild CAV in the second period, though no significant time effect on other transitions.
There is weak information about the effect of time on the death rate from mild CAV.

R> cav.pci.msm <- msm(state ~ years, subject = PTNUM, data = cav,

+ qmatrix = twoway4.q, death = 4, pci = 5, method = "BFGS")

R> lrtest.msm(cav.msm, cav.pci.msm)

-2 log LR df p

cav.pci.msm 49.24128 7 2.034911e-08

R> hazard.msm(cav.pci.msm)

$`timeperiod[5,Inf)`

HR L U

Well - Mild 2.2080439 1.6418440 2.969501

Well - Death 0.6714820 0.2472622 1.823522

Mild - Well 0.6634596 0.3581871 1.228907

Mild - Severe 0.9165669 0.5747890 1.461571

Mild - Death 12.9314664 0.1392106 1201.221729

Severe - Mild 1.4253788 0.4753785 4.273867

Severe - Death 1.6828792 0.8470715 3.343381

Time-dependent intensities in msm are restricted to piecewise-constant models. More flexible
alternatives are discussed in Section 6.

3.4. Censored states

In the CAV example, some patients were known to be alive but in an unknown disease state
at the end of the study. We say that the disease state is censored, meaning that the exact
value is unknown, but known to be in a certain set. Unlike in survival analysis, here it is the
state, not the event time, which is censored. If the patient were alive at the end of the study
but with a known state, then the standard likelihood (1) would apply.

msm allows the state observation at any time to be censored, that is, known only to be in an
arbitrary subset of the state space. Suppose the 1, 2, . . . nith observations from individual i



12 msm: Multi-State Models for Panel Data in R

are known only to be in the sets C1, C2, . . . , Cni respectively. The likelihood for this individual
is a sum of the likelihoods of all possible paths through the unobserved states.

Li =
∑

sni∈Cni

. . .
∑
s2∈C2

∑
s1∈C1

ps1s2(t2 − t1)ps2s3(t3 − t2) . . . psni−1sni
(tni − tni−1) (2)

This likelihood is used in msm to fit general time-inhomogeneous models with piecewise-
constant intensities, as described in Section 3.3, where the state is not observed at times
when the intensities change.

Suppose the variable state in the data cav were to contain observations coded 99 on occasions
where the patient is alive but in an unknown state, which could be state 1, 2 or 3. The standard
Markov model could be fitted to such data using the censor and censor.states options to
msm(), as follows.

R> cav.msm <- msm(state ~ years, subject = PTNUM, data = cav,

+ qmatrix = twoway4.q, death = TRUE, censor = 99,

+ censor.states = c(1, 2, 3))

4. Hidden Markov models

In a hidden Markov model (HMM), the states of the Markov chain are not observed. The ob-
served data yij are governed by some probability distribution conditionally on the unobserved
state Sij . This class of model is commonly used in areas such as speech and signal processing
(Juang and Rabiner 1991) and the analysis of biological sequence data (Durbin et al. 1998),
with a discrete-time underlying Markov chain. Applications of HMMs in medicine, where
continuous-time processes are usually more suitable, include Satten and Longini (1996); Bu-
reau et al. (2003); Jackson and Sharples (2002); Jackson et al. (2003). These models can
represent chronic staged diseases which can only be diagnosed by an error-prone marker.

4.1. Likelihood

The msm package can fit continuous-time hidden Markov models to panel-observed data with
a variety of distributions for the outcome conditionally on the hidden state. HMMs are fitted
in msm by direct maximization of the likelihood, as in Satten and Longini (1996), though
Bureau et al. (2000) describe an alternative EM algorithm for fitting the same class of models.
The contribution of individual i to the likelihood is

Li = P(yi1, . . . , yini) (3)

=
∑

P(yi1, . . . , yini |Si1, . . . , Sini)P(Si1, . . . , Sini)

where the sum is taken over all possible paths of underlying states Si1, . . . , Sini . Assume
that the observed states are conditionally independent given the values of the underlying
states. Also assume the Markov property, P(Sij |Si,j−1, . . . , Si1) = P(Sij |Si,j−1). Then the
contribution Li can be written as a product of matrices, as follows. To derive this matrix
product, decompose the overall sum in Equation 3 into sums over each underlying state. The
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sum is accumulated over the unknown first state, the unknown second state, and so on until
the unknown final state:

