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INTRODUCTION: TOWARDS LESS CASUAL CAUSAL INFERENCES

Causal Inference is an admittedly pretentious title for a book. Causal inference

is a complex scientific task that relies on triangulating evidence from multiple

sources and on the application of a variety of methodological approaches. No

book can possibly provide a comprehensive description of methodologies for

causal inference across the sciences. The authors of any Causal Inference book

will have to choose which aspects of causal inference methodology they want

to emphasize.

The title of this introduction reflects our own choices: a book that helps

scientists–especially health and social scientists–generate and analyze data

to make causal inferences that are explicit about both the causal question and

the assumptions underlying the data analysis. Unfortunately, the scientific

literature is plagued by studies in which the causal question is not explicitly

stated and the investigators’ unverifiable assumptions are not declared. This

casual attitude towards causal inference has led to a great deal of confusion.

For example, it is not uncommon to find studies in which the effect estimates

are hard to interpret because the data analysis methods cannot appropriately

answer the causal question (were it explicitly stated) under the investigators’

assumptions (were they declared).

In this book, we stress the need to take the causal question seriously enough

to articulate it, and to delineate the separate roles of data and assumptions for

causal inference. Once these foundations are in place, causal inferences become

necessarily less casual, which helps prevent confusion. The book describes

various data analysis approaches that can be used to estimate the causal effect

of interest under a particular set of assumptions when data are collected on

each individual in a population. A key message of the book is that causal

inference cannot be reduced to a collection of recipes for data analysis.

The book is divided in three parts of increasing difficulty: Part I is about

causal inference without models (i.e., nonparametric identification of causal ef-

fects), Part II is about causal inference with models (i.e., estimation of causal

effects with parametric models), and Part III is about causal inference from

complex longitudinal data (i.e., estimation of causal effects of time-varying

treatments). Throughout the text, we have interspersed Fine Points and Tech-

nical points that elaborate on certain topics mentioned in the main text. Fine

Points are designed to be accessible to all readers while Technical Points are

designed for readers with intermediate training in statistics. The book pro-

vides a cohesive presentation of concepts of, and methods for, causal inference

that are currently scattered across journals in several disciplines. We expect

that the book will be of interest to anyone interested in causal inference, e.g.,

epidemiologists, statisticians, psychologists, economists, sociologists, political

scientists, computer scientists. . .

Importantly, this is not a philosophy book. We remain agnostic about

metaphysical concepts like causality and cause. Rather, we focus on the iden-

tification and estimation of causal effects in populations, that is, numerical

quantities that measure changes in the distribution of an outcome under dif-

ferent interventions. For example, we discuss how to estimate the risk of death
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in patients with serious heart failure if they received a heart transplant versus

if they did not receive a heart transplant. Our main goal is to help decision

makers make better decisions–actionable causal inference.

We are grateful to many people who have made this book possible. Stephen

Cole, Sander Greenland, Jay Kaufman, Eleanor Murray, Sonja Swanson, Tyler

VanderWeele, and Jan Vandenbroucke provided detailed comments. Goodarz

Danaei, Kosuke Kawai, Martin Lajous, and Kathleen Wirth helped create

the NHEFS dataset. The sample code in Part II was developed by Roger

Logan in SAS, Eleanor Murray and Roger Murray in Stata, and Joy Shi and

Sean McGrath in R. Roger Logan has also been our LaTeX wizard. Randall

Chaput helped create the figures in Chapters 1 and 2. Rob Calver, our patient

publisher, encouraged us to write the book and supported our decision to make

it freely available online.

In addition, multiple colleagues have helped us improve the book by detect-

ing typos and identifying unclear passages. We especially thank Kafui Adjaye-

Gbewonyo, Álvaro Alonso, Katherine Almendinger, Ingelise Andersen, Juan

José Beunza, Karen Biala, Joanne Brady, Alex Breskin, Shan Cai, Yu-Han

Chiu, Alexis Dinno, James Fiedler, Birgitte Frederiksen, Tadayoshi Fushiki,

Leticia Grize, Dominik Hangartner, John Jackson, Luke Keele, Laura Khan,

Dae Hyun Kim, Lauren Kunz, Martín Lajous, Angeliki Lambrou, Wen Wei

Loh, Haidong Lu, Mohammad Ali Mansournia, Giovanni Marchetti, Lauren

McCarl, Shira Mitchell, Louis Mittel, Hannah Oh, Ibironke Olofin, Robert

Paige, Jeremy Pertman, Melinda Power, Bruce Psaty, Brian Sauer, Tomohiro

Shinozaki, Ian Shrier, Yan Song, Øystein Sørensen, Etsuji Suzuki, Denis Tal-

bot, Mohammad Tavakkoli, Sarah Taubman, Evan Thacker, Kun-Hsing Yu,

Vera Zietemann, Jessica Young, and Dorith Zimmermann.



Part I

Causal inference without models





Chapter 1
A DEFINITION OF CAUSAL EFFECT

By reading this book you are expressing an interest in learning about causal inference. But, as a human being,

you have already mastered the fundamental concepts of causal inference. You certainly know what a causal effect

is; you clearly understand the difference between association and causation; and you have used this knowledge

constantly throughout your life. In fact, had you not understood these causal concepts, you would have not

survived long enough to read this chapter–or even to learn to read. As a toddler you would have jumped right

into the swimming pool after observing that those who did so were later able to reach the jam jar. As a teenager,

you would have skied down the most dangerous slopes after observing that those who did so were more likely to

win the next ski race. As a parent, you would have refused to give antibiotics to your sick child after observing

that those children who took their medicines were less likely to be playing in the park the next day.

Since you already understand the definition of causal effect and the difference between association and cau-

sation, do not expect to gain deep conceptual insights from this chapter. Rather, the purpose of this chapter is

to introduce mathematical notation that formalizes the causal intuition that you already possess. Make sure that

you can match your causal intuition with the mathematical notation introduced here. This notation is necessary

to precisely define causal concepts, and we will use it throughout the book.

1.1 Individual causal effects

Zeus is a patient waiting for a heart transplant. On January 1, he receives

a new heart. Five days later, he dies. Imagine that we can somehow know,

perhaps by divine revelation, that had Zeus not received a heart transplant

on January 1, he would have been alive five days later. Equipped with this

information most would agree that the transplant caused Zeus’s death. The

heart transplant intervention had a causal effect on Zeus’s five-day survival.

Another patient, Hera, also received a heart transplant on January 1. Five

days later she was alive. Imagine we can somehow know that, had Hera not

received the heart on January 1, she would still have been alive five days later.

Hence the transplant did not have a causal effect on Hera’s five-day survival.

These two vignettes illustrate how humans reason about causal effects:

We compare (usually only mentally) the outcome when an action  is taken

with the outcome when the action  is withheld. If the two outcomes differ,

we say that the action  has a causal effect, causative or preventive, on the

outcome. Otherwise, we say that the action  has no causal effect on the

outcome. Epidemiologists, statisticians, economists, and other social scientists

often refer to the action  as an intervention, an exposure, or a treatment.

To make our causal intuition amenable to mathematical and statistical

analysis we will introduce some notation. Consider a dichotomous treatment

variable  (1: treated, 0: untreated) and a dichotomous outcome variable 

(1: death, 0: survival). In this book we refer to variables such as  and Capital letters represent random

variables. Lower case letters denote

particular values of a random vari-

able.

that may have different values for different individuals as random variables.

Let  =1 (read  under treatment  = 1) be the outcome variable that would

have been observed under the treatment value  = 1, and  =0 (read  under

treatment  = 0) the outcome variable that would have been observed under
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the treatment value  = 0.  =1 and  =0 are also random variables. Zeus

has  =1 = 1 and  =0 = 0 because he died when treated but would haveSometimes we abbreviate the ex-

pression “individual  has outcome

  = 1” by writing  
 = 1. Tech-

nically, when  refers to a specific

individual, such as Zeus,  
 is not

a random variable because we are

assuming that individual counter-

factual outcomes are deterministic

(see Technical Point 1.2).

survived if untreated, while Hera has  =1 = 0 and  =0 = 0 because she

survived when treated and would also have survived if untreated.

We can now provide a formal definition of a causal effect for an individ-

ual : the treatment  has a causal effect on an individual’s outcome  if

 =1 6=  =0 for the individual. Thus the treatment has a causal effect on

Zeus’s outcome because  =1 = 1 6= 0 =  =0, but not on Hera’s outcome

because  =1 = 0 =  =0. The variables  =1 and  =0 are referred to

as potential outcomes or as counterfactual outcomes. Some authors prefer the

Causal effect for individual :

 =1
 6=  =0



term “potential outcomes” to emphasize that, depending on the treatment that

is received, either of these two outcomes can be potentially observed. Other

authors prefer the term “counterfactual outcomes” to emphasize that these

outcomes represent situations that may not actually occur (that is, counter to

the fact situations).

For each individual, one of the counterfactual outcomes–the one that cor-

responds to the treatment value that the individual actually received–is ac-

tually factual. For example, because Zeus was actually treated ( = 1), his

counterfactual outcome under treatment  =1 = 1 is equal to his observed

(actual) outcome  = 1. That is, an individual with observed treatment 

equal to , has observed outcome  equal to his counterfactual outcome  .

This equality can be succinctly expressed as  =   where   denotes the

counterfactual   evaluated at the value  corresponding to the individual’s

observed treatment . The equality  =   is referred to as consistency.Consistency:

if  = , then  
 =   =  Individual causal effects are defined as a contrast of the values of counterfac-

tual outcomes, but only one of those outcomes is observed for each individual–

the one corresponding to the treatment value actually experienced by the in-

dividual. All other counterfactual outcomes remain unobserved. The unhappy

conclusion is that, in general, individual causal effects cannot be identified–

that is, cannot be expressed as a function of the observed data–because of

missing data. (See Fine Point 2.1 for a possible exception.)

1.2 Average causal effects

We needed three pieces of information to define an individual causal effect: an

outcome of interest, the actions  = 1 and  = 0 to be compared, and the

individual whose counterfactual outcomes  =0 and  =1 are to be compared.

However, because identifying individual causal effects is generally not possible,

we now turn our attention to an aggregated causal effect: the average causal

effect in a population of individuals. To define it, we need three pieces of

information: an outcome of interest, the actions  = 1 and  = 0 to be

compared, and a well-defined population of individuals whose outcomes  =0

and  =1 are to be compared.

Take Zeus’s extended family as our population of interest. Table 1.1 shows

the counterfactual outcomes under both treatment ( = 1) and no treatment

( = 0) for all 20 members of our population. Let us first focus our attention

on the last column: the outcome  =1 that would have been observed for

each individual if they had received the treatment (a heart transplant). Half

of the members of the population (10 out of 20) would have died if they had

received a heart transplant. That is, the proportion of individuals that would

have developed the outcome had all population individuals received  = 1



1.2 Average causal effects 5

Fine Point 1.1

Interference. An implicit assumption in our definition of counterfactual outcome is that an individual’s counterfactual

outcome under treatment value  does not depend on other individuals’ treatment values. For example, we implicitly

assumed that Zeus would die if he received a heart transplant, regardless of whether Hera also received a heart transplant.

That is, Hera’s treatment value did not interfere with Zeus’s outcome. On the other hand, suppose that Hera’s getting

a new heart upsets Zeus to the extent that he would not survive his own heart transplant, even though he would

have survived had Hera not been transplanted. In this scenario, Hera’s treatment interferes with Zeus’s outcome.

Interference between individuals is common in studies that deal with contagious agents or educational programs, in

which an individual’s outcome is influenced by their social interaction with other population members.

In the presence of interference, the counterfactual  
 for an individual  is not well defined because an individual’s

outcome depends also on other individuals’ treatment values. As a consequence “the causal effect of heart transplant on

Zeus’s outcome” is not well defined when there is interference. Rather, one needs to refer to “the causal effect of heart

transplant on Zeus’s outcome when Hera does not get a new heart” or “the causal effect of heart transplant on Zeus’s

outcome when Hera does get a new heart.” If other relatives and friends’ treatment also interfere with Zeus’s outcome,

then one may need to refer to the causal effect of heart transplant on Zeus’s outcome when “no relative or friend gets

a new heart,” “when only Hera gets a new heart,” etc. because the causal effect of treatment on Zeus’s outcome may

differ for each particular allocation of hearts. The assumption of no interference was labeled “no interaction between

units” by Cox (1958), and is included in the “stable-unit-treatment-value assumption (SUTVA)” described by Rubin

(1980). See Halloran and Struchiner (1995), Sobel (2006), Rosenbaum (2007), and Hudgens and Halloran (2009) for

a more detailed discussion of the role of interference in the definition of causal effects. Unless otherwise specified, we

will assume no interference throughout this book.

is Pr[ =1 = 1] = 1020 = 05. Similarly, from the other column of Table

1.1, we can conclude that half of the members of the population (10 out ofTable 1.1

 =0  =1

Rheia 0 1

Kronos 1 0

Demeter 0 0

Hades 0 0

Hestia 0 0

Poseidon 1 0

Hera 0 0

Zeus 0 1

Artemis 1 1

Apollo 1 0

Leto 0 1

Ares 1 1

Athena 1 1

Hephaestus 0 1

Aphrodite 0 1

Cyclope 0 1

Persephone 1 1

Hermes 1 0

Hebe 1 0

Dionysus 1 0

20) would have died if they had not received a heart transplant. That is,

the proportion of individuals that would have developed the outcome had all

population individuals received  = 0 is Pr[ =0 = 1] = 1020 = 05. We have

computed the counterfactual risk under treatment to be 05 by counting the

number of deaths (10) and dividing them by the total number of individuals

(20), which is the same as computing the average of the counterfactual outcome

across all individuals in the population (to see the equivalence between risk and

average for a dichotomous outcome, use the data in Table 1.1 to compute the

average of  =1).

We are now ready to provide a formal definition of the average causal effect

in the population: an average causal effect of treatment  on outcome 

is present if Pr[ =1 = 1] 6= Pr[ =0 = 1] in the population of interest.

Under this definition, treatment  does not have an average causal effect on

outcome  in our population because both the risk of death under treatment

Pr[ =1 = 1] and the risk of death under no treatment Pr[ =0 = 1] are 05.

That is, it does not matter whether all or none of the individuals receive a

heart transplant: half of them would die in either case. When, like here, the

average causal effect in the population is null, we say that the null hypothesis

of no average causal effect is true. Because the risk equals the average and

because the letter E is usually employed to represent the population average

or mean (also referred to as ‘E’xpectation), we can rewrite the definition of a

non-null average causal effect in the population as E[ =1] 6= E[ =0] so that

the definition applies to both dichotomous and nondichotomous outcomes.

The presence of an “average causal effect of heart transplant ” is defined

by a contrast that involves the two actions “receiving a heart transplant ( =
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Fine Point 1.2

Multiple versions of treatment. Another implicit assumption in our definition of an individual’s counterfactual outcome

under treatment value  is that there is only one version of treatment value  = . For example, we said that Zeus

would die if he received a heart transplant. This statement implicitly assumes that all heart transplants are performed

by the same surgeon using the same procedure and equipment. That is, that there is only one version of the treatment

“heart transplant.” If there were multiple versions of treatment (e.g., surgeons with different skills), then it is possible

that Zeus would survive if his transplant were performed by Asclepios, and would die if his transplant were performed by

Hygieia. In the presence of multiple versions of treatment, the counterfactual  
 for an individual  is not well defined

because an individual’s outcome depends on the version of treatment . As a consequence “the causal effect of heart

transplant on Zeus’s outcome” is not well defined when there are multiple versions of treatment. Rather, one needs to

refer to “the causal effect of heart transplant on Zeus’s outcome when Asclepios performs the surgery” or “the causal

effect of heart transplant on Zeus’s outcome when Hygieia performs the surgery.” If other components of treatment

(e.g., procedure, place) are also relevant to the outcome, then one may need to refer to “the causal effect of heart

transplant on Zeus’s outcome when Asclepios performs the surgery using his rod at the temple of Kos” because the

causal effect of treatment on Zeus’s outcome may differ for each particular version of treatment.

Like the assumption of no interference (see Fine Point 1.1), the assumption of no multiple versions of treatment is

included in the “stable-unit-treatment-value assumption (SUTVA)” described by Rubin (1980). Robins and Greenland

(2000) made the point that if the versions of a particular treatment (e.g., heart transplant) had the same causal effect

on the outcome (survival), then the counterfactual  =1 would be well-defined. VanderWeele (2009) formalized this

point as the assumption of “treatment variation irrelevance,” i.e., the assumption that multiple versions of treatment

 =  may exist but they all result in the same outcome  
 . We return to this issue in Chapter 3 but, unless otherwise

specified, we will assume treatment variation irrelevance throughout this book.

1)” and “not receiving a heart transplant ( = 0).” When more than two

actions are possible (i.e., the treatment is not dichotomous), the particular

contrast of interest needs to be specified. For example, “the causal effect ofAverage causal effect in population:

E[ =1] 6= E[ =0] aspirin” is meaningless unless we specify that the contrast of interest is, say,

“taking, while alive, 150 mg of aspirin by mouth (or nasogastric tube if need

be) daily for 5 years” versus “not taking aspirin.” This causal effect is well

defined even if counterfactual outcomes under other interventions are not well

defined or even do not exist (e.g., “taking, while alive, 500 mg of aspirin by

absorption through the skin daily for 5 years”).

Absence of an average causal effect does not imply absence of individual

effects. Table 1.1 shows that treatment has an individual causal effect on

12 members (including Zeus) of the population because, for each of these 12

individuals, the value of their counterfactual outcomes  =1 and  =0 differ.

Of the 12 , 6 were harmed by treatment, including Zeus
¡
 =1 −  =0 = 1

¢
,

and 6 were helped
¡
 =1 −  =0 = −1¢. This equality is not an accident:

the average causal effect E[ =1] − E[ =0] is always equal to the average

E[ =1 −  =0] of the individual causal effects  =1 −  =0, as a difference

of averages is equal to the average of the differences. When there is no causal

effect for any individual in the population, i.e.,  =1 =  =0 for all individuals,

we say that the sharp causal null hypothesis is true. The sharp causal null

hypothesis implies the null hypothesis of no average effect.

As discussed in the next chapters, average causal effects can sometimes be

identified from data, even if individual causal effects cannot. Hereafter we refer

to ‘average causal effects’ simply as ‘causal effects’ and the null hypothesis of

no average effect as the causal null hypothesis. We next describe different

measures of the magnitude of a causal effect.
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Technical Point 1.1

Causal effects in the population. Let E[ ] be the mean counterfactual outcome had all individuals in the population

received treatment level . For discrete outcomes, the mean or expected value E[ ] is defined as the weighted sumP
   () over all possible values  of the random variable  , where   (·) is the probability mass function of  ,

i.e.,   () = Pr[  = ]. For dichotomous outcomes, E[ ] = Pr[  = 1]. For continuous outcomes, the expected

value E[ ] is defined as the integral
R
  ()  over all possible values  of the random variable  , where   (·)

is the probability density function of  . A common representation of the expected value that applies to both discrete

and continuous outcomes is E[ ] =
R
  (), where   (·) is the cumulative distribution function (cdf) of the

random variable  . We say that there is a non-null average causal effect in the population if E[ ] 6= E[ 0 ] for any

two values  and 0.
The average causal effect, defined by a contrast of means of counterfactual outcomes, is the most commonly

used population causal effect. However, a population causal effect may also be defined as a contrast of, say, medians,

variances, hazards, or cdfs of counterfactual outcomes. In general, a population causal effect can be defined as a
contrast of any functional of the marginal distributions of counterfactual outcomes under different actions or treatment

values. For example the population causal effect on the variance is defined as ( =1) − ( =0), which is

zero for the population in Table 1.1 since the distribution of  =1 and  =0 are identical–both having 6 deaths

out of 20. In fact, the equality of these distributions imply that for any functional (e.g., mean, variance, median,

hazard,etc.), the population causal effect on the functional is zero. However, in contrast to the mean, the difference

in population variances ( =1)− ( =0) does not in general equal the variance of the individual causal effects

( =1 −  =0). For example, in Table 1.1, since  =1 −  =0 is not constant (−1 for 6 individuals, 1 for 6
individuals and 0 for 8 individuals), ( =1 −  =0)  0 = ( =1) − ( =0). We will be able to identify

(i.e., compute) ( =1) − ( =0) from the data collected in a randomized trial, but not ( =1 −  =0)

because we can never simultaneously observe both  =1 and  =0 for any individual, and thus the covariance of  =1

and  =0 is not identified. The above discussion is true not only for the variance but for for any nonlinear functional

(e.g., median, hazard).