Li =
∑
Si1

P(yi1|Si1)P(Si1)
∑
Si2

P(yi2|Si2)P(Si2|Si1) . . .
∑
Sini

P(yini |Sini)P(Sini |Sini−1)

where P(yij |Sij) is the probability density of the outcome conditional on the hidden state
(also called the “emission” distribution), and P(Sij |Si,j−1) is the transition probability of the
hidden Markov chain, calculated as in Section 1.4.

msm allows most common distributions to be used as HMM outcome models. The modular
design of msm allows new outcome distributions to be added easily, as described in the package
documentation. These must be univariate, and msm is restricted to situations where only one
observation is made conditionally on an underlying Markov process.

In practice, the outcome distribution may vary between individuals and through time, as
well as with the hidden state. msm allows one location parameter for each class of outcome
distribution to depend on covariates, for example, a linear model for the mean of a normal
outcome distribution. The transition rates of the hidden Markov chain may also vary with
covariates, just as for non-hidden Markov models (Section 3.1).

The distribution P(Si1) of the initial state may be estimated from the data, or fixed at
plausible values. This distribution may also depend on covariates through a multinomial
logistic regression.

4.2. Application of hidden Markov models: FEV1 after lung transplants

A dataset of repeated measurements of FEV1, forced expiratory volume in 1 second, in recip-
ients of lung transplants (Jackson and Sharples 2002) is provided with msm as data("fev").
FEV1 measurements are used to diagnose bronchiolitis obliterans syndrome (BOS), a chronic
deterioration in lung function. FEV1 is measured as a percentage of a baseline value for
each individual, determined in the first six months after transplant, and defined to be 100%
baseline at six months. Figure 2 shows a series of FEV1 measurements from a typical patient
from this dataset. BOS is modelled as a staged disease, with stages defined by

� No BOS (≥ 80% baseline FEV1).

� Mild BOS (sustained drop below < 80% baseline FEV1).

� Moderate BOS (sustained drop below < 65% baseline FEV1).

� Severe BOS (sustained drop below < 50% baseline FEV1).

� Death.

As FEV1 is subject to high short-term variability due to acute events and natural fluctuations,
the exact state at each observation time is difficult to determine, making it difficult to model
the natural history of BOS as defined. Instead, we represent the BOS progression by a
hidden Markov model for FEV1, conditionally on underlying BOS states. Discrete states are
considered to be an appropriate alternative to representing the underlying disease status as
continuous, as the onset of BOS is often sudden.
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Figure 2: Measurements of lung function (FEV1) from a lung transplant recipient and fitted
BOS states from a hidden Markov model.

Here we describe a three-state “illness-death” hidden Markov model, with states representing
no BOS, BOS and death, and a transition intensity matrix of

Q =

 −q12 q12 0
0 −q23 q23
0 0 0


The distribution of percentage of baseline FEV1 is Normal(µ1, σ

2
1) in state 1 and Normal(µ2, σ

2
2)

in state 2. State 3, representing death, is observed without error and is given a label of 999 in
the data. The death time is known exactly. More sophisticated four and five-state models for
the FEV1 data, using outcome distributions which separate measurement error and natural
variation in the response, are described by Jackson and Sharples (2002).

4.3. Fitting hidden Markov models with msm

To fit this hidden Markov model using the msm() function, the argument hmodel is used.
This is a list of objects representing the outcome distribution for each state, returned by
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constructor functions. Each constructor function has arguments giving initial values for the
parameters of the outcome distribution. In this example, hmmNorm(mean = 100, sd = 16)

indicates initial values of 100 for µ1 and 16 for σ1. hmmIdent(999) represents the identity
distribution, in other words, state 3 is observed without error, and is indicated by a value
of 999 in the data. Initial values for the Markov transition intensities are given in an object
called three.q, used as the qmatrix argument to msm() as before.