1.3 Measures of causal effect

We have seen that the treatment ‘heart transplant’  does not have a causal

effect on the outcome ‘death’  in our population of 20 family members of

Zeus. The causal null hypothesis holds because the two counterfactual risks

Pr[ =1 = 1] and Pr[ =0 = 1] are equal to 05. There are equivalent ways

of representing the causal null. For example, we could say that the risk

Pr[ =1 = 1] minus the risk Pr
£
 =0 = 1

¤
is zero (05 − 05 = 0) or that

the risk Pr[ =1 = 1] divided by the risk Pr
£
 =0 = 1

¤
is one (0505 = 1).

That is, we can represent the causal null byThe causal risk difference in the

population is the average of the in-

dividual causal effects  =1− =0

on the difference scale, i.e., it is

a measure of the average individ-

ual causal effect. By contrast, the

causal risk ratio in the population

is not the average of the individual

causal effects  =1 =0 on the

ratio scale, i.e., it is a measure of

causal effect in the population but

is not the average of any individual

causal effects.

(i) Pr[ =1 = 1]− Pr[ =0 = 1] = 0

(ii)
Pr[ =1 = 1]

Pr[ =0 = 1]
= 1

(iii)
Pr[ =1 = 1]Pr[ =1 = 0]

Pr[ =0 = 1]Pr[ =0 = 0]
= 1

where the left-hand side of the equalities (i), (ii), and (iii) is the causal risk

difference, risk ratio, and odds ratio, respectively.

Suppose now that another treatment , cigarette smoking, has a causal

effect on another outcome  , lung cancer, in our population. The causal null

hypothesis does not hold: Pr[ =1 = 1] and Pr[ =0 = 1] are not equal. In

this setting, the causal risk difference, risk ratio, and odds ratio are not 0, 1,
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Number needed to treat. Consider a population of 100 million patients in which 20 million would die within five years

if treated ( = 1), and 30 million would die within five years if untreated ( = 0). This information can be summarized

in several equivalent ways:

• the causal risk difference is Pr[ =1 = 1]− Pr[ =0 = 1] = 02− 03 = −01
• if one treats the 100 million patients, there will be 10 million fewer deaths than if one does not treat those 100
million patients.

• one needs to treat 100 million patients to save 10 million lives
• on average, one needs to treat 10 patients to save 1 life

We refer to the average number of individuals that need to receive treatment  = 1 to reduce the number of cases

 = 1 by one as the number needed to treat (NNT). In our example the NNT is equal to 10. For treatments that

reduce the average number of cases (i.e., the causal risk difference is negative), the NNT is equal to the reciprocal of

the absolute value of the causal risk difference:

 =
−1

Pr[ =1 = 1]− Pr[ =0 = 1]

For treatments that increase the average number of cases (i.e., the causal risk difference is positive), one can

symmetrically define the number needed to harm. The NNT was introduced by Laupacis, Sackett, and Roberts (1988).

Like the causal risk difference, the NNT applies to the population and time interval on which it is based. For a discussion

of the relative advantages and disadvantages of the NNT as an effect measure, see Grieve (2003).

and 1, respectively. Rather, these causal parameters quantify the strength of

the same causal effect on different scales. Because the causal risk difference,

risk ratio, and odds ratio (and other summaries) measure the causal effect, we

refer to them as effect measures.

Each effect measure may be used for different purposes. For example,

imagine a large population in which 3 in a million individuals would develop the

outcome if treated, and 1 in a million individuals would develop the outcome if

untreated. The causal risk ratio is 3, and the causal risk difference is 0000002.

The causal risk ratio (multiplicative scale) is used to compute how many times

treatment, relative to no treatment, increases the disease risk. The causal risk

difference (additive scale) is used to compute the absolute number of cases of

the disease attributable to the treatment. The use of either the multiplicative

or additive scale will depend on the goal of the inference.

1.4 Random variability

At this point you could complain that our procedure to compute effect measures

is somewhat implausible. Not only did we ignore the well known fact that the

immortal Zeus cannot die, but–more to the point–our population in Table

1.1 had only 20 individuals. The populations of interest are typically much

larger.

In our tiny population, we collected information from all the individuals. In
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practice, investigators only collect information on a sample of the population

of interest. Even if the counterfactual outcomes of all study individuals were

known, working with samples prevents one from obtaining the exact proportion

of individuals in the population who had the outcome under treatment value

, e.g., the probability of death under no treatment Pr[ =0 = 1] cannot be

directly computed. One can only estimate this probability.

Consider the individuals in Table 1.1. We have previously viewed them

as forming a twenty-person population. Suppose we view them as a random1st source of random error:

Sampling variability sample from a much larger, near-infinite super-population (e.g., all immor-

tals). We denote the proportion of individuals in the sample who would have

died if unexposed as cPr[ =0 = 1] = 1020 = 050. The sample proportioncPr[ =0 = 1] does not have to be exactly equal to the proportion of individ-

uals who would have died if the entire super-population had been unexposed,

Pr[ =0 = 1]. For example, suppose Pr[ =0 = 1] = 057 in the population

but, because of random error due to sampling variability,cPr[ =0 = 1] = 05 in

our particular sample. We use the sample proportion cPr[  = 1] to estimate

the super-population probability Pr[  = 1] under treatment value . The

“hat” over Pr indicates that the sample proportion cPr[  = 1] is an estimator

of the corresponding population quantity Pr[  = 1]. We say that cPr[  = 1]An estimator ̂ of  is consistent

if, with probability approaching 1,

the difference ̂− approaches zero
as the sample size increases towards

infinity.

is a consistent estimator of Pr[  = 1] because the larger the number of in-

dividuals in the sample, the smaller the difference between cPr[  = 1] and

Pr[  = 1] is expected to be. This occurs because the error due to sampling

variability is random and thus obeys the law of large numbers.

Because the super-population probabilities Pr[  = 1] cannot be computed,

only consistently estimated by the sample proportions cPr[  = 1], one cannotCaution: the term ‘consistency’

when applied to estimators has a

different meaning from that which

it has when applied to counterfac-

tual outcomes.

conclude with certainty that there is, or there is not, a causal effect. Rather, a

statistical procedure must be used to evaluate the empirical evidence regarding

the causal null hypothesis Pr[ =1 = 1] = Pr[ =0 = 1] (see Chapter 10 for

details).

So far we have only considered sampling variability as a source of random

error. But there may be another source of random variability: perhaps the

values of an individual’s counterfactual outcomes are not fixed in advance.2nd source of random error:

Nondeterministic counterfactuals We have defined the counterfactual outcome   as the individual’s outcome

had he received treatment value . For example, in our first vignette, Zeus

would have died if treated and would have survived if untreated. As defined,

the values of the counterfactual outcomes are fixed or deterministic for each

individual, e.g.,  =1 = 1 and  =0 = 0 for Zeus. In other words, Zeus

has a 100% chance of dying if treated and a 0% chance of dying if untreated.

However, we could imagine another scenario in which Zeus has a 90% chance

of dying if treated, and a 10% chance of dying if untreated. In this scenario,

the counterfactual outcomes are stochastic or nondeterministic because Zeus’s

probabilities of dying under treatment (09) and under no treatment (01)

are neither zero nor one. The values of  =1 and  =0 shown in Table 1.1

would be possible realizations of “random flips of mortality coins” with these

probabilities. Further, one would expect that these probabilities vary across

individuals because not all individuals are equally susceptible to develop the

outcome. Quantum mechanics, in contrast to classical mechanics, holds that

outcomes are inherently nondeterministic. That is, if the quantum mechanical

probability of Zeus dying is 90%, the theory holds that no matter how much

data we collect about Zeus, the uncertainty about whether Zeus will actually

develop the outcome if treated is irreducible.

Thus, in causal inference, random error derives from sampling variability,
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Nondeterministic counterfactuals. For nondeterministic counterfactual outcomes, the mean outcome under treatment

value , E[ ], equals the weighted sum
P


  () over all possible values  of the random variable  , where the

probability mass function   (·) = E [  (·)], and   () is a random probability of having outcome  =  under

treatment level . In the example described in the text,  =1 (1) = 09 for Zeus. (For continuous outcomes, the

weighted sum is replaced by an integral.)

More generally, a nondeterministic definition of counterfactual outcome does not attach some particular value

of the random variable   to each individual, but rather an individual-specific statistical distribution Θ  (·) of  .

The nondeterministic definition of causal effect is a generalization of the deterministic definition in which Θ  (·) is
now a random cdf that may take values between 0 and 1. The average counterfactual outcome in the population
E[ ] equals E {E [  | Θ  (·)]}. Therefore, E[ ] = E

£R
 Θ  ()

¤
=
R
 E[Θ  ()] =

R
   (), where

  (·) = E £Θ 

(·)¤.

If the counterfactual outcomes are binary and nondeterministic, the causal risk ratio in the population
E[ =1 (1)]
E[ =0 (1)]

is equal to the weighted average E [ { =1 (1)  =0 (1)}] of the individual causal effects  =1 (1)  =0 (1)

on the ratio scale, with weights =
 =0 (1)

E[ =0 (1)]
, provided  =0 (1) is never equal to 0 (i.e., deterministic) for anyone

in the population.

nondeterministic counterfactuals, or both. However, for pedagogic reasons, we

will continue to largely ignore random error until Chapter 10. Specifically, we

will assume that counterfactual outcomes are deterministic and that we have

recorded data on every individual in a very large (perhaps hypothetical) super-

population. This is equivalent to viewing our population of 20 individuals as a

population of 20 billion individuals in which 1 billion individuals are identical

to Zeus, 1 billion individuals are identical to Hera, and so on. Hence, until

Chapter 10, we will carry out our computations with Olympian certainty.

Then, in Chapter 10, we will describe how our statistical estimates and

confidence intervals for causal effects in the super-population are identical ir-

respective of whether the world is stochastic (quantum) or deterministic (classi-

cal) at the level of individuals. In contrast, confidence intervals for the average

causal effect in the actual study sample will differ depending on whether coun-

terfactuals are deterministic versus stochastic. Fortunately, super-population

effects are in most cases the causal effects of substantive interest.

1.5 Causation versus association

Obviously, the data available from actual studies look different from those

shown in Table 1.1. For example, we would not usually expect to learn Zeus’s

outcome if treated  =1 and also Zeus’s outcome if untreated  =0. In the

real world, we only get to observe one of those outcomes because Zeus is either

treated or untreated. We referred to the observed outcome as  . Thus, for

each individual, we know the observed treatment level  and the outcome 

as in Table 1.2.

The data in Table 1.2 can be used to compute the proportion of individuals

that developed the outcome  among those individuals in the population that

happened to receive treatment value . For example, in Table 1.2, 7 individuals
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died ( = 1) among the 13 individuals that were treated ( = 1). Thus the

risk of death in the treated, Pr[ = 1| = 1], was 713. More generally, the

conditional probability Pr[ = 1| = ] is defined as the proportion of individ-

uals that developed the outcome  among those individuals in the population

of interest that happened to receive treatment value .

When the proportion of individuals who develop the outcome in the treated

Pr[ = 1| = 1] equals the proportion of individuals who develop the outcome
in the untreated Pr[ = 1| = 0], we say that treatment  and outcome 

are independent, that  is not associated with  , or that  does not predict

 . Independence is represented by ⊥⊥–or, equivalently, ⊥⊥– which isDawid (1979) introduced the sym-

bol ⊥⊥ to denote independence read as  and  are independent. Some equivalent definitions of independence

are

(i) Pr[ = 1| = 1]− Pr[ = 1| = 0] = 0

(ii)
Pr[ = 1| = 1]
Pr[ = 1| = 0] = 1Table 1.2

 

Rheia 0 0

Kronos 0 1

Demeter 0 0

Hades 0 0

Hestia 1 0

Poseidon 1 0

Hera 1 0

Zeus 1 1

Artemis 0 1

Apollo 0 1

Leto 0 0

Ares 1 1

Athena 1 1

Hephaestus 1 1

Aphrodite 1 1

Cyclope 1 1

Persephone 1 1

Hermes 1 0

Hebe 1 0

Dionysus 1 0

(iii)
Pr[ = 1| = 1]Pr[ = 0| = 1]
Pr[ = 1| = 0]Pr[ = 0| = 0] = 1

where the left-hand side of the inequalities (i), (ii), and (iii) is the associational

risk difference, risk ratio, and odds ratio, respectively.

We say that treatment  and outcome  are dependent or associated when

Pr[ = 1| = 1] 6= Pr[ = 1| = 0]. In our population, treatment and

For a continuous outcome  we

define mean independence between

treatment and outcome as:

E[ | = 1] = E[ | = 0]
Independence and mean indepen-

dence are the same concept for di-

chotomous outcomes.

outcome are indeed associated because Pr[ = 1| = 1] = 713 and Pr[ =

1| = 0] = 37. The associational risk difference, risk ratio, and odds ratio

(and other measures) quantify the strength of the association when it exists.

They measure the association on different scales, and we refer to them as

association measures. These measures are also affected by random variability.

However, until Chapter 10, we will disregard statistical issues by assuming that

the population in Table 1.2 is extremely large.

For dichotomous outcomes, the risk equals the average in the population,

and we can therefore rewrite the definition of association in the population as

E [ | = 1] 6= E [ | = 0]. For continuous outcomes  , we will also define
association as E [ | = 1] 6= E [ | = 0]. For binary ,  and  are not

associated if and only if they are not statistically correlated.

In our population of 20 individuals, we found (i) no causal effect after com-

paring the risk of death if all 20 individuals had been treated with the risk

of death if all 20 individuals had been untreated, and (ii) an association after

comparing the risk of death in the 13 individuals who happened to be treated

with the risk of death in the 7 individuals who happened to be untreated.

Figure 1.1 depicts the causation-association difference. The population (repre-

sented by a diamond) is divided into a white area (the treated) and a smaller

grey area (the untreated).
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Population of interest

Treated Untreated

Causation Association

vs.vs.

EYa1 EYa0 EY|A  1 EY|A  0

Figure 1.1

The definition of causation implies a contrast between the whole white

diamond (all individuals treated) and the whole grey diamond (all individu-

als untreated), whereas association implies a contrast between the white (the

treated) and the grey (the untreated) areas of the original diamond. That is,

inferences about causation are concerned with what if questions in counterfac-

tual worlds, such as “what would be the risk if everybody had been treated?”

and “what would be the risk if everybody had been untreated?”, whereas infer-

ences about association are concerned with questions in the actual world, such

as “what is the risk in the treated?” and “what is the risk in the untreated?”

We can use the notation we have developed thus far to formalize this dis-

tinction between causation and association. The risk Pr[ = 1| = ] is a

conditional probability: the risk of  in the subset of the population that

meet the condition ‘having actually received treatment value ’ (i.e.,  = ).

In contrast the risk Pr[  = 1] is an unconditional–also known as marginal–

probability, the risk of   in the entire population. Therefore, association is

defined by a different risk in two disjoint subsets of the population determined

by the individuals’ actual treatment value ( = 1 or  = 0), whereas causa-

tion is defined by a different risk in the same population under two different

treatment values ( = 1 or  = 0). Throughout this book we often use theThe difference between association

and causation is critical. Suppose

the causal risk ratio of 5-year mor-

tality is 05 for aspirin vs. no as-

pirin, and the corresponding asso-

ciational risk ratio is 15 because

individuals at high risk of cardiovas-

cular death are preferentially pre-

scribed aspirin. After a physician

learns these results, she decides to

withhold aspirin from her patients

because those treated with aspirin

have a greater risk of dying com-

pared with the untreated. The doc-

tor will be sued for malpractice.

redundant expression ‘causal effect’ to avoid confusions with a common use of

‘effect’ meaning simply association.

These radically different definitions explain the well-known adage “asso-

ciation is not causation.” In our population, there was association because

the mortality risk in the treated (713) was greater than that in the untreated

(37). However, there was no causation because the risk if everybody had been

treated (1020) was the same as the risk if everybody had been untreated. This

discrepancy between causation and association would not be surprising if those

who received heart transplants were, on average, sicker than those who did not

receive a transplant. In Chapter 7 we refer to this discrepancy as confounding.

Causal inference requires data like the hypothetical data in Table 1.1, but

all we can ever expect to have is real world data like those in Table 1.2. The

question is then under which conditions real world data can be used for causal

inference. The next chapter provides one answer: conduct a randomized ex-

periment.



Chapter 2
RANDOMIZED EXPERIMENTS

Does your looking up at the sky make other pedestrians look up too? This question has the main components

of any causal question: we want to know whether an action (your looking up) affects an outcome (other people’s

looking up) in a specific population (say, residents of Madrid in 2019). Suppose we challenge you to design a

scientific study to answer this question. “Not much of a challenge,” you say after some thought, “I can stand on

the sidewalk and flip a coin whenever someone approaches. If heads, I’ll look up; if tails, I’ll look straight ahead.

I’ll repeat the experiment a few thousand times. If the proportion of pedestrians who looked up within 10 seconds

after I did is greater than the proportion of pedestrians who looked up when I didn’t, I will conclude that my

looking up has a causal effect on other people’s looking up. By the way, I may hire an assistant to record what

people do while I’m looking up.” After conducting this study, you found that 55% of pedestrians looked up when

you looked up but only 1% looked up when you looked straight ahead.

Your solution to our challenge was to conduct a randomized experiment. It was an experiment because the

investigator (you) carried out the action of interest (looking up), and it was randomized because the decision to

act on any study subject (pedestrian) was made by a random device (coin flipping). Not all experiments are

randomized. For example, you could have looked up when a man approached and looked straight ahead when a

woman did. Then the assignment of the action would have followed a deterministic rule (up for man, straight for

woman) rather than a random mechanism. However, your findings would not have been nearly as convincing if

you had conducted a non randomized experiment. If your action had been determined by the pedestrian’s sex,

critics could argue that the “looking up” behavior of men and women differs (women may look up less often than

do men after you look up) and thus your study compared essentially “noncomparable” groups of people. This

chapter describes why randomization results in convincing causal inferences.

2.1 Randomization

In a real world study we will not know both of Zeus’s potential outcomes  =1

under treatment and  =0 under no treatment. Rather, we can only know

his observed outcome  under the treatment value  that he happened to

receive. Table 2.1 summarizes the available information for our population

of 20 individuals. Only one of the two counterfactual outcomes is known for

each individual: the one corresponding to the treatment level that he actually

received. The data are missing for the other counterfactual outcomes. As weNeyman (1923) applied counterfac-

tual theory to the estimation of

causal effects via randomized ex-

periments

discussed in the previous chapter, this missing data creates a problem because

it appears that we need the value of both counterfactual outcomes to compute

effect measures. The data in Table 2.1 are only good to compute association

measures.

Randomized experiments, like any other real world study, generate data with

missing values of the counterfactual outcomes as shown in Table 2.1. However,

randomization ensures that those missing values occurred by chance. As a

result, effect measures can be computed –or, more rigorously, consistently

estimated–in randomized experiments despite the missing data. Let us be

more precise.

Suppose that the population represented by a diamond in Figure 1.1 was

near-infinite, and that we flipped a coin for each individual in such population.
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We assigned the individual to the white group if the coin turned tails, and

to the grey group if it turned heads. Note this was not a fair coin becauseTable 2.1
   0  1

Rheia 0 0 0 ?

Kronos 0 1 1 ?

Demeter 0 0 0 ?

Hades 0 0 0 ?

Hestia 1 0 ? 0

Poseidon 1 0 ? 0

Hera 1 0 ? 0

Zeus 1 1 ? 1

Artemis 0 1 1 ?

Apollo 0 1 1 ?

Leto 0 0 0 ?

Ares 1 1 ? 1

Athena 1 1 ? 1

Hephaestus 1 1 ? 1

Aphrodite 1 1 ? 1

Cyclope 1 1 ? 1

Persephone 1 1 ? 1

Hermes 1 0 ? 0

Hebe 1 0 ? 0

Dionysus 1 0 ? 0

the probability of heads was less than 50%–fewer people ended up in the

grey group than in the white group. Next we asked our research assistants to

administer the treatment of interest ( = 1), to individuals in the white group

and a placebo ( = 0) to those in the grey group. Five days later, at the end of

the study, we computed the mortality risks in each group, Pr[ = 1| = 1] =
03 and Pr[ = 1| = 0] = 06. The associational risk ratio was 0306 = 05
and the associational risk difference was 03 − 06 = −03. We will assume
that this was an ideal randomized experiment in all other respects: no loss to

follow-up, full adherence to the assigned treatment over the duration of the

study, a single version of treatment, and double blind assignment (see Chapter

9). Ideal randomized experiments are unrealistic but useful to introduce some

key concepts for causal inference. Later in this book we consider more realistic

randomized experiments.

Now imagine what would have happened if the research assistants had

misinterpreted our instructions and had treated the grey group rather than

the white group. Say we learned of the misunderstanding after the study

finished. How does this reversal of treatment status affect our conclusions?

Not at all. We would still find that the risk in the treated (now the grey

group) Pr[ = 1| = 1] is 03 and the risk in the untreated (now the white

group) Pr[ = 1| = 0] is 06. The association measure would not change.

Because individuals were randomly assigned to white and grey groups, the

proportion of deaths among the exposed, Pr[ = 1| = 1] is expected to be

the same whether individuals in the white group received the treatment and

individuals in the grey group received placebo, or vice versa. When group

membership is randomized, which particular group received the treatment is

irrelevant for the value of Pr[ = 1| = 1]. The same reasoning applies to

Pr[ = 1| = 0], of course. Formally, we say that groups are exchangeable.
Exchangeability means that the risk of death in the white group would have

been the same as the risk of death in the grey group had individuals in the white

group received the treatment given to those in the grey group. That is, the risk

under the potential treatment value  among the treated, Pr[  = 1| = 1],

equals the risk under the potential treatment value  among the untreated,

Pr[  = 1| = 0], for both  = 0 and  = 1. An obvious consequence of these

(conditional) risks being equal in all subsets defined by treatment status in the

population is that they must be equal to the (marginal) risk under treatment

value  in the whole population: Pr[  = 1| = 1] = Pr[  = 1| = 0] =

Pr[  = 1]. Because the counterfactual risk under treatment value  is the

same in both groups  = 1 and  = 0, we say that the actual treatment 

does not predict the counterfactual outcome  . Equivalently, exchangeability

means that the counterfactual outcome and the actual treatment are indepen-

dent, or  ⊥⊥, for all values . Randomization is so highly valued because itExchangeability:

 ⊥⊥ for all  is expected to produce exchangeability. When the treated and the untreated

are exchangeable, we sometimes say that treatment is exogenous, and thus

exogeneity is commonly used as a synonym for exchangeability.

The previous paragraph argues that, in the presence of exchangeability, the

counterfactual risk under treatment in the white part of the population would

equal the counterfactual risk under treatment in the entire population. But the

risk under treatment in the white group is not counterfactual at all because the

white group was actually treated! Therefore our ideal randomized experiment

allows us to compute the counterfactual risk under treatment in the population

Pr[ =1 = 1] because it is equal to the risk in the treated Pr[ = 1| = 1] =
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Technical Point 2.1

Full exchangeability and mean exchangeability. Randomization makes the   jointly independent of  which implies,

but is not implied by, exchangeability  ⊥⊥ for each . Formally, let A = { 0 00 } denote the set of all treatment
values present in the population, and  A =

n
   0   00  

o
the set of all counterfactual outcomes. Randomization

makes  A⊥⊥. We refer to this joint independence as full exchangeability. For a dichotomous treatment, A = {0 1}
and full exchangeability is

¡
 =1  =0

¢⊥⊥.
For a dichotomous outcome and treatment, exchangeability  ⊥⊥ can also be written as Pr [  = 1| = 1] =

Pr [  = 1| = 0] or, equivalently, as E[ | = 1] = E[ | = 0] for all . We refer to the last equality as mean

exchangeability. For a continuous outcome, exchangeability  ⊥⊥ implies mean exchangeability E[ | = 0] =
E[ ], but mean exchangeability does not imply exchangeability because distributional parameters other than the mean

(e.g., variance) may not be independent of treatment.

Neither full exchangeability  A⊥⊥ nor exchangeability  ⊥⊥ are required to prove that E[ ] = E[ | = ].

Mean exchangeability is sufficient. As sketched in the main text, the proof has two steps. First, E[ | = ] =

E[ | = ] by consistency. Second, E[ | = ] = E[ ] by mean exchangeability. Because exchangeability and

mean exchangeability are identical concepts for the dichotomous outcomes used in this chapter, we use the shorter term

“exchangeability” throughout.

03. That is, the risk in the treated (the white part of the diamond) is the

same as the risk if everybody had been treated (and thus the diamond had

been entirely white). Of course, the same rationale applies to the untreated:

the counterfactual risk under no treatment in the population Pr[ =0 = 1]

equals the risk in the untreated Pr[ = 1| = 0] = 06. The causal risk ratio
is 05 and the causal risk difference is −03. In ideal randomized experiments,
association is causation.

Here is another explanation for exchangeability  ⊥⊥ in a randomized

experiment. The counterfactual outcome  , like one’s genetic make-up, can

be thought of as a fixed characteristic of a person existing before the treat-

ment  was randomly assigned. This is because   encodes what would have

been one’s outcome if assigned to treament  and thus does not depend on

the treatment you later receive. Because treatment  was randomized, it is

independent of both your genes and  . The difference between   and your

genetic make-up is that, even conceptually, you can only learn the value of  

after treatment is given and then only if one’s treatment  is equal to .

Before proceeding, please make sure you understand the difference betweenCaution:

 ⊥⊥ is different from ⊥⊥  ⊥⊥ and ⊥⊥. Exchangeability  ⊥⊥ is defined as independence between
the counterfactual outcome and the observed treatment. Again, this means

that the treated and the untreated would have experienced the same risk of

death if they had received the same treatment level (either  = 0 or  = 1). But

independence between the counterfactual outcome and the observed treatment

 ⊥⊥ does not imply independence between the observed outcome and the

observed treatment ⊥⊥. For example, in a randomized experiment in which
exchangeability  ⊥⊥ holds and the treatment has a causal effect on theSuppose there is a causal effect on

some individuals so that  =1 6=
 =0. Since  =  , then  

with  evaluated at the observed

treatment  is the observed  ,

which depends on  and thus will

not be independent of .

outcome, then ⊥⊥ does not hold because the treatment is associated with

the observed outcome.

Does exchangeability hold in our heart transplant study of Table 2.1? To

answer this question we would need to check whether  ⊥⊥ holds for  = 0

and for  = 1. Take  = 0 first. Suppose the counterfactual data in Table 1.1

are available to us. We can then compute the risk of death under no treatment

Pr[ =0 = 1| = 1] = 713 in the 13 treated individuals and the risk of death
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Fine Point 2.1

Crossover experiments. Suppose we want to estimate the individual causal effect of lightning bolt use  on Zeus’s

blood pressure  . We define the counterfactual outcomes  =1 and  =0 to be 1 if Zeus’s blood pressure is temporarily

elevated after calling or not calling a lightning strike, respectively. Suppose we convinced Zeus to use his lightning bolt

only when suggested by us. Yesterday morning we asked Zeus to call a lightning strike ( = 1). His blood pressure was

elevated after doing so. This morning we asked Zeus to refrain from using his lightning bolt ( = 0). His blood pressure

did not increase. We have conducted a crossover experiment in which an individual’s outcome is sequentially observed

under two treatment values. One might argue that, because we have observed both of Zeus’s counterfactual outcomes

 =1 = 1 and  =0 = 0, using a lightning bolt has a causal effect on Zeus’s blood pressure. However, we now show

that his argument would generally be incorrect unless the very strong assumptions 1)-3) given in the next paragraph are

true.

In crossover experiments, individuals are observed during two or more periods, say  = 0 and  = 1. An individual

 receives a different treatment value  in each period . Let 
01
1 be the (deterministic) counterfactual outcome at

 = 1 for individual  if treated with 1 at  = 1 and 0 at  = 0. Let 
0
0 be defined similarly for  = 0. The individual

causal effect  =1
 − =0

 can be identified if the following three conditions hold: i) no carryover effect of treatment:


01
=1 =  1

=1, ii) the individual causal effect does not depend on time: 
=1
 −  =0

 =  for  = 0 1, and iii) the

counterfactual outcome under no treatment does not depend on time:  =0
 =  for  = 0 1. Under these conditions,

if the individual is treated at time 1 (1 = 1) but not time 0 (0 = 0) then, by consistency, 1−0 is the individual

causal effect because 1 − 0 =  1=1
1 −  0=0

0 =  1=1
1 −  1=0

1 +  1=0
1 −  0=0

0 =  +  −  = . Similarly

if 1 = 0 and 0 = 1, 0 − 1 =  is the individual level causal effect.

Condition (i) implies that the outcome  
 has an abrupt onset that completely resolves by the next time period.

Hence, crossover experiments cannot be used to study the effect of heart transplant, an irreversible action, on death,

an irreversible outcome. See also Fine Point 3.2.

under no treatment Pr[ =0 = 1| = 0] = 37 in the 7 untreated individuals.
Since the risk of death under no treatment is greater in the treated than in the

untreated individuals, i.e., 713  37, we conclude that the treated have a

worse prognosis than the untreated, that is, that the treated and the untreated

are not exchangeable. Mathematically, we have proven that exchangeability

 ⊥⊥ does not hold for  = 0. (You can check that it does not hold for  = 1
either.) Thus the answer to the question that opened this paragraph is ‘No’.

But only the observed data in Table 2.1, not the counterfactual data in

Table 1.1, are available in the real world. Since Table 2.1 is insufficient to

compute counterfactual risks like the risk under no treatment in the treated

Pr[ =0 = 1| = 1], we are generally unable to determine whether exchange-
ability holds in our study. However, suppose for a moment, that we actually

had access to Table 1.1 and determined that exchangeability does not hold

in our heart transplant study. Can we then conclude that our study is not

a randomized experiment? No, for two reasons. First, as you are probably

already thinking, a twenty-person study is too small to reach definite conclu-

sions. Random fluctuations arising from sampling variability could explain

almost anything. We will discuss random variability in Chapter 10. Until

then, let us assume that each individual in our population represents 1 billion

individuals that are identical to him or her. Second, it is still possible that

a study is a randomized experiment even if exchangeability does not hold in

infinite samples. However, unlike the type of randomized experiment described

in this section, it would need to be a randomized experiment in which investi-

gators use more than one coin to randomly assign treatment. The next section

describes randomized experiments with more than one coin.
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2.2 Conditional randomization

Table 2.2 shows the data from our heart transplant randomized study. Besides

data on treatment  (1 if the individual received a transplant, 0 otherwise)

and outcome  (1 if the individual died, 0 otherwise), Table 2.2 also contains

data on the prognostic factor  (1 if the individual was in critical condition,

0 otherwise), which we measured before treatment was assigned. We now

consider two mutually exclusive study designs and discuss whether the data in

Table 2.2 could have arisen from either of them.

In design 1 we would have randomly selected 65% of the individuals in the

population and transplanted a new heart to each of the selected individuals.

That would explain why 13 out of 20 individuals were treated. In design 2Table 2.2
  

Rheia 0 0 0

Kronos 0 0 1

Demeter 0 0 0

Hades 0 0 0

Hestia 0 1 0

Poseidon 0 1 0

Hera 0 1 0

Zeus 0 1 1

Artemis 1 0 1

Apollo 1 0 1

Leto 1 0 0

Ares 1 1 1

Athena 1 1 1

Hephaestus 1 1 1

Aphrodite 1 1 1

Cyclope 1 1 1

Persephone 1 1 1

Hermes 1 1 0

Hebe 1 1 0

Dionysus 1 1 0

we would have classified all individuals as being in either critical ( = 1)

or noncritical ( = 0) condition. Then we would have randomly selected

75% of the individuals in critical condition and 50% of those in noncritical

condition, and transplanted a new heart to each of the selected individuals.

That would explain why 9 out of 12 individuals in critical condition, and 4 out

of 8 individuals in non critical condition, were treated.

Both designs are randomized experiments. Design 1 is precisely the type of

randomized experiment described in Section 2.1. Under this design, we would

use a single coin to assign treatment to all individuals (e.g., treated if tails,

untreated if heads): a loaded coin with probability 065 of turning tails, thus

resulting in 65% of the individuals receiving treatment. Under design 2 we

would not use a single coin for all individuals. Rather, we would use a coin

with a 075 chance of turning tails for individuals in critical condition, and

another coin with a 050 chance of turning tails for individuals in non critical

condition. We refer to design 2 experiments as conditionally randomized ex-

periments because we use several randomization probabilities that depend (are

conditional) on the values of the variable . We refer to design 1 experiments

as marginally randomized experiments because we use a single unconditional

(marginal) randomization probability that is common to all individuals.

As discussed in the previous section, a marginally randomized experiment

is expected to result in exchangeability of the treated and the untreated:

Pr[  = 1| = 1] = Pr[  = 1| = 0] or  ⊥⊥ for all .

In contrast, a conditionally randomized experiment will not generally result

in exchangeability of the treated and the untreated because, by design, each

group may have a different proportion of individuals with bad prognosis.

Thus the data in Table 2.2 could not have arisen from a marginally random-

ized experiment because 69% treated versus 43% untreated individuals were

in critical condition. This imbalance indicates that the risk of death in the

treated, had they remained untreated, would have been higher than the risk

of death in the untreated. That is, treatment  predicts the counterfactual

risk of death under no treatment, and exchangeability  ⊥⊥ does not hold.

Since our study was a randomized experiment, you can safely conclude that

the study was a randomized experiment with randomization conditional on .

Our conditionally randomized experiment is simply the combination of two

separate marginally randomized experiments: one conducted in the subset of

individuals in critical condition ( = 1), the other in the subset of individuals

in non critical condition ( = 0). Consider first the randomized experiment

being conducted in the subset of individuals in critical condition. In this subset,

the treated and the untreated are exchangeable. Formally, the counterfactual

mortality risk under each treatment value  is the same among the treated
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and the untreated given that they all were in critical condition at the time of

treatment assignment. That is,

Pr[  = 1| = 1  = 1] = Pr[  = 1| = 0  = 1] or  ⊥⊥| = 1 for all ,

where  ⊥⊥| = 1 means   and  are independent given  = 1. Similarly,

randomization also ensures that the treated and the untreated are exchange-

able in the subset of individuals that were in noncritical condition, that is,

 ⊥⊥| = 0. When  ⊥⊥| =  holds for all values  we simply write

 ⊥⊥|. Thus, although conditional randomization does not guarantee un-Conditional exchangeability:

 ⊥⊥| for all  conditional (or marginal) exchangeability  ⊥⊥, it guarantees conditional
exchangeability  ⊥⊥| within levels of the variable . In summary, ran-

domization produces either marginal exchangeability (design 1) or conditional

exchangeability (design 2).

We know how to compute effect measures under marginal exchangeabil-

ity. In marginally randomized experiments the causal risk ratio Pr[ =1 =

1]Pr[ =0 = 1] equals the associational risk ratio Pr[ = 1| = 1]Pr[ =

1| = 0] because exchangeability ensures that the counterfactual risk under

treatment level , Pr[  = 1], equals the observed risk among those who re-

ceived treatment level , Pr[ = 1| = ]. Thus, if the data in Table 2.2 hadIf  = 1, the  =0 is missing data

and if  = 0, the  =1 is missing

data. Data are missing completely

t random (MCAR) if Pr[ =

|  =1  =0] = Pr[ = ],

which holds in a marginally ran-

domized experiment. Data are

missing at random (MAR) if the

probability of  =  conditional on

the full data (  =1  =0) only

depends on the data that woud be

observed (  ) if  = , that

is, Pr[ = |  =1  =0] =

Pr[ = |  ] , which holds

in a conditional randomized exper-

iment. The terms MCAR, MAR,

and NMAR (not missing at ran-

dom) were introduced by Rubin

(1976).

been collected during a marginally randomized experiment, the causal risk ra-

tio would be readily calculated from the data on  and  as
713

37
= 126. The

question is how to compute the causal risk ratio in a conditionally randomized

experiment. Remember that a conditionally randomized experiment is simply

the combination of two (or more) separate marginally randomized experiments

conducted in different subsets of the population, e.g.,  = 1 and  = 0. Thus

we have two options.

First, we can compute the average causal effect in each of these subsets or

strata of the population. Because association is causation within each subset,

the stratum-specific causal risk ratio Pr[ =1 = 1| = 1]Pr[ =0 = 1| = 1]
among people in critical condition is equal to the stratum-specific associational

risk ratio Pr[ = 1| = 1  = 1]Pr[ = 1| = 1  = 0] among people in

critical condition. And analogously for  = 0. We refer to this method to

compute stratum-specific causal effects as stratification. Note that the stratum-

specific causal risk ratio in the subset  = 1 may differ from the causal risk

ratio in  = 0. In that case, we say that the effect of treatment is modified by

, or that there is effect modification by .

Stratification and effect modifica-

tion are discussed in more detail in

Chapter 4.

Second, we can compute the average causal effect Pr[ =1 = 1]Pr[ =0 =

1] in the entire population, as we have been doing so far. Whether our princi-

pal interest lies in the stratum-specific average causal effects versus the average

causal effect in the entire population depends on practical and theoretical con-

siderations discussed in detail in Chapter 4 and in Part III. As one example,

you may be interested in the average causal effect in the entire population,

rather than in the stratum-specific average causal effects, if you do not expect

to have information on  for future individuals (e.g., the variable  is expen-

sive to measure) and thus your decision to treat cannot depend on the value of

. Until Chapter 4, we will restrict our attention to the average causal effect

in the entire population. The next two sections describe how to use data from

conditionally randomized experiments to compute the average causal effect in

the entire population.
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2.3 Standardization

Our heart transplant study is a conditionally randomized experiment: the in-

vestigators used a random procedure to assign hearts ( = 1) with probability

50% to the 8 individuals in noncritical condition ( = 0), and with probability

75% to the 12 individuals in critical condition ( = 1). First, let us focus on

the 8 individuals–remember, they are really the average representatives of 8

billion individuals–in noncritical condition. In this group, the risk of death

among the treated is Pr[ = 1| = 0  = 1] = 1
4
, and the risk of death

among the untreated is Pr[ = 1| = 0  = 0] = 1
4
. Because treatment

was randomly assigned to individuals in the group  = 0, i.e.,  ⊥⊥| = 0,
the observed risks are equal to the counterfactual risks. That is, in the group

 = 0, the risk in the treated equals the risk if everybody had been treated,

Pr[ = 1| = 0  = 1] = Pr[ =1 = 1| = 0], and the risk in the untreated
equals the risk if everybody had been untreated, Pr[ = 1| = 0  = 0] =

Pr[ =0 = 1| = 0]. Following a similar reasoning, we can conclude that the
observed risks equal the counterfactual risks in the group of 12 individuals in

critical condition, i.e., Pr[ = 1| = 1  = 1] = Pr[ =1 = 1| = 1] = 2
3
, and

Pr[ = 1| = 1  = 0] = Pr[ =0 = 1| = 1] = 2
3
.