The FEV1 values, conditional on the BOS state, are assumed to be affected by a time-
dependent covariate indicating whether the patient suffered acute infections or rejection
episodes within 14 days of the observation. To model this covariate effect we use the
hcovariates argument to msm(). This takes a list of linear model formulae, which are used
for the location parameter of the respective outcome distribution. In this case, the means µ1
and µ2 of the normal distribution have a linear model with a single binary covariate acute.
The hconstraint statement (analogous to constraint) indicates that the effect of acute
events on µ1 and µ2 is constrained to be the same. No covariates are assumed to affect the
transition rates Q in this example, but covariates and constraint arguments could be
included for this purpose just as in Section 3.1.

R> data("fev")

R> three.q <- rbind(c(0, exp(-6), exp(-9)), c(0, 0, exp(-6)), c(0, 0, 0))

R> hmodel1 <- list(hmmNorm(mean = 100, sd = 16), hmmNorm(mean = 54, sd = 18),

+ hmmIdent(999))

R> fev1.msm <- msm(fev ~ days, subject = ptnum, data = fev,

+ qmatrix = three.q, hmodel = hmodel1, hcovariates = list(~ acute,

+ ~ acute, NULL), hconstraint = list(acute = c(1, 1)), death = 3,

+ method = "BFGS")

R> fev1.msm

R> sojourn.msm(fev1.msm)

Call:

msm(formula = fev ~ days, subject = ptnum, data = fev, qmatrix = three.q,

hmodel = hmodel1, hcovariates = list(~acute, ~acute, NULL),

hconstraint = list(acute = c(1,1)), death = 3, method = "BFGS")

Maximum likelihood estimates:

Transition intensity matrix

State 1 State 2

State 1 -0.0007038 (-0.0008333,-0.0005945) 0.0006275 (0.0005201,0.0007572)

State 2 0 -0.0008011 (-0.001013,-0.0006337)

State 3 0 0

State 3

State 1 7.631e-05 (3.967e-05,0.0001468)

State 2 0.0008011 (0.0006337,0.001013)

State 3 0

Hidden Markov model, 3 states

Initial state occupancy probabilities:
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Estimate LCL UCL

State 1 1 NA NA

State 2 0 NA NA

State 3 0 NA NA

State 1 - normal distribution

Parameters:

Estimate LCL UCL

mean 98.004361 97.34297 98.665754

sd 16.185019 15.77782 16.602730

acute -8.791807 -9.95145 -7.632163

State 2 - normal distribution

Parameters:

Estimate LCL UCL

mean 51.823341 50.76293 52.883748

sd 17.676307 17.08279 18.290443

acute -8.791807 -9.95145 -7.632163

State 3 - identity distribution

Parameters:

Estimate LCL UCL

which 999 NA NA

-2 * log-likelihood: 51597.89

R> sojourn.msm(fev1.msm)

estimates SE L U

State 1 1420.759 122.3921 1200.0328 1682.084

State 2 1248.389 149.3041 987.5255 1578.161

The estimated HMM normal outcome distributions show that in state 1, FEV1 measure-
ments have a mean of 98% baseline (SD 16%) and in state 2, a mean of 52% baseline (SD
18%). FEV1 is estimated to be 9% lower within 14 days of acute illnesses. The function
sojourn.msm presents estimates and confidence intervals for −1/qrr, indicating the average
onset and progression rates of BOS in days. BOS state 1 is estimated to begin about 3 years
(estimate 1420 days) after transplantation, and state 2 a further 3 years later.

The most likely true series of states underlying the data can be estimated using the Viterbi
algorithm (Viterbi 1967) through the function viterbi.msm. Figure 2 shows the most likely
time at which the individual passed from state 1 to state 2 – the time when their decline
below 80% of baseline became sustained.