Suppose now that our goal is to compute the causal risk ratio Pr[ =1 =

1]Pr[ =0 = 1]. The numerator of the causal risk ratio is the risk if all 20

individuals in the population had been treated. From the previous paragraph,

we know that the risk if all individuals had been treated is 1
4
in the 8 individuals

with  = 0 and 2
3
in the 12 individuals with  = 1. Therefore the risk if all 20

individuals in the population had been treated will be a weighted average of
1
4
and 2

3
in which each group receives a weight proportional to its size. Since

40% of the individuals (8) are in group  = 0 and 60% of the individuals (12)

are in group  = 1, the weighted average is 1
4
× 04 + 2

3
× 06 = 05. Thus the

risk if everybody had been treated Pr[ =1 = 1] is equal to 05. By following

the same reasoning we can calculate that the risk if nobody had been treated

Pr[ =0 = 1] is also equal to 05. The causal risk ratio is then 0505 = 1.

More formally, the marginal counterfactual risk Pr[  = 1] is the weighted

average of the stratum-specific risks Pr[  = 1| = 0] and Pr[  = 1| = 1]
with weights equal to the proportion of individuals in the population with  = 0

and  = 1, respectively. That is, Pr[  = 1] = Pr[  = 1| = 0]Pr [ = 0] +
Pr[  = 1| = 1]Pr [ = 1]. Or, using a more compact notation, Pr[  = 1] =P

 Pr[
 = 1| = ] Pr [ = ], where

P
 means sum over all values  that

occur in the population. By conditional exchangeability, we can replace the

counterfactual risk Pr[  = 1| = ] by the observed risk Pr[ = 1| =   =

] in the expression above. That is, Pr[  = 1] =
P

 Pr[ = 1| =   =

] Pr [ = ]. The left-hand side of this equality is an unobserved counterfactual

risk whereas the right-hand side includes observed quantities only, which can

be computed using data on , , and  . When, as here, a counterfactual

quantity can be expressed as function of the distribution (i.e., probabilities)

of the observed data, we say that the counterfactual quantity is identified or

identifiable; otherwise, we say it is unidentified or not identifiable.

The method described above is known in epidemiology, demography, and

other disciplines as standardization. For example, the numerator
P

 Pr[ =Standardized meanP
 E[ | =   = ]

×Pr [ = ]

1| =   = 1]Pr [ = ] of the causal risk ratio is the standardized risk in the

treated using the population as the standard. In the presence of conditional ex-

changeability, this standardized risk can be interpreted as the (counterfactual)

risk that would have been observed had all the individuals in the population

been treated.
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The standardized risks in the treated and the untreated are equal to the

counterfactual risks under treatment and no treatment, respectively. There-

fore, the causal risk ratio
Pr[ =1 = 1]

Pr[ =0 = 1]
can be computed by standardization asP

 Pr[ = 1| =   = 1]Pr [ = ]P
 Pr[ = 1| =   = 0]Pr [ = ]

.

2.4 Inverse probability weighting

In the previous section we computed the causal risk ratio in a conditionally

randomized experiment via standardization. In this section we compute this

causal risk ratio via inverse probability weighting. The data in Table 2.2

can be displayed as a tree in which all 20 individuals start at the left and

progress over time towards the right, as in Figure 2.1. The leftmost circle of

the tree contains its first branching: 8 individuals were in non critical condi-

tion ( = 0) and 12 in critical condition ( = 1). The numbers in parenthesesFigure 2.1 is an example of a

fully randomized causally inter-

preted structured tree graph or FR-

CISTG (Robins 1986, 1987) rep-

resentation of a conditionally ran-

domized experiment. Did we win

the prize for the worst acronym

ever?

are the probabilities of being in noncritical, Pr [ = 0] = 820 = 04, or crit-

ical, Pr [ = 1] = 1220 = 06, condition. Let us follow, for example, the

branch  = 0. Of the 8 individuals in this branch, 4 were untreated ( = 0)

and 4 were treated ( = 1). The conditional probability of being untreated

is Pr [ = 0| = 0] = 48 = 05, as shown in parentheses. The conditional

probability of being treated Pr [ = 1| = 0] is 05 too. The upper right circle
represents that, of the 4 individuals in the branch ( = 0  = 0), 3 survived

( = 0) and 1 died ( = 1). That is, Pr [ = 0| = 0  = 0] = 34 and

Pr [ = 1| = 0  = 0] = 14 The other branches of the tree are interpreted
analogously. The circles contain the bifurcations defined by non treatment

variables. We now use this tree to compute the causal risk ratio.

Figure 2.1
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Fine Point 2.2

Risk periods. We have defined a risk as the proportion of individuals who develop the outcome of interest during a

particular period. For example, the 5-day mortality risk in the treated Pr[ = 1| = 0] is the proportion of treated

individuals who died during the first five days of follow-up. Throughout the book we often specify the period when the

risk is first defined (e.g., 5 days) and, for conciseness, omit it later. That is, we may just say “the mortality risk” rather

than “the five-day mortality risk.”

The following example highlights the importance of specifying the risk period. Suppose a randomized experiment

was conducted to quantify the causal effect of antibiotic therapy on mortality among elderly humans infected with the

plague bacteria. An investigator analyzes the data and concludes that the causal risk ratio is 005, i.e., on average

antibiotics decrease mortality by 95%. A second investigator also analyzes the data but concludes that the causal risk

ratio is 1, i.e., antibiotics have a null average causal effect on mortality. Both investigators are correct. The first

investigator computed the ratio of 1-year risks, whereas the second investigator computed the ratio of 100-year risks.

The 100-year risk was of course 1 regardless of whether individuals received the treatment. When we say that a treatment

has a causal effect on mortality, we mean that death is delayed, not prevented, by the treatment.

Figure 2.2

The denominator of the causal risk ratio, Pr[ =0 = 1], is the counterfac-

tual risk of death had everybody in the population remained untreated. Let

us calculate this risk. In Figure 2.1, 4 out of 8 individuals with  = 0 were

untreated, and 1 of them died. How many deaths would have occurred had

the 8 individuals with  = 0 remained untreated? Two deaths, because if 8

individuals rather than 4 individuals had remained untreated, then 2 deaths

rather than 1 death would have been observed. If the number of individuals is

multiplied times 2, then the number of deaths is also doubled. In Figure 2.1,

3 out of 12 individuals with  = 1 were untreated, and 2 of them died. How

many deaths would have occurred had the 12 individuals with  = 1 remained

untreated? Eight deaths, or 2 deaths times 4, because 12 is 3×4. That is, if all
8+ 12 = 20 individuals in the population had been untreated, then 2+ 8 = 10

would have died. The denominator of the causal risk ratio, Pr[ =0 = 1], is

1020 = 05. The first tree in Figure 2.2 shows the population had everybody

remained untreated. Of course, these calculations rely on the condition that

treated individuals with  = 0, had they remained untreated, would have had

the same probability of death as those who actually remained untreated. This

condition is precisely exchangeability given  = 0.
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The numerator of the causal risk ratio Pr[ =1 = 1] is the counterfactual

risk of death had everybody in the population been treated. Reasoning as in

the previous paragraph, this risk is calculated to be also 1020 = 05, under

exchangeability given  = 1. The second tree in Figure 2.2 shows the popu-

lation had everybody been treated. Combining the results from this and the

previous paragraph, the causal risk ratio Pr[ =1 = 1]Pr[ =0 = 1] is equal

to 0505 = 1. We are done.

Let us examine how this method works. The two trees in Figure 2.2 are

a simulation of what would have happened had all individuals in the popula-

tion been untreated and treated, respectively. These simulations are correct

under conditional exchangeability. Both simulations can be pooled to create a

hypothetical population in which every individual appears as a treated and as

an untreated individual. This hypothetical population, twice as large as the

original population, is known as the pseudo-population. Figure 2.3 shows the

entire pseudo-population. Under conditional exchangeability  ⊥⊥| in the
original population, the treated and the untreated are (unconditionally) ex-

changeable in the pseudo-population because the  is independent of . That

is, the associational risk ratio in the pseudo-population is equal to the causal

risk ratio in both the pseudo-population and the original population.

Figure 2.3

This method is known as inverse probability (IP) weighting. To see why,

let us look at, say, the 4 untreated individuals with  = 0 in the population

of Figure 2.1. These individuals are used to create 8 members of the pseudo-IP weighted estimators were pro-

posed by Horvitz and Thompson

(1952) for surveys in which subjects

are sampled with unequal probabil-

ities

population of Figure 2.3. That is, each of them receives a weight of 2, which

is equal to 105. Figure 2.1 shows that 05 is the conditional probability of

staying untreated given  = 0. Similarly, the 9 treated individuals with  = 1

in Figure 2.1 are used to create 12 members of the pseudo-population. That

is, each of them receives a weight of 133 = 1075. Figure 2.1 shows that 075

is the conditional probability of being treated given  = 1. Informally, the

pseudo-population is created by weighting each individual in the population
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Technical Point 2.2

Formal definition of IP weights. An individual’s IP weight depends on her values of treatment  and covariate .

For example, a treated individual with  =  receives the weight 1Pr [ = 1| = ], whereas an untreated individual

with  = 0 receives the weight 1Pr [ = 0| = 0]. We can express these weights using a single expression for all
individuals–regardless of their individual treatment and covariate values–by using the probability density function (pdf)
of  rather than the probability of . The conditional pdf of  given  evaluated at the values  and  is represented
by | [|], or simply as  [|]. For discrete variables  and ,  [|] is the conditional probability Pr [ = | = ].

In a conditionally randomized experiment,  [|] is positive for all  such that Pr [ = ] is nonzero.

Since the denominator of the weight for each individual is the conditional density evaluated at the individual’s own

values of  and , it can be expressed as the conditional density evaluated at the random arguments  and  (as

opposed to the fixed arguments  and ), that is, as  [|]. This notation, which appeared in Figure 2.3, is used to
define the IP weights = 1 [|]. It is needed to have a unified notation for the weights because Pr [ = | = ]

is not considered proper notation.

by the inverse of the conditional probability of receiving the treatment levelIP weight:  = 1 [|]
that she indeed received. These IP weights are shown in Figure 2.3.

IP weighting yielded the same result as standardization–causal risk ratio

equal to 1– in our example above. This is no coincidence: standardization and

IP weighting are mathematically equivalent (see Technical Point 2.3). In fact,

both standardization and IP weighting can be viewed as procedures to build

a new tree in which all individuals receive treatment . Each method uses a

different set of the probabilities to build the counterfactual tree: IP weighting

uses the conditional probability of treatment  given the covariate  (as shown

in Figure 2.1), standardization uses the probability of the covariate  and the

conditional probability of outcome  given  and .

Because both standardization and IP weighting simulate what would have

been observed if the variable (or variables in the vector)  had not been used

to decide the probability of treatment, we often say that these methods adjust

for . In a slight abuse of language we sometimes say that these methods

control for , but this “analytic control” is quite different from the “physical

control” in a randomized experiment. Standardization and IP weighting can

be generalized to conditionally randomized studies with continuous outcomes

(see Technical Point 2.3).

Why not finish this book here? We have a study design (an ideal random-

ized experiment) that, when combined with the appropriate analytic method

(standardization or IP weighting), allows us to compute average causal effects.

Unfortunately, randomized experiments are often unethical, impractical, or un-

timely. For example, it is questionable that an ethical committee would have

approved our heart transplant study. Hearts are in short supply and society

favors assigning them to individuals who are more likely to benefit from the

transplant, rather than assigning them randomly among potential recipients.

Also one could question the feasibility of the study even if ethical issues were

ignored: double-blind assignment is impossible, individuals assigned to medical

treatment may not resign themselves to forego a transplant, and there may not

be compatible hearts for those assigned to transplant. Even if the study were

feasible, it would still take several years to complete it, and decisions must be

made in the interim. Frequently, conducting an observational study is the least

bad option.
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Technical Point 2.3

Equivalence of IP weighting and standardization. Assume that  is discrete with finite number of values and

that  [|] is positive for all  such that Pr [ = ] is nonzero. This positivity condition is guaranteed to hold in

conditionally randomized experiments. Under positivity, the standardized mean for treatment level  is defined asP


E [ | =  = ] Pr [ = ] and the IP weighted mean of  for treatment level  is defined as E

∙
 ( = )

 [|]
¸

i.e., the mean of  , reweighted by the IP weight  = 1 [|], in individuals with treatment value  = . The

indicator function  ( = ) is the function that takes value 1 for individuals with  = , and 0 for the others.

We now prove the equality of the IP weighted mean and the standardized mean under positivity. By definition of an

expectation, E

∙
 ( = )

 [|]
¸
=
X


1

 [|] {E [ | =   = ]  [|] Pr [ = ]}

=
P


{E [ | =   = ] Pr [ = ]} where in the final step we cancelled  [|] from the numerator and denominator,
and in the first step we did not need to sum over the possible values of  because because for any 0 other than  the
quantity (0 = ) is zero. The proof treats  and  as discrete but not necessarily dichotomous. For continuous 

simply replace the sum over  with an integral.

The proof makes no reference to counterfactuals or to causality. However if we further assume conditional ex-

changeability then both the IP weighted and the standardized means are equal to the counterfactual mean E [ ]. Here

we provide two different proofs of this last statement. First, we prove equality of E [ ] and the standardized mean as

in the text

E [ ] =
X


E [ | = ] Pr [ = ] =
X


E [ | =   = ] Pr [ = ] =
X


E [ | =   = ] Pr [ = ]

where the second equality is by conditional exchangeability and positivity, and the third by consistency. Second, we

prove equality of E [ ] and the IP weighted mean as follows:

E

∙
 ( = )

 [|] 

¸
is equal to E

∙
 ( = )

 [|]  

¸
by consistency. Next, because positivity implies  [|] is never 0, we

have

E

∙
 ( = )

 [|]  

¸
= E

½
E

∙
 ( = )

 [|]  

¯̄̄̄


¸¾
= E

½
E

∙
 ( = )

 [|]

¯̄̄̄


¸
E [ |]

¾
(by conditional exchangeability).

= E {E [ |]} (because E
∙
 ( = )

 [|]

¯̄̄̄


¸
= 1 )

= E [ ]

When treatment is continuous, which is an unlikely design choice in conditionally randomized experiments,

E[ ( = ) (|)] is no longer equal to P E [ | =   = ] Pr[ = ] and thus is biased for E[ ] even

under exchangeability. To see this, one can calculate that E[ ( = )  (|) | = ] is equal to 0 rather than 1 if

we take (|) to be a (version) of the conditional density of  given  =  (with respect to Lebesgue measure). On

the other hand, if we continue to take  (|) to be pr( = | = ), the denominator (| = ) is zero on a set

with probability 1 so positivity fails. In Section 12.4 we discuss how IP weighting can be generalized to accomodate

continuous treatments. In Technical Point 3.1, we discuss that the results above do not hold in the absence of positivity,

even for discrete .



Chapter 3
OBSERVATIONAL STUDIES

Consider again the causal question “does one’s looking up at the sky make other pedestrians look up too?” After

considering a randomized experiment as in the previous chapter, you concluded that looking up so many times was

too time-consuming and unhealthy for your neck bones. Hence you decided to conduct the following study: Find

a nearby pedestrian who is standing in a corner and not looking up. Then find a second pedestrian who is walking

towards the first one and not looking up either. Observe and record their behavior during the next 10 seconds.

Repeat this process a few thousand times. You could now compare the proportion of second pedestrians who

looked up after the first pedestrian did, and compare it with the proportion of second pedestrians who looked up

before the first pedestrian did. Such a scientific study in which the investigator observes and records the relevant

data is referred to as an observational study.

If you had conducted the observational study described above, critics could argue that two pedestrians may

both look up not because the first pedestrian’s looking up causes the other’s looking up, but because they both

heard a thunderous noise above or some rain drops started to fall, and thus your study findings are inconclusive

as to whether one’s looking up makes others look up. These criticisms do not apply to randomized experiments,

which is one of the reasons why randomized experiments are central to the theory of causal inference. However,

in practice, the importance of randomized experiments for the estimation of causal effects is more limited. Many

scientific studies are not experiments. Much human knowledge is derived from observational studies. Think of

evolution, tectonic plates, global warming, or astrophysics. Think of how humans learned that hot coffee may cause

burns. This chapter reviews some conditions under which observational studies lead to valid causal inferences.

3.1 Identifiability conditions

Ideal randomized experiments can be used to identify and quantify average

causal effects because the randomized assignment of treatment leads to ex-

changeability. Take a marginally randomized experiment of heart transplant

and mortality as an example: if those who received a transplant had not re-

ceived it, they would have been expected to have the same death risk as thoseFor simplicity, this chapter consid-

ers only randomized experiments in

which all participants remain un-

der follow-up and adhere to their

assigned treatment throughout the

entire study. Chapters 8 and 9 dis-

cuss alternative scenarios.

who did not actually receive the heart transplant. As a consequence, an asso-

ciational risk ratio of 07 from the randomized experiment is expected to equal

the causal risk ratio.

Observational studies, on the other hand, may be much less convincing (for

an example, see the introduction to this chapter). A key reason for our hesita-

tion to endow observational associations with a causal interpretation is the lack

of randomized treatment assignment. As an example, take an observational

study of heart transplant and mortality in which those who received the heart

transplant were more likely to have a severe heart condition. Then, if those

who received a transplant had not received it, they would have been expected

to have a greater death risk than those who did not actually receive the heart

transplant. As a consequence, an associational risk ratio of 11 from the ob-

servational study would be a compromise between the truly beneficial effect of

transplant on mortality (which pushes the associational risk ratio to be under

1) and the underlying greater mortality risk in those who received transplant

(which pushes the associational risk ratio to be over 1). The best explanation
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for an association between treatment and outcome in an observational study

is not necessarily a causal effect of the treatment on the outcome.

While recognizing that randomized experiments have intrinsic advantages

for causal inference, sometimes we are stuck with observational studies to an-

swer causal questions. What do we do? We analyze our data as if treatment

had been randomly assigned conditional on measured covariates –though we

often know this is at best an approximation. Causal inference from observa-

tional data then revolves around the hope that the observational study can be

viewed as a conditionally randomized experiment.

Informally, an observational study can be conceptualized as a conditionally

randomized experiment if the following conditions hold:Table 3.1
  

Rheia 0 0 0

Kronos 0 0 1

Demeter 0 0 0

Hades 0 0 0

Hestia 0 1 0

Poseidon 0 1 0

Hera 0 1 0

Zeus 0 1 1

Artemis 1 0 1

Apollo 1 0 1

Leto 1 0 0

Ares 1 1 1

Athena 1 1 1

Hephaestus 1 1 1

Aphrodite 1 1 1

Cyclope 1 1 1

Persephone 1 1 1

Hermes 1 1 0

Hebe 1 1 0

Dionysus 1 1 0

1. the values of treatment under comparison correspond to well-defined in-

terventions that, in turn, correspond to the versions of treatment in the

data

2. the conditional probability of receiving every value of treatment, though

not decided by the investigators, depends only on measured covariates 

3. the probability of receiving every value of treatment conditional on  is

greater than zero, i.e., positive

In this chapter we describe these three conditions in the context of ob-

servational studies. Condition 1 was referred to as consistency in Chapter 1,

condition 2 was referred to as exchangeability in the previous chapters, and

condition 3 was referred to as positivity in Technical Point 2.3.

We will see that these conditions are often heroic, which explains why causal

inferences from observational studies are viewed with suspicion. However, if

the analogy between observational study and conditionally randomized exper-

iment happens to be correct, then we can use the methods described in the

previous chapter–IP weighting or standardization–to identify causal effects

from observational studies. We therefore refer to these conditions as identifi-

ability conditions or assumptions. For example, in the previous chapter, we

computed a causal risk ratio equal to 1 using the data in Table 2.2, which arose

from a conditionally randomized experiment. If the same data, now shown in

Table 3.1, had arisen from an observational study and the three identifiability

conditions above held true, we would also compute a causal risk ratio equal to

1.Rubin (1974, 1978) extended Ney-

man’s theory for randomized ex-

periments to observational studies.

Rosenbaum and Rubin (1983) re-

ferred to the combination of ex-

changeability and positivity as weak

ignorability, and to the combination

of full exchangeability (see Tech-

nical Point 2.1) and positivity as

strong ignorability.

Importantly, in ideal randomized experiments the identifiability conditions

hold by design. That is, for a conditionally randomized experiment, we would

only need the data in Table 3.1 to compute the causal risk ratio of 1. In

contrast, to identify the causal risk ratio from an observational study, we would

need to assume that the identifiability conditions held, which of course may not

be true. Causal inference from observational data requires two elements: data

and identifiability conditions. See Fine Point 3.1 for a more precise definition

of identifiability.

When any of the identifiability conditions does not hold, the analogy be-

tween observational study and conditionally randomized experiment breaks

down. In that situation, there are other possible approaches to causal inference

from observational data, which require a different set of identifiability condi-

tions. One of these approaches is hoping that a predictor of treatment, referred

to as an instrumental variable, behaves as if it had been randomly assigned con-

ditional on the measured covariates. We discuss instrumental variable methods

in Chapter 16.
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Fine Point 3.1

Identifiability of causal effects. We say that an average causal effect is (non parametrically) identifiable under a

particular set of assumptions if these assumptions imply that the distribution of the observed data is compatible with

a single value of the effect measure. Conversely, we say that an average causal effect is nonidentifiable under the

assumptions when the distribution of the observed data is compatible with several values of the effect measure. For

example, if the study in Table 3.1 had arisen from a conditionally randomized experiment in which the probability of

receiving treatment depended on the value of  (and hence conditional exchangeability  ⊥⊥| holds by design) then
we showed in the previous chapter that the causal effect is identifiable: the causal risk ratio equals 1, without requiring

any further assumptions. However, if the data in Table 3.1 had arisen from an observational study, then the causal risk

ratio equals 1 only if we supplement the data with the assumption of conditional exchangeability  ⊥⊥|. To identify
the causal effect in observational studies, we need an assumption external to the data, an identifying assumption. In

fact, if we decide not to supplement the data with the identifying assumption, then the data in Table 3.1 are consistent

with a causal risk ratio

• lower than 1, if risk factors other than  are more frequent among the treated.
• greater than 1, if risk factors other than  are more frequent among the untreated.
• equal to 1, if all risk factors except  are equally distributed between the treated and the untreated or, equivalently,
if  ⊥⊥|.

This chapter discusses the three identifiability conditions for nonparametric identification of average causal effects.

In Technical Point 7.3 in Chapter 16, we describe alternative identifiability conditions which suffice for nonparametric

identification of average causal effects.

Not surprisingly, observational methods based on the analogy with a con-

ditionally randomized experiment have been traditionally privileged in disci-

plines in which this analogy is often reasonable (e.g., epidemiology), whereas

instrumental variable methods have been traditionally privileged in disciplines

in which observational studies cannot often be conceptualized as condition-

ally randomized experiments given the measured covariates (e.g., economics).

Until Chapter 16, we will focus on causal inference approaches that rely on

the ability of the observational study to emulate a conditionally randomized

experiment. We now describe in more detail each of the three identifiability

conditions.

3.2 Exchangeability

We have already said much about exchangeability  ⊥⊥. In marginally (i.e.,
unconditionally) randomized experiments, the treated and the untreated areAn independent predictor of the

outcome is a covariate associated

with the outcome  within levels of

treatment. For dichotomous out-

comes, independent predictors of

the outcome are often referred to

as risk factors for the outcome.

exchangeable because the treated, had they remained untreated, would have

experienced the same average outcome as the untreated did, and vice versa.

This is so because randomization ensures that the independent predictors of

the outcome are equally distributed between the treated and the untreated

groups.

For example, take the study summarized in Table 3.1. We said in the pre-

vious chapter that exchangeability clearly does not hold in this study because

69% treated versus 43% untreated individuals were in critical condition  = 1
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at baseline. This imbalance in the distribution of an independent outcome

predictor is not expected to occur in a marginally randomized experiment (ac-

tually, such imbalance might occur by chance but let us keep working under

the illusion that our study is large enough to prevent chance findings).

On the other hand, an imbalance in the distribution of independent out-

come predictors  between the treated and the untreated is expected by design

in conditionally randomized experiments in which the probability of receiving

treatment depends on . The study in Table 3.1 is such a conditionally random-

ized experiment: the treated and the untreated are not exchangeable–because

the treated had, on average, a worse prognosis at the start of the study–but

the treated and the untreated are conditionally exchangeable within levels of

the variable . In the subset  = 1 (critical condition), the treated and the

untreated are exchangeable because the treated, had they remained untreated,

would have experienced the same average outcome as the untreated did, and

vice versa. And similarly for the subset  = 0. An equivalent statement:

conditional exchangeability  ⊥⊥| holds in conditionally randomized ex-

periments because, within levels of , all other predictors of the outcome are

equally distributed between the treated and the untreated groups.

Back to observational studies. When treatment is not randomly assigned

by the investigators, the reasons for receiving treatment are likely to be associ-

ated with some outcome predictors. That is, like in a conditionally randomized

experiment, the distribution of outcome predictors will generally vary between

the treated and untreated groups in an observational study. For example, theFine Point 3.2 introduces the rela-

tion between lack of exchangeabil-

ity and confounding.

data in Table 3.1 could have arisen from an observational study in which doc-

tors tend to direct the scarce heart transplants to those who need them most,

i.e., individuals in critical condition  = 1. In fact, if the only outcome pre-

dictor that is unequally distributed between the treated and the untreated is

, then one can refer to the study in Table 3.1 as either (i) an observational

study in which the probability of treatment  = 1 is 075 among those with

 = 1 and 050 among those with  = 0, or (ii) a (non blinded) conditionally

randomized experiment in which investigators randomly assigned treatment

 = 1 with probability 075 to those with  = 1 and 050 to those with  = 0.

Both characterizations of the study are logically equivalent. Under either char-

acterization, conditional exchangeability  ⊥⊥| holds and standardization
or IP weighting can be used to identify the causal effect.

Of course, the crucial question for the observational study is whether  is

the only outcome predictor that is unequally distributed between the treated

and the untreated. Sadly, the question must remain unanswered. For example,

suppose the investigators of our observational study strongly believe that the

treated and the untreated are exchangeable within levels of . Their reasoning

goes as follows: “Heart transplants are assigned to individuals with low proba-

bility of rejecting the transplant, that is, a heart with certain human leukocyte

antigen (HLA) genes will be assigned to an individual who happen to have

compatible genes. Because HLA genes are not predictors of mortality, it turns

out that treatment assignment is essentially random within levels of .” Thus

our investigators are willing to work under the assumption that conditional

exchangeability  ⊥⊥| holds.
The key word is “assumption.” No matter how convincing the investiga-

tors’ story may be, in the absence of randomization, there is no guarantee that

conditional exchangeability holds. For example, suppose that, unknown to the

investigators, doctors prefer to transplant hearts into nonsmokers. If two in-

dividual with  = 1 have similar HLA genes, but one of them is a smoker

( = 1) and the other one is a nonsmoker ( = 0), the one with  = 1 has
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Fine Point 3.2

Crossover randomized experiments. In Fine Point 2.1, we described crossover experiments in which an individual

is observed during two or more periods–say  = 0 and  = 1–and the individual receives a different treatment value

in each period. We showed that individual causal effects can be identified in crossover experiments when the following

three strong conditions hold: i) no carryover effect of treatment: 
01
=1 =  1

=1, ii) the individual causal effect does

not depend on time:  =1
 −  =0

 =  for  = 0 1, and iii) the counterfactual outcome under no treatment does

not depend on time:  =0
 =  for  = 0 1. No randomization was required. We now turn our attention to crossover

randomized experiments in which the order of treatment values that an individual receives is randomly assigned.

Randomized treatment assignment becomes important when, due to possible temporal effects, we do not assume

iii) holds. For simplicity, assume that every individual is randomized to either (1 = 1, 0 = 0) or (1 = 0, 0 = 1)

with probability 05. Let  1=0
1 −  0=0

0 = . Then, under i) and ii) and consistency, if 0 = 0 and 1 = 1,

then 1 − 0 =  + , and if 1 = 0 and 0 = 1, then 0 − 1 =  − . Because  is unknown we can

no longer identify individual causal effects but, since 1 and 0 are randomized and therefore independent of , the

mean of (1 − 0)1 + (0 − 1)0 estimates the average causal effect, i.e., E []. If we only assume i), then

this mean estimates the average of the average treament effects at times 0 and 1, i.e., (E [1] + E [0]) 2 where

 =  =1
 −  =0

 .

In conclusion, if assumption 1) of no carryover effect holds, then a crossover experiment can be used to estimate

average causal effects. However, for the type of treatments and outcomes we study in this book, the assumption of no

carryover effect is implausible.

a lower probability of receiving treatment  = 1. When the distribution of

smoking, an important outcome predictor, differs between the treated (with

lower proportion of smokers  = 1) and the untreated (with higher proportionWe use  to denote unmeasured

variables. Because unmeasured

variables cannot be used for stan-

dardization or IP weighting, the

causal effect cannot be identified

when the measured variables  are

insufficient to achieve conditional

exchangeability.

of smokers) in the stratum  = 1, conditional exchangeability given  does not

hold. Importantly, collecting data on smoking would not prevent the possibil-

ity that other imbalanced outcome predictors, unknown to the investigators,

remain unmeasured.

Thus exchangeability  ⊥⊥|may not hold in observational studies. Specif-
ically, conditional exchangeability  ⊥⊥| will not hold if there exist unmea-
sured independent predictors  of the outcome such that the probability of

receiving treatment  depends on  within strata of . Worse yet, even if

conditional exchangeability  ⊥⊥| held, the investigators cannot empiri-

cally verify that is actually the case. How can they check that the distribution

of smoking is equal in the treated and the untreated if they have not collected

data on smoking? What about all the other unmeasured outcome predictors

 that may also be differentially distributed between the treated and the un-

treated? When analyzing an observational study under conditional exchange-To verify conditional exchange-

ability, one needs to confirm

that Pr [  = 1| =   = ] =

Pr [  = 1| 6=   = ]. But this

is logically impossible because, for

individuals who do not receive

treatment  ( 6= ) the value of

  is unknown and so the right

hand side cannot be empirically

evaluated.

ability, we must hope that our expert knowledge guides us correctly to collect

enough data so that the assumption is at least approximately true.

Because investigators can use their expert knowledge to enhance the plausi-

bility of the conditional exchangeability assumption. They can measure many

relevant variables  (e.g., determinants of the treatment that are also indepen-

dent outcome predictors), rather than only one variable as in Table 3.1, and

then assume that conditional exchangeability is approximately true within the

strata defined by the combination of all those variables . Unfortunately, no

matter how many variables are included in , there is no way to test that the

assumption is correct, which makes causal inference from observational data

a risky task. The validity of causal inferences requires that the investigators’

expert knowledge is correct. This knowledge, encoded as the assumption of
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exchangeability conditional on the measured covariates, supplements the data

in an attempt to identify the causal effect of interest.

3.3 Positivity

Some investigators plan to conduct an experiment to compute the average

effect of heart transplant  on 5-year mortality  . It goes without saying that

the investigators will assign some individuals to receive treatment level  = 1

and others to receive treatment level  = 0. Consider the alternative: the

investigators assign all individuals to either  = 1 or  = 0. That would be

silly. With all the individuals receiving the same treatment level, computing the

average causal effect would be impossible. Instead we must assign treatment

so that, with near certainty, some individuals will be assigned to each of the

treatment groups. In other words, we must ensure that there is a probability

greater than zero–a positive probability–of being assigned to each of the

treatment levels. This is the positivity condition.

We did not emphasize positivity when describing experiments because pos-

itivity is taken for granted in those studies. In marginally randomized ex-

periments, the probabilities Pr [ = 1] and Pr [ = 0] are both positive byThe positive condition is some-

times referred to as the experimen-

tal treatment assumption.

design. In conditionally randomized experiments, the conditional probabili-

ties Pr [ = 1| = ] and Pr [ = 0| = ] are also positive by design for all

levels of the variable  that are eligible for the study. For example, if the

data in Table 3.1 had arisen from a conditionally randomized experiment, the

conditional probabilities of assignment to heart transplant would have been

Pr [ = 1| = 1] = 075 for those in critical condition and Pr [ = 1| = 0] =
050 for the others. Positivity holds, conditional on , because neither of

these probabilities is 0 (nor 1, which would imply that the probability of no

heart transplant  = 0 would be 0). Thus we say that there is positivity if

Pr [ = | = ]  0 for all  involved in the causal contrast. Actually, this

definition of positivity is incomplete because, if our study population were re-

stricted to the group  = 1, then there would be no need to require positivity

in the group  = 0. Positivity is only needed for the values  that are presentPositivity: Pr [ = | = ]  0

for all values  with Pr [ = ] 6= 0
in the population of interest.

in the population of interest.

In addition, positivity is only required for the variables  that are required

for exchangeability. For example, in the conditionally randomized experiment

of Table 3.1, we do not ask ourselves whether the probability of receiving

treatment is greater than 0 in individuals with blue eyes because the variable

“having blue eyes” is not necessary to achieve exchangeability between the

treated and the untreated. (The variable “having blue eyes” is not an inde-

pendent predictor of the outcome  conditional on  and , and was not even

used to assign treatment.) That is, the standardized risk and the IP weighted

risk are equal to the counterfactual risk after adjusting for  only; positivity

does not apply to variables that, like “having blue eyes”, do not need to be

adjusted for.

In observational studies, neither positivity nor exchangeability are guaran-

teed. For example, positivity would not hold if doctors always transplant a

heart to individuals in critical condition  = 1, i.e., if Pr [ = 0| = 1] = 0,

as shown in Figure 3.1. A difference between the conditions of exchangeabil-

ity and positivity is that positivity can sometimes be empirically verified (see

Chapter 12). For example, if Table 3.1 corresponded to data from an observa-

tional study, we would conclude that positivity holds for  because there are
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people at all levels of treatment (i.e.,  = 0 and  = 1) in every level of 

(i.e.,  = 0 and  = 1).Our discussion of standardization and IP weighting

in the previous chapter was explicit about the exchangeability condition, but

only implicitly assumed the positivity condition (explicitly in Technical Point

2.3). Our previous definitions of standardized risk and IP weighted risk are

actually only meaningful when positivity holds. To intuitively understand why

the standardized and IP weighted risk are not well-defined when the positiv-

ity condition fails, consider Figure 3.1. If there were no untreated individuals

( = 0) with  = 1, the data would contain no information to simulate what

would have happened had all treated individuals been untreated because there

would be no untreated individuals with  = 1 that could be considered ex-

changeable with the treated individuals with  = 1. See Technical Point 3.1

for details.
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Figure 3.1

3.4 Consistency: First, define the counterfactual outcome

Consistency means that the observed outcome for every treated individual

equals her outcome if she had received treatment, and that the observed out-

come for every untreated individual equals her outcome if she had remained

untreated, that is,   =  for every individual with  = . This statement

seems so obviously true that some readers may be wondering whether there

are any situations in which consistency does not hold. After all, if I take as-

pirin  = 1 and I die ( = 1), isn’t it the case that my outcome  =1 under

aspirin also equals 1? The apparent simplicity of the consistency conditionRobins and Greenland (2000) ar-

gued that well-defined counterfac-

tuals, or mathematically equivalent

concepts, are necessary for mean-

ingful causal inference.

is deceptive. Let us unpack consistency by explicitly describing its two main

components: (1) a precise definition of the counterfactual outcomes   via a

detailed specification of the superscript , and (2) the linkage of the counter-

factual outcomes to the observed outcomes. This section deals with the first

component of consistency.
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Technical Point 3.1

Positivity for standardization and IP weighting. We have defined the standardized mean for treatment level

 as
P


E [ | =   = ] Pr [ = ]. However, this expression can only be computed if the conditional quan-

tity E [ | =  = ] is well defined, which will be the case when the conditional probability Pr [ = | = ] is

greater than zero for all values  that occur in the population. That is, when positivity holds. (Note the statement

Pr [ = | = ]  0 for all  with Pr [ = ] 6= 0 is effectively equivalent to  [|]  0 with probability 1.) Therefore,
the standardized mean is defined asX



E [ | =  = ] Pr [ = ] if Pr [ = | = ]  0 for all  with Pr [ = ] 6= 0

and is undefined otherwise. The standardized mean can be computed only if, for each value of the covariate  in the

population, there are some individuals that received the treatment level .

The IP weighted mean E

∙
 ( = )

 [|]
¸
is no longer equal to E

∙
 ( = )

 [|]
¸
when positivity does not hold.

Specifically, E

∙
 ( = )

 [|]
¸
is undefined because the undefined ratio 0

0
occurs in computing the expectation. On the

other hand, the IP weighted mean E

∙
 ( = )

 [|]
¸
is always well defined since its denominator  [|] can never be

zero. However, it is now a biased estimate of the counterfactual mean even under exchangeability. In particular, when

positivity fails to hold, E

∙
 ( = )

 [|]
¸
is equal to Pr [ ∈ ()]

P


E [ | =   =   ∈ ()] Pr [ = | ∈ ()]

where () = {; Pr ( = | = )  0} is the set of values  for which  =  may be observed with positive probability.

Therefore, under exchangeability, E

∙
 ( = )

 [|]
¸
equals E [ | ∈ ()] Pr [ ∈ ()].

From the definition of (), (0) cannot equal (1) when  is binary and positivity does not hold. In this case

the contrast E

∙
 ( = 1)

 [|]
¸
− E

∙
 ( = 0)

 [|]
¸
has no causal interpretation, even under exchangeability, because it

is a contrast between two different groups. Under positivity, (1) = (0) and the contrast is the average causal effect

if exchangeability holds.

Consider again a randomized experiment to compute the causal effect of

heart transplant  on 5-year mortality  . Before enrolling patients in the

study, the investigators wrote a protocol in which the two interventions of

interest–heart transplant  = 1 and medical therapy  = 0–were described

in detail. For example, the investigators specified that individuals assigned to

heart transplant  = 1 were to receive certain pre-operative procedures, anes-

thesia, surgical technique, post-operative care, and immunosuppressive ther-

apy. Had the protocol not specified these details, it is possible that each doctor

had conducted a different version of the treatment “heart transplant”, perhapsFine Point 1.2 introduced the con-

cept of multiple versions of treat-

ment.

using her preferred surgical technique or immunosuppressive therapy.