4.4. Misclassification models

An important special case of HMMs is the multi-state model with misclassification, where the
observed data are states, assumed to be misclassifications of the true, underlying states (Jack-
son et al. 2003). In the CAV example, it is not medically realistic for patients to recover from
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a diseased state to a healthy state, as in the model of Section 2. Progression of coronary
artery vasculopathy is thought to be an irreversible process. The angiography observations
are actually subject to error, which leads to some false measurements of CAV states and
apparent improvements in state. Thus a more realistic Markov intensity matrix Q would be
as given in Figure 1, but with qr+1,r = 0 for each r,

Q =


−(q12 + q14) q12 0 q14
0 −(q23 + q24) q23 q24
0 0 −q34 q34
0 0 0 0

 .

We also assume that true state 1 (CAV-free) can be classified as state 1 or 2, state 2
(mild/moderate CAV) can be classified as state 1, 2 or 3, while state 3 (severe CAV) can
be classified as state 2 or 3. Recall that state 4 represents death. Thus the matrix of misclas-
sification probabilities is

E =


1− e12 e12 0 0
e21 1− e21 − e23 e23 0
0 e32 1− e32 0
0 0 0 0


where ers is the probability of observing state s conditionally on occupying true state r.

These are hidden Markov models with a categorical outcome distribution, and as such may
be fitted in msm using a hmmCat() outcome distribution for each underlying state. However
msm provides a convenient shorthand for fitting models of this form. An ematrix argument
to msm() is given a matrix of initial values for the misclassification probabilities, with zero
in positions where misclassifications cannot occur. In the CAV example we initialize the
four unknown misclassification parameters to 0.1, and set the initial values oneway4.q for Q
to the approximate maximum likelihood estimates from the model without misclassification.
obstrue=firstobs specifies that observations indicated by the binary variable firstobs in
the data are not misclassifications, but observations of the true state. In the CAV data, these
are the dates of transplantation, at which patients are known to be CAV-free, in state 1.

R> ematrix <- rbind(c(0, 0.1, 0, 0), c(0.1, 0, 0.1, 0),

+ c(0, 0.1, 0, 0), c(0, 0, 0, 0))

R> oneway4.q <- rbind(c(0, 0.1, 0, 0.04), c(0, 0, 0.3, 0.05),

+ c(0, 0, 0, 0.3), c(0, 0, 0, 0))

R> rownames(oneway4.q) <- colnames(oneway4.q) <- c("Well", "Mild", "Severe",

+ "Death")

R> rownames(ematrix) <- colnames(ematrix) <- c("Well", "Mild", "Severe",

+ "Death")

R> misc.msm <- msm(state ~ years, subject = PTNUM, data = cav,

+ qmatrix = oneway4.q, ematrix = ematrix, obstrue = firstobs,

+ death = TRUE, method = "BFGS")

R> misc.msm
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Call:

msm(formula = state ~ years, subject = PTNUM, data = cav,

qmatrix = oneway4.q, ematrix = ematrix, obstrue = firstobs, death = TRUE,

method = "BFGS")

Maximum likelihood estimates:

Transition intensity matrix

Well Mild

Well -0.1317 (-0.1486,-0.1166) 0.0903 (0.07629,0.1069)

Mild 0 -0.2917 (-0.3574,-0.238)

Severe 0 0

Death 0 0

Severe Death

Well 0 0.04136 (0.03318,0.05156)

Mild 0.2574 (0.1906,0.3475) 0.03429 (0.007473,0.1573)

Severe -0.3058 (-0.3878,-0.2412) 0.3058 (0.2412,0.3878)

Death 0 0

Misclassification matrix

Well Mild

Well 0.9726 (0.9539,0.9839) 0.02737 (0.01613,0.04605)

Mild 0.1751 (0.1007,0.2868) 0.7614 (0.61,0.8669)

Severe 0 0.1143 (0.05691,0.2164)

Death 0 0

Severe Death

Well 0 0

Mild 0.06353 (0.03667,0.1079) 0

Severe 0.8857 (0.7836,0.9431) 0

Death 0 1 (1,1)

-2 * log-likelihood: 3910.098

Thus there is an estimated probability of about 0.03 that a patient truly free of CAV will be
diagnosed wrongly with mild CAV, but a rather higher probability of 0.175 that underlying
mild/moderate CAV will be diagnosed as CAV-free. Between the two CAV states, the mild
state will be misdiagnosed as severe with a probability of 0.06, and the severe state will be
misdiagnosed as mild with a probability of 0.11. The model also estimates the progression
rates through underlying states. An average of 8 years (1/0.1317) is spent disease-free, an
average of about 3 years is spent with mild/moderate disease, and periods of severe disease
also last about 3 years on average before death.