A problem arises if different versions of treatment have different causal

effects. For example, the average causal effect of “heart transplant” in a study

in which most doctors used a traditional surgical technique may differ from that

in a study in which most doctors used a novel surgical technique. Therefore,

when referring to “the causal effect of heart transplant on mortality”, we need

to specifiy the versions  of treatment  that are of interest. If the treatment

values  are not well defined, then the counterfactual outcomes   are not well

defined, which in turn means that the causal effect Pr[ =1 = 1]−Pr[ =0 =
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1] is not well defined. Ideally, the protocols of randomized experiments will

precisely specify the treatment values  assigned to each individual, so that

their counterfactual outcomes   are well defined. In observational studies,

investigators will need to specify the values  under study as unambiguously as

possible. While this task is relatively straightforward for medical interventions,

like heart transplant, it is much harder for treatments that do not correspond

to actual interventions in the real world.

Suppose that a colleague of ours wishes to quantify the causal effect of

obesity  at age 40 on the risk of mortality  by age 50 in a certain population.For simplicity, we consider the usual

definition of obesity (body mass in-

dex≥30), More sophisticated defi-
nitions of adiposity migt be desir-

able, but using them would compli-

cate the exposition without funda-

mentally altering the main points.

Formally, the causal effect is defined by a contrast between the risk if all

individuals had been obese Pr[ =1 = 1] and the risk if all individuals had

been nonobese Pr[ =0 = 1] at age 40. But what exactly is meant by “the

risk if all individuals had been obese”? The answer is not clear because there

are many different ways in which an individual could have become obese at

age 40. For example, an individual might be obese at age 40 after having been

obese for 20 years, or after having been obese for 2 years only. That is, there

are multiple versions of the treatment  = 1 defined by duration, recency, and

intensity of obesity. Because each of these versions may have a different effect

on mortality, our colleague needs to provide a detailed definition of the version

of obesity at age 40 that he is interested in. Otherwise, the “causal effect of

obesity  at age 40 on mortality at age 50” will be ill-defined.Part III of this book is devoted

to interventions that, like interven-

tions on obesity, are sustained over

time. In this chapter we ignore the

definitions (and notation) that are

required for a formal discussion of

sustained interventions.

But, even if our colleague were able to define the duration, recency, and

intensity of obesity  = 1, other aspects of the intervention would also need to

be specified. In particular, our colleague would need to specify how to intervene

on body weight to ensure that each individual experiences treatment value  =

1. For example, he might consider a genetic modification to increase fat tissue

in both waist and coronary arteries, or a regime of extreme physical inactivity

with high caloric intake, or the replacement of the intestinal microbiota, or

surgery, or a combination of these and other interventions. The problem is

that each of these options may have different effects on mortality even if they

are all could somehow set adiposity at the same level.Hernán and Taubman (2008) dis-

cuss the tribulations of two world

leaders–a despotic king and a clue-

less president–who tried to esti-

mate the effect of obesity in their

own countries.

Take Zeus, who is obese at age 40 ( = 1) and had a fatal myocardial

infarction at age 49 ( = 1). Zeus had genes that predisposed him to large

amounts of fat tissue in both his waist and his coronary arteries, so he died

despite exercising moderately, keeping a healthy diet, and having a favorable

intestinal microbiota. If, contray to fact, his genes had been neutral but he

had become obese ( = 1) after a lifetime of lack of exercise, too many calories

in the diet, and an unfavorable intestinal microbiota, then he would not have

died by age 50 ( = 0). Therefore, what is Zeus’s counterfactual outcome

 =1 under “obesity”  = 1? We have just said that he died under one set

of circumstances that led to obesity  = 1, but would not have died under

another set of circumstances that would have also led to obesity  = 1. The

counterfactual outcome  =1 under  = 1 is ill-defined.

The counterfactual outcome  =0 if Zeus had been nonobese is also ill-

defined. If Zeus had not been obese, he might have either died or not died

by age 50, depending on how he managed to remain nonobese. For example,

suppose a nonobese Zeus would have died by age 50 if he had been nonobese

after a lifetime of exercise (cause of death: a bicycle accident), cigarette smok-

ing (cause of death: lung cancer), or bariatric surgery (cause of death: adverse

reaction to anesthesia), and would have survived if he had been nonobese after

a lifetime of a healthy diet (fewer calories from devouring his children), more

favorable genes (less visceral fat tissue), or a different microbiota (less fat ab-

sorption). Because it is unclear which version of “no obesity”  = 0 we are
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considering, the counterfactual outcome  =0 under  = 0 is ill-defined.

Ill-defined counterfactual outcomes result in vague causal questions. If our

colleague is interested in the effect of obesity  = 1 on mortality, he will haveQuestions about the effect of obe-

sity on job discrimination–as mea-

sured by the proportion of job appli-

cants called for a personal interview

after the employer reviews the ap-

plicant’s resume and photograph–

are less vague. Because the treat-

ment is “obesity as perceived by the

employer,” the mechanisms that led

to obesity may be irrelevant.

to work harder to define the counterfactual outcomes  =0 and  =1. An-

other example: if interested in the causal effect of exercise, we might need

to define the duration, frequency, intensity, and type of exercise (swimming,

running, playing basketball...), how the time devoted to exercise would other-

wise be spent (playing with your children, rehearsing with your band, watching

television...), etc.

Note that absolute precision in the definition of the treatment is not needed

for useful causal inference. For example, for the causal effect of exercise, scien-

tists agree that the benefits of running clockwise around your neighborhood’s

park are the same as those of running counterclockwise. Therefore, when de-

scribing the treatment “lifetime exercise,” the direction of the running need

not be specified. This and other aspects of the treatment are deemed to be

irrelevant because varying them would not lead to different counterfactual out-

comes. That is, we only need sufficiently well-defined interventions  for which

no meaningful vagueness remains.The phrase “no causation with-

out manipulation” (Holland 1986)

captures the idea that meaningful

causal inference requires sufficiently

well-defined interventions (versions

of treatment). However, bear in

mind that sufficiently well-defined

interventions may not be humanly

feasible, or practicable, interven-

tions at a particular time in his-

tory. For example, the causal ef-

fect of genetic variants on human

disease was sufficiently well defined

even before the existence of tech-

nology for genetic modification.

Which begs the question of “How do we know that a treatment is sufficiently

well-defined” or, equivalently, that no meaningful vagueness remains? The

answer is “We don’t.” Declaring a treatment sufficiently well-defined is a matter

of agreement among experts based on the available substantive knowledge.

Today we agree that the direction of running is irrelevant, but future research

might prove us wrong if it is demonstrated that, say, leaning the body to

the right, but not to the left, while running is harmful. At any point in

history, experts who write the protocols of randomized experiments make an

attempt to eliminate as much vagueness as possible by employing the subject-

matter knowledge at their disposal. However, some vagueness is inherent to

all causal questions. The vagueness of causal questions can be reduced by a

more detailed specification of treatment, but cannot be completely eliminated.

Yet the degree of vagueness is especially high in observational studies with

causal questions involving biological (e.g., body weight, LDL-cholesterol) or

social (e.g., socioeconomic status) “treatments.”

The above discussion illustrates an intrinsic feature of causal inference: the

articulation of causal questions is contingent on domain expertise and infor-

mal judgment. What we view as a scientifically meaningful causal question at

present may turn out to be viewed as too vague in the future after learning

that finer components of the treatment affect the outcome and therefore the

magnitude of the causal effect. Years from now, scientists will probably refine

our obesity question in terms of cellular modifications which we barely under-

stand at this time. Again, the term sufficiently well-defined treatment relies

on expert consensus, which by definition changes over time. Fine Point 3.3

describes an alternative, but logically equivalent way, to make causal questions

more precise.

At this point, some readers may rightly note that the process of better spec-

ifying the treatment may alter the original question. We started by declaring

our colleague’s interest in the effect of obesity, but we ended up by discussing

hypothetical interventions on exercise. The more we focus on providing a suffi-

ciently well-defined causal interpretation to our analyses, the farther from the

original question we seem to get. But that is a good thing. Refining the causal

question, until it is agreed that no meaningful vagueness remains, is a funda-

mental component of causal inference. Declaring our interest in “the effect of

obesity” is just a starting point for a discussion with our colleagues. During
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Fine Point 3.3

Possible worlds. Some philosophers of science define causal contrasts using the concept of “possible worlds.” The

actual world is the way things actually are. A possible world is a way things might be. Imagine a possible world  where

everybody receives treatment value , and a possible world 0 where everybody receives treatment value 0. The mean
of the outcome is E[ ] in the first possible world and E[ 0 ] in the second one. These philosophers say that there is

an average causal effect if E[ ] 6= E[ 0 ] and the worlds  and 0 are the two worlds closest to the actual world where
all individuals receive treatment value  and 0, respectively.

We introduced an individual’s counterfactual outcome   as her outcome under a sufficiently well-defined inter-

vention that assigned treatment value  to her. These philosophers prefer to think of the counterfactual   as the

outcome in the possible world that is closest to our world and where the individual was treated with . Both definitions

are equivalent when the only difference between the closest possible world and the actual world is that the intervention

of interest took place. The possible worlds formulation of counterfactuals replaces the sometimes difficult problem of

specifying the intervention of interest by the equally difficult problem of describing the closest possible world that is

minimally different from the actual world. Stalnaker (1968) and Lewis (1973) proposed counterfactual theories based

on possible worlds.

that discussion, we will sharpen the causal question by refining the specification

of the treatment until, hopefully, a consensus is reached. The more precisely

we define the treatment, the fewer opportunities for miscommunication among

scientists exist, especially when the numerical estimates of causal effect do not

agree across studies.

So far we have only reviewed the first component of consistency: the spec-

ification of sufficiently well-defined treatments. But a relatively unambiguous

interpretation of numerical estimates also requires the second component of

consistency.

3.5 Consistency: Second, link counterfactuals to the observed data

Inspired by the arguments in the previous section, our colleague decided to

transform his vague causal question about the effect of obesity on mortality by

age 50 into a more precise causal question. He is now interested in the following

intervention ( = 1): “at age 18 and through age 40, put every individual on

a stringent mandatory diet that guarantees that they would never weigh more

than their weight at the age of 18 years.” Specifically, each individual is weighedThis hypothetical intervention was

described by Robins (2008). The

hypothetical intervention was re-

stricted to men in order to avoid

the complicating issue of how much

weight gain to allow during preg-

nancy.

every day starting on the day before his eighteenth birthday. Whenever the

weight is greater than the baseline weight at 18 years, the individual’s caloric

intake is restricted, without changing his usual mix of calorie sources and

micronutrients, until the time (usually within 1—3 days) that the individual

falls below baseline weight. Thus, ignoring errors of a kilogram or two, no

individual would ever weigh more than his baseline weight through age 40. No

instructions or restrictions are given concerning exercise at any time or diet

during non-calorie-restricted periods. The comparison intervention ( = 0) is

“do not intervene.”

Suppose experts agree that these treatment values  = 1 and  = 0 are

sufficiently well-defined and, therefore, that no meaningful vagueness remains

in the specification of the counterfactual outcomes  =1 and  =0. We can

now shift our attention to the equal sign in the consistency condition   = 
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for individuals with  = .

To fix ideas, let us consider Ares, who maintained an approximately con-

stant weight between the ages of 18 and 40 years despite not receiving our

colleague’s stringent intervention  = 1. Rather, Ares maintained his baseline

weight because of a mixture of good genes (from Hera) and vigorous physical

activity (from frequent war combat). Thus Ares’s observed treatment value

was not  = 1 and therefore his observed outcome  does not necessarily

equal the counterfactual outcome  =1 that he would have experienced if he

had received our colleague’s hypothetical intervention  = 1.

To preserve the link between the counterfactual outcomes  =1 and the ob-

served outcomes  , we have to ensure that only individuals receiving treatment

version  = 1 are considered as treated individuals ( = 1) in the analysis, and

similarly for the untreated. The implication is that, if we want to quantify the

causal effect Pr[ =1 = 1] − Pr[ =0 = 1] using observational data, we need

data in which some individuals received treatment values consistent with  = 1

and  = 0, that is, we need (unconditional) positivity. Being able to describe

a well-defined intervention , as our colleague did, is not helpful if the inter-

vention cannot be linked to the observed data, that is, if we cannot reasonably

assume that the equality   =  holds for at least some individuals.

But restriction to the treatment value  of interest is impossible when, asSee Technical Point 3.2 for addi-

tional discussion on the vagueness

of causal inference when the ver-

sions of treatment are unknown.

it often happens, our data are not sufficiently rich. This problem would arise,

for example, in an “obesity study” that collects data on body weight at age 40,

but no data on the individual’s lifetime history of weight, exercise, and diet.

One way out of this problem is to assume that the effects of all versions

of treatment are identical–that is, if there is treatment-variation irrelevance.

In some cases, this may be a good approximation. For example, if interested

in the causal effect of high versus normal blood pressure on stroke, empirical

evidence suggests that lowering blood pressure through different pharmaco-Treatment-variation irrelevance

was defined in Fine Point 1.2.

Formally, this conditions holds if,

for any two versions () and

0() of compound treatment

 = , 
()
 = 

0()
 for all 

and  , where 
()
 is individual

’s counterfactual outcome under

version () = () of compound

treatment  = .

logical mechanisms results in similar outcomes. We might then argue that

a precise definition of the treatment “blood pressure” is unnecessary to link

the potential and observed outcomes. In other cases, however, the validity of

the assumption is more questionable. For example, if interested in the aver-

age causal effect of weight maintenance on death, empirical evidence suggests

that some interventions would increase the risk (e.g., continuation of smoking),

whereas others would decrease it (e.g., moderate exercise). In practice, many

observational analyses implictily assume treatment-variation irrelevance when

making causal inferences about treatments with multiple versions.

In summary, ill-defined treatments like “obesity” complicate the interpre-

tation of causal effect estimates (previous section), but so do sufficiently well-

defined treatments that are absent in the data (this section). Detecting a mis-

match between the treatment values of interest and the data at hand requires

a careful characterization of the versions of treatment that operate in the pop-

ulation. Such characterization may be simple in experiments (i.e., whatever

intervention investigators use to assign treatment) and relatively straightfor-

ward in some observational analyses (e.g., those studying the effects of medical

treatments), but difficult or impossible in many observational analyses that

study the effects of biological and social factors.For an expanded dicussion of the

issues described in Sections 3.4 and

3.5, see the text and references in

Hernán (2016), and in Robins and

Weissman (2016).

Of course, the characterization of the treatment versions present in the

data would be unnecessary if experts explicitly agreed that all versions have a

similar causal effect. However, because experts are fallible, the best we can do

is to make these discussions and our assumptions as transparent as possible, so

that others can directly challenge our arguments. The next section describes

a procedure to achieve that transparency.
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3.6 The target trial

In this Section and throughout the book, the term causal effect refers to a

contrast between average counterfactual outcomes under different treatment

values. Therefore, for each causal effect, we can imagine a (hypothetical) ran-

domized experiment to quantify it. We refer to that hypothetical experimentThe target trial–or its logical

equivalents–is central to the

causal inference framework. Dorn

(1953), Cochran (1972), Rubin

(1974), Feinstein (1971), and

Dawid (2000) used it. Robins

(1986) generalized the concept to

time-varying treatments.

as the target experiment or the target trial. When conducting the target trial

is not feasible, ethical, or timely, we resort to causal analyses of observational

data. That is, causal inference from observational data can be viewed as an

attempt to emulate the target trial. If the emulation is successful, there is no

difference between the observational estimates and the numerical results that

the target trial would have yielded (had it been conducted). As we said in

Section 3.1, if the analogy between observational study and a conditionally

randomized experiment happens to be correct in our data, then we can use the

methods described in the previous chapter–IP weighting or standardization–

to compute causal effects from observational studies. (See Fine Point 3.4 for

how to use observational data to compute the proportion of cases attributable

to treatment.)

Therefore “what randomized experiment are you trying to emulate?” is

a key question for causal inference from observational data. For each causal

effect that we wish to estimate using observational data, we can describe (i)

the target trial that we would like to, but cannot, conduct, and (ii) how the

observational data can be used to emulate that target trial.

Describing the target trial can be done by specifying the key componentsHernán and Robins (2016) reviewed

the key components of the target

trial that need to be specified–

regardless of whether the causal

inference is based on a random-

ized experiment or an observational

study–and emulation procedures

when using observational data.

of its protocol: eligibility criteria, interventions (or treatment strategies), out-

come, follow-up, causal contrast, and statistical analysis. Here we focus on the

treatment strategies or, in the language of this chapter, the interventions that

will be compared across groups. As discussed in the previous two sections,

investigators will first specify the interventions of interest and then identify

individuals who receive them in the data.

Consider the causal effect of “weight loss” on mortality in individuals who

are obese and do not smoke at age 40. The first step for investigators is to

make their causal question less vague. For example, they might agree that

their goal is estimating the effect of losing 5% of body mass index every year,

starting at age 40 and for as long as their body mass index stays over 25, under

the assumption that it does not matter how the weight loss is achieved. They

can now transfer this treatment strategy to the protocol of a target trial which

they will attempt to emulate with the data at their disposal.This book’s authors and their col-

laborators have followed a similar

procedure to estimate the effect of

weight loss using observational data

(see, for example, Danaei et al,

2016). We tried to carefully define

the timing of the treatment strate-

gies under the assumption that the

method used to lose weight was ir-

relevant.

An explicit emulation of the target trial prevents investigators from con-

ducting an oversimplified analysis that compares the risk of death in, say, obese

versus nonobese individuals at age 40. That comparison corresponds implic-

itly to a target trial in which obese individuals are instantaneously transformed

into individuals with a body mass index of 25 at baseline (through a massive

liposuction?). Such target trial cannot be emulated because very few people,

if anyone, in the real world undergo such instantaneous change, and thus the

counterfactual outcomes cannot be linked to the observed outcomes.

The conceptualization of causal inference from observational data as an

attempt to emulate a target trial is not universally accepted. Some authors

presuppose that “the average causal effect of  on  ” is a well-defined quan-

tity, no matter what  and  stand for (as long as  temporally precedes

 ). For example, when considering the effect of obesity, they claim that it

is not necessary to carefully specify the target trial. In contrast to our view

that specifying the target trial is necessary for interpreting numerical effect es-
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Fine Point 3.4

Attributable fraction. We have described effect measures like the causal risk ratio Pr[ =1 = 1]Pr[ =0 = 1] and

the causal risk difference Pr[ =1 = 1]−Pr[ =0 = 1], which compare the counterfactual risk under treatment  = 1

with the counterfactual risk under treatment  = 0. However, one could also be interested in measures that compare

the observed risk with the counterfactual risk under either treatment  = 1 or  = 0. This latter contrast allows us

to compute the proportion of cases that are attributable to treatment in an observational study, i.e., the proportion of

cases that would not have occurred had treatment not occurred. For example, suppose that all 20 individuals in our

population attended a dinner in which they were served either ambrosia ( = 1) or nectar ( = 0). The following day,

7 of the 10 individuals who received  = 1, and 1 of the 10 individuals who received  = 0, were sick. For simplicity,

assume exchangeability of the treated and the untreated so that the causal risk ratio is 0701 = 7 and the causal

risk difference is 07− 01 = 06. (In conditionally randomized experiments, one would compute these effect measures
via standardization or IP weighting.) It was later discovered that the ambrosia had been contaminated by a flock of

doves, which explains the increased risk summarized by both the causal risk ratio and the causal risk difference. We

now address the question ‘what fraction of the cases was attributable to consuming ambrosia?’

In this study we observed 8 cases, i.e., the observed risk was Pr [ = 1] = 820 = 04. The risk that would

have been observed if everybody had received  = 0 is Pr[ =0 = 1] = 01. The difference between these two risks

is 04 − 01 = 03. That is, there is an excess 30% of the individuals who did fall ill but would not have fallen ill if

everybody in the population had received  = 0 rather than their treatment . Because 0304 = 075, we say that

75% of the cases are attributable to treatment  = 1: compared with the 8 observed cases, only 2 cases would have

occurred if everybody had received  = 0. This excess fraction or attributable fraction is defined as

Pr [ = 1]− Pr[ =0 = 1]

Pr [ = 1]

See Fine Point 5.4 for a discussion of the excess fraction in the context of the sufficient-component-cause framework.

The excess fraction is generally different from the etiologic fraction, another version of the attributable fraction

which is defined as the proportion of cases mechanically caused by exposure. For example, suppose the untreated would

have had 7 cases if they have been treated, but these 7 cases would not have contained the 1 exposed case that actually

occurred, i.e., treatment prevents 7 cases but produces 1 case. Also suppose that, if untreated, the treated would have

had only 1 case but different from the 7 cases they actually had. Then the excess fraction would not be equal to the

etiologic fraction. Here the excess fraction is a lower bound on the etiologic fraction. Because the etiologic fraction does

not rely on the concept of excess cases, it can only be computed in randomized experiments under strong assumptions

(Greenland and Robins, 1988).

timates, these authors question the need for such quantitative interpretation.

Their argument goes like this:For some examples of this point of

view, see Pearl (2009), Schwartz

et al (2016), and Glymour and

Spiegelman (2016).
We may not precisely know which particular causal effect is

being estimated in an observational study, but is that really so

important if indeed some causal effect exists? A strong association

between obesity and mortality may imply that there exists some

intervention on body weight that reduces mortality. There is value

in learning that many deaths could have been prevented if all obese

people had been forced, somehow, to be of normal weight, even

if the intervention required for achieving that transformation is

unspecified.

This is an appealing, but risky, argument. Accepting it raises an important

problem: Ill-defined versions of treatment prevent a proper consideration of

exchangeability and positivity in observational studies.
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Let us talk about exchangeability first. To correctly emulate the target

trial, investigators need to emulate randomization itself, which is tantamount

to achieving exchangeability of the treated and the untreated, possibly condi-

tional on covariates . If we renounce to characterize the treatment version

corresponding to our causal question about obesity, how can we even try to

identify and measure the covariates  that make obese and nonobese indi-

viduals conditionally exchangeable, i.e., covariates  that are determinants

of the versions of treatment (obesity) and also risk factors for the outcome

(mortality)? When trying to estimate the effect of an unspecified treatment

version, the usual uncertainty regarding conditional exchangeability is greatly

exacerbated.

The acceptance of unspecified versions of treatment also affects positivity.

Suppose we decide to compute the effect of obesity on mortality by adjusting

for covariates  that include diet and exercise. It is possible that, for some

values of these variables, no individual will be obese; that is, positivity does

not hold. If enough biologic knowledge is available, one could preserve pos-

itivity by restricting the analysis to the strata of  in which the population

contains both obese and nonobese individuals, but these strata may be no

longer representative of the original population.

Positivity violations point to another potential problem: unspecified ver-

sions of treatment may correspond to a target trial that implements unreason-

able interventions. The apparently straightforward comparison of obese and

nonobese individuals in observational studies masks the true complexity of in-

terventions such as ‘make everybody in the population instantly nonobese.’

Had these interventions been made explicit, investigators would have realized

that these drastic changes are unlikely to be observed in the real world, and

therefore they are irrelevant for anyone considering weight loss. As discussed

above, a more reasonable, even if not completely well-defined, intervention mayExtreme interventions are more

likely to go unrecognized when they

are not explicitly specified.

be to reduce body mass index by 5% annually. Anchoring causal inferences to

a target trial not only helps sharpen the specification of the causal question in

observational analyses, but also makes the inferences more relevant for decision

making.

The problems generated by unspecified treatments cannot be dealt with

by applying sophisticated statistical methods. All analytic methods for causal

inference from observational data described in this book yield effect estimates

that are only as well defined as the treatments that are being compared. Al-

though the exchangeability condition can be replaced by other unverifiable

conditions (see Chapter 16) and the positivity condition can be waived if one

is willing to make untestable extrapolations via modeling (Chapter 14), the

requirement of sufficiently well-defined treatments is so fundamental that it

cannot be waived without simultaneously negating the possibility of describ-

ing the causal effect that is being estimated.

Is everything lost when the observational data cannot be used to emulate

an interesting target trial? Not really. Observational data may still be quite

useful by focusing on non-causal prediction, for which the concept of targetFor an extended discussion about

the differences between prediction

and causal inference, which is a

form of counterfactual prediction,

see Hernán, Hsu, and Healy (2019).

trial does not apply. That obese individuals have a higher mortality risk than

nonobese individuals means that obesity is a predictor of–is associated with–

mortality. This is an important piece of information to identify individuals at

high risk of mortality. Note, however, that by simply saying that obesity

predicts–is associated with–mortality, we remain agnostic about the causal

effects of obesity on mortality: obesity might predict mortality in the sense

that carrying a lighter predicts lung cancer. Thus the association between

obesity and mortality is an interesting hypothesis-generating exercise and a
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Technical Point 3.2

Cheating consistency. Consider a compound treatment  with multiple, relevant versions of treatment. Interestingly,

even if the versions of treatment are not well defined, we may still articulate a consistency condition that is guaranteed

to hold (Hernán and VanderWeele, 2011; VanderWeele and Hernán, 2013): For individuals with  =  we let ()

denote the version of treatment  =  actually received by individual ; for individuals with  6=  we define () = 0

so that () ∈ {0} ∪A(). The consistency condition then requires for all ,

 = 
()
 when  =  and () = ().

That is, the outcome for every individual who received a particular version of treatment  =  equals his outcome

if he had received that particular version of treatment. This statement is true by definition of version of treatment if

we in fact define the counterfactual 
()
 for individual  with  =  and () = () as individual ’s outcome

that he actually had under actual treatment  and actual version (). However, using this consistency condition is

self-defeating because, as discussed in the main text, it prevents us from understanding what effect is being estimated

and from being able to evaluate exchangeability and positivity.

Similarly, consider the following hypothetical intervention: ‘assign everybody to being nonobese by changing the

determinants of body weight to reflect the distribution of those determinants in those who are nonobese in the study

population.’ This intervention would randomly assign a version of treatment to each individual in the study population

so that the resulting distribution of versions of treatment exactly matches the distribution of versions of treatment in

the study population. Analogously, we can propose another hypothetical, random intervention that assigns everybody

to being obese.

This trick is implicitly used in the analysis of many observational studies that compare the risks Pr[ = 1| = 1]
and Pr[ = 1| = 0] (often conditional on other variables) to endow the contrast with a causal interpretation. A

problem with this trick is, of course, that the proposed random interventions may not match any realistic interventions

we are interested in. Learning that intervening on ‘the determinants of body weight to reflect the distribution of

those determinants in those with nonobese weight’ decreases mortality by, say, 30% does not imply that realistic

interventions (e.g., modifying caloric intake or exercise levels) will decrease mortality by 30% too. In fact, if intervening

on ‘determinants of body weight in the population’ requires intervening on genetic factors, then a 30% reduction in

mortality may be unattainable by interventions that can actually be implemented in the real world.

motivation for further research (why does obesity predict mortality anyway?),

but not necessarily an appropriate justification to recommend a weight loss

intervention targeted to the entire population.

By retreating into prediction from observational data, we avoid tackling

questions that cannot be logically asked in randomized experiments, not even

in principle. On the other hand, when causal inference is the ultimate goal,

prediction may be unsatisfying.



Chapter 4
EFFECT MODIFICATION

So far we have focused on the average causal effect in an entire population of interest. However, many causal

questions are about subsets of the population. Consider again the causal question “does one’s looking up at

the sky make other pedestrians look up too?” You might be interested in computing the average causal effect of

treatment–your looking up to the sky– in city dwellers and visitors separately, rather than the average effect in

the entire population of pedestrians.

The decision whether to compute average effects in the entire population or in a subset depends on the

inferential goals. In some cases, you may not care about the variations of the effect across different groups of

individuals. For example, suppose you are a policy maker considering the possibility of implementing a nationwide

water fluoridation program. Because this public health intervention will reach all households in the population,

your primary interest is in the average causal effect in the entire population, rather than in particular subsets.

You will be interested in characterizing how the causal effect varies across subsets of the population when the

intervention can be targeted to different subsets, or when the findings of the study need to be applied to other

populations.

This chapter emphasizes that there is not such a thing as the causal effect of treatment. Rather, the causal

effect depends on the characteristics of the particular population under study.

4.1 Definition of effect modification

We started this book by computing the average causal effect of heart trans-Table 4.1

  0  1

Rheia 1 0 1

Demeter 1 0 0

Hestia 1 0 0

Hera 1 0 0

Artemis 1 1 1

Leto 1 0 1

Athena 1 1 1

Aphrodite 1 0 1

Persephone 1 1 1

Hebe 1 1 0

Kronos 0 1 0

Hades 0 0 0

Poseidon 0 1 0

Zeus 0 0 1

Apollo 0 1 0

Ares 0 1 1

Hephaestus 0 0 1

Cyclope 0 0 1

Hermes 0 1 0

Dionysus 0 1 0

plant  on death  in a population of 20 members of Zeus’s extended family.

We used the data in Table 1.1, whose columns show the individual values

of the (generally unobserved) counterfactual outcomes  =0 and  =1. Af-

ter examining the data in Table 1.1, we concluded that the average causal

effect was null. Half of the members of the population would have died if

everybody had received a heart transplant, Pr[ =1 = 1] = 1020 = 05,

and half of the members of the population would have died if nobody had re-

ceived a heart transplant, Pr[ =0 = 1] = 1020 = 05. The causal risk ratio

Pr[ =1 = 1]Pr[ =0 = 1] was 0505 = 1 and the causal risk difference

Pr[ =1 = 1]− Pr[ =0 = 1] was 05− 05 = 0.
We now consider two new causal questions: What is the average causal

effect of  on  in women? And in men? To answer these questions we

will use Table 4.1, which contains the same information as Table 1.1 plus an

additional column with an indicator  for sex:  = 1 for females (referred

to as women in this book) and  = 0 for males (referred to as men). For

convenience, we have rearranged the table so that women occupy the first 10

rows, and men the last 10 rows.

Let us first compute the average causal effect in women. To do so, we need

to restrict the analysis to the first 10 rows of the table with  = 1. In this

subset of the population, the risk of death under treatment is Pr[ =1 = 1| =

1] = 610 = 06 and the risk of death under no treatment is Pr[ =0 = 1| =

1] = 410 = 04. The causal risk ratio is 0604 = 15 and the causal risk

difference is 06− 04 = 02. That is, on average, heart transplant  increases
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the risk of death  in women.

Let us next compute the average causal effect in men. To do so, we need to

restrict the analysis to the last 10 rows of the table with  = 0. In this subset

of the population, the risk of death under treatment is Pr[ =1 = 1| = 0] =

410 = 04 and the risk of death under no treatment is Pr[ =0 = 1| = 0] =

610 = 06. The causal risk ratio is 0406 = 23 and the causal risk difference

is 04− 06 = −02. That is, on average, heart transplant  decreases the risk
of death  in men.

Our example shows that a null average causal effect in the population does

not imply a null average causal effect in a particular subset of the population.

In Table 4.1, the null hypothesis of no average causal effect is true for the

entire population, but not for men or women when taken separately. It just

happens that the average causal effects in men and in women are of equal

magnitude but in opposite direction. Because the proportion of each sex is

50%, both effects cancel out exactly when considering the entire population.

Although exact cancellation of effects is probably rare, heterogeneity of the

individual causal effects of treatment is often expected because of variations in

individual susceptibilities to treatment. An exception occurs when the sharp

null hypothesis of no causal effect is true. Then no heterogeneity of effects

exists because the effect is null for every individual and thus the average causal

effect in any subset of the population is also null.

We are now ready to provide a definition of effect modifier. We say that 

is a modifier of the effect of  on  when the average causal effect of  on See Section 6.5 for a structural clas-

sification of effect modifiers. varies across levels of  . Since the average causal effect can be measured using

different effect measures (e.g., risk difference, risk ratio), the presence of effect

modification depends on the effect measure being used. For example, sex Additive effect modification:

E[ =1 −  =0| = 1] 6=
E[ =1 −  =0| = 0]

is an effect modifier of the effect of heart transplant  on mortality  on the

additive scale because the causal risk difference varies across levels of  . Sex

 is also an effect modifier of the effect of heart transplant  on mortality 

on the multiplicative scale because the causal risk ratio varies across levels ofMultiplicative effect modification:
E[ =1|=1]
E[ =0|=1] 6= E[ =1|=0]

E[ =0|=0]

We do not consider effect modifica-

tion on the odds ratio scale because

the odds ratio is rarely, if ever, the

parameter of interest for causal in-

ference.

 . We only consider variables  that are not affected by treatment  as effect

modifiers.

In Table 4.1 the causal risk ratio is greater than 1 in women ( = 1) and

less than 1 in men ( = 0). Similarly, the causal risk difference is greater

than 0 in women ( = 1) and less than 0 in men ( = 0). That is, there is

qualitative effect modification because the average causal effects in the subsets

 = 1 and  = 0 are in the opposite direction. In the presence of qualitative

effect modification, additive effect modification implies multiplicative effect

modification, and vice versa. In the absence of qualitative effect modification,

however, one can find effect modification on one scale (e.g., multiplicative) but

not on the other (e.g., additive). To illustrate this point, suppose that, in a

second study, we computed the quantities shown to the left of this line. InMultiplicative, but not additive, ef-

fect modification by  :

Pr[ =0 = 1| = 1] = 08

Pr[ =1 = 1| = 1] = 09

Pr[ =0 = 1| = 0] = 01

Pr[ =1 = 1| = 0] = 02

this study, there is no additive effect modification by  because the causal

risk difference among individuals with  = 1 equals that among individuals

with  = 0, i.e., 09 − 08 = 01 = 02 − 01. However, in this study there
is multiplicative effect modification by  because the causal risk ratio among

individuals with  = 1 differs from that among individuals with  = 0, that

is, 0908 = 11 6= 0201 = 2. Since one cannot generally state that there is,
or there is not, effect modification without referring to the effect measure being

used (e.g., risk difference, risk ratio), some authors use the term effect-measure

modification, rather than effect modification, to emphasize the dependence of

the concept on the choice of effect measure.
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4.2 Stratification to identify effect modification

A stratified analysis is the natural way to identify effect modification. To

determine whether  modifies the causal effect of  on  , one computes the

causal effect of  on  in each level (stratum) of the variable  . In theStratification: the causal effect of

 on  is computed in each stra-

tum of  . For dichotomous  , the

stratified causal risk differences are:

Pr[ =1 = 1| = 1]−
Pr[ =0 = 1| = 1]

and

Pr[ =1 = 1| = 0]−
Pr[ =0 = 1| = 0]

previous section, we used the data in Table 4.1 to compute the causal effect

of transplant  on death  in each of the two strata of sex  . Because

the causal effect differed between the two strata (on both the additive and the

multiplicative scale), we concluded that there was (additive and multiplicative)

effect modification by  of the causal effect of  on  .

But the data in Table 4.1 are not the typical data one encounters in real

life. Instead of the two columns with each individual’s counterfactual outcomes

 =1 and  =0, one will find two columns with each individual’s treatment

level  and observed outcome  . How does the unavailability of the counter-

factual outcomes affect the use of stratification to detect effect modification?

The answer depends on the study design.

Consider first an ideal marginally randomized experiment. In Chapter 2

we demonstrated that, leaving aside random variability, the average causal ef-

fect of treatment can be computed using the observed data. For example, the

causal risk difference Pr[ =1 = 1] − Pr[ =0 = 1] is equal to the observed

associational risk difference Pr[ = 1| = 1] − Pr[ = 1| = 0]. The sameTable 4.2

Stratum  = 0
  

Cybele 0 0 0

Saturn 0 0 1

Ceres 0 0 0

Pluto 0 0 0

Vesta 0 1 0

Neptune 0 1 0

Juno 0 1 1

Jupiter 0 1 1

Diana 1 0 0

Phoebus 1 0 1

Latona 1 0 0

Mars 1 1 1

Minerva 1 1 1

Vulcan 1 1 1

Venus 1 1 1

Seneca 1 1 1

Proserpina 1 1 1

Mercury 1 1 0

Juventas 1 1 0

Bacchus 1 1 0

reasoning can be extended to each stratum of the variable  because, if treat-

ment assignment was random and unconditional, exchangeability is expected

in every subset of the population. Thus the causal risk difference in women,

Pr[ =1 = 1| = 1] − Pr[ =0 = 1| = 1], is equal to the associational risk

difference in women, Pr[ = 1| = 1  = 1]− Pr[ = 1| = 0  = 1]. And

similarly for men. Thus, to identify effect modification by  in an ideal exper-

iment with unconditional randomization, one just needs to conduct a stratified

analysis, that is, to compute the association measure in each level of the vari-

able  . Stratification can be used to compute average causal effects in subsets

of the population, but not individual effects (see Fine Points 2.1 and 3.2).

Consider now an ideal randomized experiment with conditional randomiza-

tion. In a population of 40 people, transplant  has been randomly assigned

with probability 075 to those in severe condition ( = 1), and with probabil-

ity 050 to the others ( = 0). The 40 individuals can be classified into two

nationalities according to their passports: 20 are Greek ( = 1) and 20 are

Roman ( = 0). The data on , , and death  for the 20 Greeks are shown

in Table 2.2 (same as Table 3.1). The data for the 20 Romans are shown in

Table 4.2. The population risk under treatment, Pr[ =1 = 1], is 055, and

the population risk under no treatment, Pr[ =0 = 1], is 040. (Both risks

are readily calculated by using either standardization or IP weighting. We

leave the details to the reader.) The average causal effect of transplant 

on death  is therefore 055 − 040 = 015 on the risk difference scale, and

055040 = 1375 on the risk ratio scale. In this population, heart transplant

increases the mortality risk.

As discussed in the previous chapter, the calculation of the causal effect

would have been the same if the data had arisen from an observational study

in which we believe that conditional exchangeability  ⊥⊥| holds.
We now discuss how to conduct a stratified analysis to investigate whether

nationality  modifies the effect of  on  . The goal is to compute the causal

effect of  on  in the Greeks, Pr[ =1 = 1| = 1]−Pr[ =0 = 1| = 1], and

in the Romans, Pr[ =1 = 1| = 0]−Pr[ =0 = 1| = 0]. If these two causal

risk differences differ, we will say that there is additive effect modification by
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Fine Point 4.1

Effect in the treated. This chapter is concerned with average causal effects in subsets of the population. One particular

subset is the treated ( = 1). The average causal effect in the treated is not null if Pr[ =1 = 1| = 1] 6= Pr[ =0 =

1| = 1] or, by consistency, if
Pr[ = 1| = 1] 6= Pr[ =0 = 1| = 1]

That is, there is a causal effect in the treated if the observed risk among the treated individuals does not equal the

counterfactual risk had the treated individuals been untreated. The causal risk difference in the treated is Pr[ = 1| =
1]− Pr[ =0 = 1| = 1]. The causal risk ratio in the treated, also known as the standardized morbidity ratio (SMR),
is Pr[ = 1| = 1]Pr[ =0 = 1| = 1]. The causal risk difference and risk ratio in the untreated are analogously

defined by replacing  = 1 by  = 0. Figure 4.1 shows the groups that are compared when computing the effect in the

treated and the effect in the untreated.

The average effect in the treated will differ from the average effect in the population if the distribution of individual

causal effects varies between the treated and the untreated. That is, when computing the effect in the treated, treatment

group  = 1 is used as a marker for the factors that are truly responsible for the modification of the effect between

the treated and the untreated groups. However, even though one could say that there is effect modification by the

pretreatment variable  even if  is only a surrogate (e.g., nationality) for the causal effect modifiers, one would not

say that there is modification of the effect  by treatment  because it sounds confusing.