The misclassification probabilities may also be modelled in terms of covariates, using multino-
mial logistic regression. This is accomplished with the misccovariates argument to msm().
For example, a disease screening test may be more sensitive for different types of individuals.
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5. Model assessment

Titman and Sharples (2010a) reviewed methods for assessing the fit of Markov models to
panel data. In particular, the Markov property and homogeneity of transition rates, both
between individuals and through time, can be restrictive assumptions.

5.1. Diagnostic plots

One simple diagnostic compares model predictions of the entry time into a particular state
with nonparametric estimates, for example Kaplan-Meier curves. If the entry time is not
observed exactly, then the nonparametric estimate is an approximation. In Figure 3, the fit
of four multi-state models to the exactly-observed survival times in the CAV data is assessed
in this way.

R> par(mfrow = c(2, 2))

R> plot.survfit.msm(cav.msm, main = "cav.msm: no covariates",

+ mark.time = FALSE)

R> plot.survfit.msm(cav.cov.msm, main = "cav.cov.msm: covariates",

+ mark.time = FALSE)

R> plot.survfit.msm(cav.pci.msm, mark.time = FALSE)

R> title("cav.pci.msm: time-inhomogeneous", line = 2)

R> title("(5 year change point)", line = 1)

R> cav.pci2.msm <- msm(state ~ years, subject = PTNUM, data = cav,

+ qmatrix = twoway4.q, death = 4, pci = c(5, 10), method = "BFGS",

+ control = list(maxit = 10000))

R> plot.survfit.msm(cav.pci2.msm, mark.time = FALSE)

R> title("cav.pci2.msm: time-inhomogeneous", line = 2)

R> title("(5, 10 year change points)", line = 1)

Up to about 10 years, all the models predict survival reasonably accurately (within about 5%).
The time-inhomogeneous model cav.pci.msm fits slightly better than the time-homogeneous
models up to 10 years. But the first three models overestimate survival after 10 years – 106
out of 614 individuals in the data live beyond 10 years. A further time-inhomogeneous model
cav.pci2.msm is fitted in which intensities change after 10 as well as after 5 years, which
substantially improves the fit both before and after 10 years.

Another common approach to multi-state model assessment is to compare observed preva-
lences of states with expected prevalences under the model at a series of times. This can
be done in msm using the functions prevalence.msm() and plot.prevalence.msm(). To
compute observed prevalences precisely, all individuals should be observed at these times.
If individuals are observed at different times, this relies on approximations such as assum-
ing transitions occur only at observation times (Gentleman et al. 1994) or at midpoints be-
tween observation times. Figure 4 presents a plot of this type for the best-fitting model
cav.pci2.msm for the CAV data. As time elapses, the proportions of individuals predicted to
have died appear to be underestimated by the model, and the proportions alive and in states
“well” and “mild” are overestimated. However, the Kaplan-Meier estimate in Figure 3 gives
a more accurate estimate of the “observed” survival probability in this case. The observed
prevalence of a state is simply calculated as the number of individuals known to be in that
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Figure 3: Comparison of observed and fitted survival for three multi-state models for the
CAV data.

state, divided by the number of individuals whose state is known at that time, which ignores
the information from individuals censored at earlier times.

5.2. Formal goodness-of-fit test

The previous plots are informal diagnostics to suggest potential model improvements. A for-
mal goodness-of-fit test for the hypothesis that panel data were generated by a fitted Markov
model was developed by Aguirre-Hernandez and Farewell (2002). This test was extended by
Titman and Sharples (2008) to handle exactly-observed death times and misclassified states.
This is implemented in msm as the function pearson.msm(). The test compares observed
and expected numbers of transitions between pairs of states for a series of transition starting
times, transition time intervals and covariate categories, giving a Pearson-type contingency
table test statistic.

The null distribution of the statistic is not exactly χ2, with a complex form for general panel
data (Titman 2009). For simpler models without covariates, Aguirre-Hernandez and Farewell
(2002) showed by simulation that the χ2 approximation was adequate. The pearson.msm
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Figure 4: Comparison of observed and expected prevalence from the time-inhomogeneous
model cav.pci2.msm for the CAV data.

function provides theoretical upper and (unless there are exact death times) lower bounds for
the test p value. In general cases, the null distribution of the statistic can be estimated by
the parametric bootstrap procedure of repeatedly sampling from the fitted model, refitting
the model and recomputing the test statistic, resulting in an accurate p value. If the resulting
contingency table is sparse, then the number of observation time, time interval or covariate
categories may need to be reduced to improve the χ2 approximation, though the power of the
resulting test may be low. See the pearson.msm help page in the package for further details.

The Pearson-type test is performed for the four models illustrated in Figure 3. The upper
p value bounds indicate that none of these models give an adequate overall fit. This suggests
that even though the time-inhomogeneous model cav.pci2.msm fits well to survival (Figure 3),
it discriminates less well between the states of CAV severity (Figure 4). A more complex
pattern of time-dependence, or allowing the transition intensities to depend on covariates,
would be expected to yield a better fit.

R> p1 <- pearson.msm(cav.msm)

R> p1$test
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stat df.lower p.lower df.upper p.upper

165.047 NA NA 81 1.072647e-07

R> p2 <- pearson.msm(cav.cov.msm)

R> p2$test

stat df.lower p.lower df.upper p.upper

299.9516 NA NA 241 0.005821544

R> p3 <- pearson.msm(cav.pci.msm)

R> p3$test

stat df.lower p.lower df.upper p.upper

136.2905 NA NA 81 0.0001188069

R> p4 <- pearson.msm(cav.pci2.msm)

R> p4$test

stat df.lower p.lower df.upper p.upper

125.0847 NA NA 81 0.001216962

Since the method of Titman and Sharples (2008) to handle exactly-observed death times
involves multiple imputation of the next scheduled observation time, these statistics and
p values include some simulation error. The default 100 imputations in this example ensures
the statistics have converged within 2 significant figures and the p values to within an order
of magnitude.

5.3. Other issues in model assessment

The influence of each individual on the maximized likelihood can be computed and illustrated
by score residuals, using the function scoreresid.msm. Titman and Sharples (2010a) also
discussed the assessment of multi-state models with misclassification, criticising in particular
the assumption of independence of the observed outcome conditionally on the underlying
state.

6. Extensions of Markov models and limitations of msm

The msm package was designed to fit any Markov model structure to panel-observed multi-
state data. Because of this aim of generality, there are limitations in handling more complex
models which are only practicable for specific patterns of observations or allowed transitions.

6.1. Continuously-observed processes

For example, if the data are continuously-observed, msm is limited to exponential or piecewise-
exponential sojourn times. More flexible models, for example, with Weibull-distributed so-
journ times, are relatively easy to fit to such data. The mstate package (de Wreede et al. 2010,
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2011) implements multi-state models with nonparametric baseline hazards and proportional
hazards regression.

When the model is progressive, for example, a model as in Figure 1 but with all reverse
transition rates qr+1,r = 0, the number of possible pathways taken by an individual through
the states is finite, so that likelihood calculations are simpler. For example, the “illness-death”
model has only one disease state, and no recovery allowed from “well” to “disease”. The data
for such a model may only be interval-censored, that is, the transition to illness is known to
have occurred between two observations, but at an unknown time. Flexible, non-parametric
methods are possible in this case (Frydman 1995; Frydman and Szarek 2008). This is simpler
than panel data, where both the type and number of transitions occurring between adjacent
observations are unknown in general.

6.2. Time-inhomogeneous models

Transition intensities may vary with time, depending on either the time since the beginning
of the process (a time-inhomogeneous model) or time since the previous transition (a semi-
Markov model). Time-inhomogeneous models in msm are restricted to piecewise-constant
intensities. The choice of change points is unlimited, though in practice the results may
be sensitive to this choice. Continuously-changing intensities, for example with a Weibull-
distributed time to the next transition, are generally more scientifically plausible and may be
more parsimonious. The resulting Kolmogorov differential equations for obtaining P (u, t+u),
hence the likelihood for panel data, are analytically intractable, but can be solved numerically
in simpler instances. For example, Chen et al. (2004) and Hsieh et al. (2002) modelled only
one state with a time-varying sojourn distribution in this way. Hubbard et al. (2008) fitted
inhomogeneous models by estimating a time transformation under which the inhomogeneous
Markov model is homogeneous, assuming the ratio of transition intensities stayed constant
through time.

6.3. Non-Markov models

Relaxing the Markov assumption with panel data presents more difficulties. Semi-Markov
models with piecewise-constant intensities are only feasible to estimate for simpler model
structures (Titman 2008). Foucher et al. (2010) used numerical integration to compute the
likelihood for 3 or 4 state progressive semi-Markov models. Titman (2008) described an
Monte Carlo EM algorithm for fitting progressive semi-Markov models to panel data. All
these methods would be very difficult to implement for a general Markov model structure. In
msm, an approximate non-Markov model might be fitted by creating artificial time-dependent
covariates representing aspects of the process history, though this approach would require very
frequent observations to be sufficiently accurate. A more promising approach to semi-Markov
models is the phase-type model, in which the exponentially-distributed time spent in each
state r is replaced by a series of exponential sojourns (or “phases”) in hidden states r1, . . . , rk
(Titman and Sharples 2010b). In principle, these models may be implemented as hidden
Markov models in msm, but certain parameter constraints (currently not implemented) may
be necessary for identifiability.
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6.4. Random effects and Bayesian methods

Unexplained heterogeneity in transition intensities between individuals may be represented
by random effects models, though these are not implemented in msm. Their likelihood for
panel data is intractable, except for specific cases such as the “tracking” model (Satten 1999)
in which the random effect acts on all intensities simultaneously, or a discrete random effects
distribution (Cook et al. 2004).

The msm package is limited to maximum likelihood estimation. Multi-state models can be fit-
ted to panel data from a Bayesian perspective using MCMC simulation (Sharples 1993), which
is particularly suited to hierarchical models with random effects. Random effects Markov mod-
els with simple state structures have been implemented using the WinBUGS (Lunn et al. 2000)
software for Bayesian analysis (Pan et al. 2007; van den Hout and Matthews 2009). Welton
and Ades (2005) describe how to implement general multi-state structures using the WBDiff
(Lunn 2004) differential equation solving interface to WinBUGS to calculate P (t), while the
JAGS implementation of the BUGS language (Plummer 2003) allows general Markov model
structures to be fitted to panel data via a distribution dmstate().

6.5. Discrete-time models

msm was designed for continuous-time models, but discrete-time Markov and hidden Markov
models can be fitted to discrete-time data using msm, assuming that there is a continuous
process underlying the data. The fitted transition probability matrix in one time unit, P (1), is
then equivalent to the transition probability matrix P of the discrete-time model. But since a
discrete-time Markov model is equivalent to a series of multinomial models for each observation
conditionally on the previous observation, these may be fitted more efficiently using software
for multinomial logistic regression, for example, the function multinom() in the R package
nnet (Venables and Ripley 2002). Currently there are several available R packages which can
fit discrete-time hidden Markov models of various forms, for example HiddenMarkov (Harte
2010), hsmm (Bulla et al. 2008) and mhsmm (O’Connell and Hojsgaard 2009).

7. Further information

This article gives an overview of the msm package for fitting continuous-time Markov and
hidden Markov models to panel data. Detailed references for all the functions for model
fitting and output presentation are available as help pages in the installed package. The doc

subdirectory of the package also contains a user guide in PDF format, which presents much
of the material in this article in greater detail.

The examples in this article were run using version 1.0 of msm, available from http://CRAN.

R-project.org/package=msm.
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