See Section 6.6 for a graphical representation of true and surrogate effect modifiers. The bulk of this book is

focused on the causal effect in the population because the causal effect in the treated, or in the untreated, cannot be

directly generalized to time-varying treatments (see Part III).

 . And similarly for the causal risk ratios if interested in multiplicative effect

modification.

The procedure to compute the conditional risks Pr[ =1 = 1| = ] and

Pr[ =0 = 1| = ] in each stratum  has two stages: 1) stratification by

 , and 2) standardization by  (or, equivalently, IP weighting with weights

depending on ). We computed the standardized risks in the Greek stratumStep 2 can be ignored when  is

equal to the variables  that are

needed for conditional exchange-

ability (see Section 4.4).

( = 1) in Chapter 2: the causal risk difference was 0 and the causal risk

ratio was 1. Using the same procedure in the Roman stratum ( = 0), we can

compute the risks Pr[ =1 = 1| = 0] = 06 and Pr[ =0 = 1| = 0] = 03.

(Again, we leave the details to the reader.) Therefore, the causal risk difference

is 03 and the causal risk ratio is 2 in the stratum  = 0. Because these effect

measures differ from those in the stratum  = 1, we say that there is both

additive and multiplicative effect modification by nationality  of the effect of

transplant  on death  . This effect modification is not qualitative because

the effect is harmful or null in both strata  = 0 and  = 1.

We have shown that, in our study population, nationality  modifies the

effect of heart transplant  on the risk of death  . However, we have made no

claims about the causal mechanisms involved in such effect modification. In

fact, it is possible that nationality is simply a marker for the causal factor that

is truly responsible for the modification of the effect. For example, suppose

that the quality of heart surgery is better in Greece than in Rome. One would

then find effect modification by nationality. An intervention to improve the

quality of heart surgery in Rome could eliminate the modification of the causal

effect by passport-defined nationality. Whenever we want to emphasize thisSee Section 6.6 for a graphical rep-

resentation of surrogate and causal

effect modifiers.

distinction, we will refer to nationality as a surrogate effect modifier, and to

quality of care as a causal effect modifier.

Therefore, our use of the term effect modification by  does not necessarily

imply that  plays a causal role in the modification of the effect. To avoid
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potential confusions, some authors prefer to use the more neutral term “effect

heterogeneity across strata of  ” rather than “effect modification by  .” The

next chapter introduces “interaction,” a concept related to effect modification,

that does attribute a causal role to the variables involved.

Figure 4.1

4.3 Why care about effect modification

There are several related reasons why investigators are interested in identifying

effect modification, and why it is important to collect data on pre-treatment

descriptors  even in randomized experiments.

First, if a factor  modifies the effect of treatment  on the outcome 

then the average causal effect will differ between populations with different

prevalence of  . For example, the average causal effect in the population of

Table 4.1 is harmful in women and beneficial in men, that is, there is qualita-

tive effect modification. Because there are 50% of individuals of each sex and

the sex-specific harmful and beneficial effects are equal but of opposite sign,

the average causal effect in the entire population is null. However, had we

conducted our study in a population with a greater proportion of women (e.g.,

graduating college students), the average causal effect in the entire population

would have been harmful. In the presence of non-qualitative effect modifica-

tion, the magnitude, but not the direction, of the average causal effect may

vary across populations. As examples of non-qualitative effect modification,

consider the effects of asbestos exposure (which differ between smokers and

nonsmokers) and of universal health care (which differ between low-income

and high-income families).

That is, the average causal effect in a population depends on the distribu-

tion of individual causal effects in the population. There is generally no such

a thing as “the average causal effect of treatment  on outcome  (period)”,

but “the average causal effect of treatment  on outcome  in a population

with a particular mix of causal effect modifiers.”
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Technical Point 4.1

Computing the effect in the treated. We computed the average causal effect in the population under conditional

exchangeability  ⊥⊥| for both  = 0 and  = 1. Computing the average causal effect in the treated only requires
partial exchangeability  =0⊥⊥|. In other words, it is irrelevant whether the risk in the untreated, had they been
treated, equals the risk in those who were actually treated. The average causal effect in the untreated is computed

under the partial exchangeability condition  =1⊥⊥|.
We now describe how to compute the counterfactual mean E [ | = 0] via standardization, and via IP weighting,

under the above assumptions of partial exchangeability:

• Standardization: E[ | = 0] is equal to
P


E [ | =   = ] Pr [ = | = 0]. See Miettinen (1973) for a

discussion of standardized risk ratios.

• IP weighting: E[ | = 0] is equal to the IP weighted mean
E

∙
 ( = )

 (|) Pr [ = 0|]
¸

E

∙
 ( = )

 (|) Pr [ = 0|]
¸ with weights

Pr [ = 0|]
 (|) . For dichotomous , this equality was derived by Sato and Matsuyama (2003). See Hernán and

Robins (2006) for further details.

The extrapolation of causal effects computed in one population to a second

population is referred to as transportability of causal inferences across popula-Some refer to lack of transportabil-

ity as lack of external validity. tions (see Fine Point 4.2). In our example, the causal effect of heart transplant

 on risk of death  differs between men and women, and between Romans

and Greeks. Thus the average causal effect in this population may not be trans-

portable to other populations with a different distribution of effect modifiers

such as sex and nationality.

Conditional causal effects in the strata defined by the effect modifiers may

be more transportable than the causal effect in the entire population, but

there is no guarantee that the conditional effect measures in one populationA setting in which transportabil-

ity may not be an issue: Smith

and Pell (2003) could not iden-

tify any major modifiers of the ef-

fect of parachute use on death af-

ter “gravitational challenge” (e.g.,

jumping from an airplane at high al-

titude). They concluded that con-

ducting randomized trials of para-

chute use restricted to a particu-

lar group of people would not com-

promise the transportability of the

findings to other groups.

equal the conditional effect measures in another population. This is so be-

cause there could be other unmeasured, or unknown, causal effect modifiers

whose conditional distributions vary between the two populations (or for other

reasons described in Fine Point 4.2). These unmeasured effect modifiers are

not variables needed to achieve exchangeability, but just risk factors for the

outcome. Therefore, transportability of effects across populations is a more

difficult problem than the identification of causal effects in a single population:

one would need to stratify not just on all those things required to achieve ex-

changeability (which you might have information about, say, by interviewing

those who decide how to allocate the treatment) but on unmeasured causes of

the outcome for which there is much less information.

Hence, transportability of causal effects is an unverifiable assumption that

relies heavily on subject-matter knowledge. For example, most experts would

agree that the health effects (on either the additive or multiplicative scale) of

increasing a household’s annual income by $100 in Niger cannot be trasported

to the Netherlands, but most experts would agree that the health effects of use

of cholesterol-lowering drugs in Europeans can be transported to Canadians.

Second, evaluating the presence of effect modification is helpful to identify

the groups of individuals that would benefit most from an intervention. In our
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example of Table 4.1, the average causal effect of treatment  on outcome 

was null. However, treatment  had a beneficial effect in men ( = 0), and a

harmful effect in women ( = 1). If a physician knew that there is qualitative

effect modification by sex then, in the absence of additional information, she

would treat the next patient only if he happens to be a man. The situation is

slightly more complicated when, as in our second example, there is multiplica-

tive, but not additive, effect modification. Here treatment reduces the risk of

the outcome by 10% in individuals with  = 0 and also by 10% in individuals

with  = 1, i.e., there is no additive effect modification by  because the

causal risk difference is 01 in all levels of  . Thus, an intervention to treat all

patients would be equally effective in reducing risk in both strata of  , despite

the fact that there is multiplicative effect modification. In fact, if there is a

nonzero causal effect in at least one stratum of  and the counterfactual risk

Pr[ =0 = 1| = ] varies with , then effect modification is guaranteed on

either the additive or the multiplicative scale.

Additive, but not multiplicative, effect modification is the appropriate scale

to identify the groups that will benefit most from intervention. In the absenceSeveral authors (e.g., Blot and

Day, 1979; Rothman et al., 1980;

Saracci, 1980) have referred to ad-

ditive effect modification as the one

of interest for public health pur-

poses.

of additive effect modification, it is usually not very helpful to learn that there

is multiplicative effect modification.

In our second example, the presence of multiplicative effect modification

follows from the mathematical fact that, because the risk under no treatment

in the stratum  = 1 equals 08, the maximum possible causal risk ratio in the

 = 1 stratum is 108 = 125. Thus the causal risk ratio in the stratum  = 1

is guaranteed to differ from the causal risk ratio of 2 in the  = 0 stratum. In

these situations, the presence of multiplicative effect modification is simply the

consequence of different risk under no treatment Pr[ =0 = 1| = ] across

levels of  . Therefore, as a general rule, it is more informative to report the

(absolute) counterfactual risks Pr[ =1 = 1| = ] and Pr[ =0 = 1| = ]

in every level  of  , rather than simply their ratio or difference.

Finally, the identification of effect modification may help understand the

biological, social, or other mechanisms leading to the outcome. For example,

a greater risk of HIV infection in uncircumcised compared with circumcised

men may provide new clues to understand the disease. The identification of

effect modification may be a first step towards characterizing the interactions

between two treatments. The terms “effect modification” and “interaction”

are sometimes used as synonymous in the scientific literature. This chapter

focused on “effect modification.” The next chapter describes “interaction” as

a causal concept that is related to, but different from, effect modification.

4.4 Stratification as a form of adjustment

Until this chapter, our only goal was to compute the average causal effect in

the entire population. In the absence of marginal randomization, achieving

this goal requires adjustment for the variables  that ensure conditional ex-

changeability of the treated and the untreated. For example, in Chapter 2 we

determined that the average causal effect of heart transplant  on mortality 

was null, that is, the causal risk ratio Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
= 1. We

used the data in Table 2.2 to adjust for the factor  via both standardization

and IP weighting.

The present chapter adds another potential goal to the analysis: to identify

effect modification by variables  . To achieve this goal, we need to stratify
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Fine Point 4.2

Transportability. Causal effects estimated in one population are often intended to make decisions in another population,

which we will refer to as the target population. Suppose we have correctly estimated the average causal effect of

treatment in our study population under exchangeability, positivity, and consistency. Will the effect be the same in the

target population? That is, can we “transport” the effect from the study population to the target population? The

answer to this question depends on the characteristics of both populations. Specifically, transportability of effects from

one population to another may be justified if the following characteristics are similar between the two populations:

• Effect modification: The causal effect of treatment may differ across individuals with different susceptibility to
the outcome. For example, if women are more susceptible to the effects of treatment than men, we say that sex

is an effect modifier. The distribution of effect modifiers in a population will generally affect the magnitude of

the causal effect of treatment in that population. If the distribution of effect modifiers differ between the study

population and the target population, then the magnitude of the causal effect of treatment will differ too.

• Versions of treatment: The causal effect of treatment depends on the distribution of versions of treatment in the
population. If this distribution differs between the study population and the target population, then the magnitude

of the causal effect of treatment will differ too.

• Interference: In the main text we have focused on settings with no interference (Fine Point 1.1). However, one
must remember that interference may exist because treating one individual may affect the outcome of others in

the population. For example, a socially active individual may convince his friends to join him while exercising, and

thus an intervention on that individual’s physical activity may be more effective than an intervention on a socially

isolated individual. Therefore, the patterns of contacts among individuals may affect the magnitude of the causal

effect. If the contact patterns differ between the study population and the target population, then the magnitude

of the causal effect of treatment will differ too.

The transportability of causal inferences across populations may sometimes be improved by restricting our attention

to the average causal effects in the strata defined by the effect modifiers, or by using the stratum-specific effects in

the study population to reconstruct the average causal effect in the target population. For example, the four stratum-

specific effect measures (Roman women, Greek women, Roman men, and Greek men) in our population can be combined

in a weighted average to reconstruct the average causal effect in another population with a different mix of sex and

nationality. The weight assigned to each stratum-specific measure is the proportion of individuals in that stratum in the

second population. However, there is no guarantee that this reconstructed effect will coincide with the true effect in the

target population because of possible between-population differences in the distribution of unmeasured effect modifiers,

interference patterns, and distribution of versions of treatment.

by  before adjusting for . For example, in this chapter we stratified by

nationality  before adjusting for  to determine that the average causal effect

of heart transplant  on mortality  differed between Greeks and Romans.

In summary, standardization (or IP weighting) is used to adjust for  and

stratification is used to identify effect modification by  .

But stratification is not always used to identify effect modification by  .

In practice stratification is often used as an alternative to standardization (and

IP weighting) to adjust for . In fact, the use of stratification as a method

to adjust for  is so widespread that many investigators consider the terms

“stratification” and “adjustment” as synonymous. For example, suppose you

ask an epidemiologist to adjust for the factor  to compute the effect of heart

transplant  on mortality  . Chances are that she will immediately split

Table 2.2 into two subtables–one restricted to individuals with  = 0, the

other to individuals with  = 1–and would provide the effect measure (say,
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the risk ratio) in each of them. That is, she would calculate the risk ratios

Pr [ = 1| = 1  = ] Pr [ = 1| = 0  = ] = 1 for both  = 0 and  = 1.

These two stratum-specific associational risk ratios can be endowed with a

causal interpretation under conditional exchangeability given : they measure

the average causal effect in the subsets of the population defined by  = 0

and  = 1, respectively. They are conditional effect measures. In contrast

the risk ratio of 1 that we computed in Chapter 2 was a marginal (uncondi-

tional) effect measure. In this particular example, all three risk ratios–theUnder conditional exchangeability

given , the risk ratio in the subset

 =  measures the average causal

effect in the subset  =  because,

if  ⊥⊥|, then
Pr [ = 1| =   = 0]=

Pr [  = 1| = 0]

two conditional ones and the marginal one–happen to be equal because there

is no effect modification by . Stratification necessarily results in multiple

stratum-specific effect measures (one per stratum defined by the variables ).

Each of them quantifies the average causal effect in a nonoverlapping subset

of the population but, in general, none of them quantifies the average causal

effect in the entire population. Therefore, we did not consider stratification

when describing methods to compute the average causal effect of treatment in

the population in Chapter 2. Rather, we focused on standardization and IP

weighting.

In addition, unlike standardization and IP weighting, adjustment via strat-

ification requires computing the effect measures in subsets of the population

defined by a combination of all variables  that are required for conditional

exchangeability. For example, when using stratification to estimate the effect

of heart transplant in the population of Tables 2.2 and 4.2, one must compute

the effect in Romans with  = 1, in Greeks with  = 1, in Romans with  = 0,

and in Greeks with  = 0; but one cannot compute the effect in Romans by

simply computing the association in the stratum  = 0 because nationality  ,

by itself, is insufficient to guarantee conditional exchangeability.Robins (1986, 1987) described the

conditions under which stratum-

specific effect measures for time-

varying treatments will not have

a causal interpretation even in the

presence of exchangeability, positiv-

ity, and well-defined interventions.

That is, the use of stratification forces one to evaluate effect modification

by all variables  required to achieve conditional exchangeability, regardless of

whether one is interested in such effect modification. In contrast, stratification

by  followed by IP weighting or standardization to adjust for  allows one

to deal with exchangeability and effect modification separately, as described

above.

Other problems associated with the use of stratification are noncollapsi-

bility of certain effect measures like the odds ratio (see Fine Point 4.3) and

inappropriate adjustment that leads to bias when, in the case for time-varying

treatments, it is necessary to adjust for time-varying variables  that are af-Stratification requires positivity in

addition to exchangeability: the

causal effect cannot be computed

in subsets  =  in which there are

only treated, or untreated, individ-

uals.

fected by prior treatment (see Part III).

Sometimes investigators compute the causal effect in only some of the strata

defined by the variables . That is, no stratum-specific effect measure is com-

puted for some strata. This form of stratification is known as restriction.

For causal inference, stratification is simply the application of restriction to

several comprehensive and mutually exclusive subsets of the population, with

exchangeability within each of these subsets. When positivity fails in some

strata of the population, restriction is used to limit causal inference to those

strata of the original population in which positivity holds (see Chapter 3).

4.5 Matching as another form of adjustment

Matching is another adjustment method. The goal of matching is to construct a

subset of the population in which the variables  have the same distribution in

both the treated and the untreated. As an example, take our heart transplant
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example in Table 2.2 in which the variable  is sufficient to achieve conditional

exchangeability. For each untreated individual in non critical condition ( =

0  = 0) randomly select a treated individual in non critical condition ( =

1  = 0), and for each untreated individual in critical condition ( = 0  = 1)

randomly select a treated individual in critical condition ( = 1  = 1). We

refer to each untreated individual and her corresponding treated individual as a

matched pair, and to the variable  as the matching factor. Suppose we formed

the following 7 matched pairs: Rheia-Hestia, Kronos-Poseidon, Demeter-Hera,

Hades-Zeus for  = 0 and Artemis-Ares, Apollo-Aphrodite, Leto-Hermes for

 = 1. All the untreated, but only a sample of treated, in the populationOur discussion on matching applies

to cohort studies only. In case-

control designs (briefly discussed in

Chapter 8), we often match cases

and non-cases (i.e., controls) rather

than the treated and the untreated.

Even if the matching factors suf-

fice for conditional exchangeabil-

ity, matching in cases and controls

does not achieve unconditional ex-

changeability of the treated and the

untreated in the matched popula-

tion. Adjustment for the matching

factors via stratification is required

to estimate conditional (stratum-

specific) effect measures.

were selected. In this subset of the population comprised of matched pairs, the

proportion of individuals in critical condition ( = 1) is the same, by design,

in the treated and in the untreated (37).

To construct our matched population we replaced the treated in the pop-

ulation by a subset of the treated in which the matching factor  had the

same distribution as that in the untreated. Under the assumption of condi-

tional exchangeability given , the result of this procedure is (unconditional)

exchangeability of the treated and the untreated in the matched population.

Because the treated and the untreated are exchangeable in the matched popu-

lation, their average outcomes can be directly compared: the risk in the treated

is 37, the risk in the untreated is 37, and hence the causal risk ratio is 1. Note

that matching ensures positivity in the matched population because strata with

only treated, or untreated, individuals are excluded from the analysis.

Often one chooses the group with fewer individuals (the untreated in our

example) and uses the other group (the treated in our example) to find their

matches. The chosen group defines the subpopulation on which the causal

effect is being computed. In the previous paragraph we computed the effect in

the untreated. In settings with fewer treated than untreated individuals across

all strata of , we generally compute the effect in the treated. Also, matching

needs not be one-to-one (matching pairs), but it can be one-to-many (matching

sets).

In many applications,  is a vector of several variables. Then, for each

untreated individual in a given stratum defined by a combination of values of

all the variables in , we would have randomly selected one (or several) treated

individual(s) from the same stratum.

Matching can be used to create a matched population with any chosenAs the number of matching fac-

tors increases, so does the proba-

bility that no exact matches exist

for an individual. There is a vast

literature, beyond the scope of this

book, on how to find approximate

matches in those settings.

distribution of , not just the distribution in the treated or the untreated. The

distribution of interest can be achieved by individual matching, as described

above, or by frequency matching. An example of the latter is a study in which

one randomly selects treated individuals in such a way that 70% of them have

 = 1, and then repeats the same procedure for the untreated.

Because the matched population is a subset of the original study population,

the distribution of causal effect modifiers in the matched study population

will generally differ from that in the original, unmatched study population, as

discussed in the next section.

4.6 Effect modification and adjustment methods

Standardization, IP weighting, stratification/restriction, and matching are dif-

ferent approaches to estimate average causal effects, but they estimate different

types of causal effects. These four approaches can be divided into two groups
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Technical Point 4.2

Pooling of stratum-specific effect measures. So far we have focused on the conceptual, non statistical, aspects of

causal inference by assuming that we work with the entire population rather than with a sample from it. Thus we talk

about computing causal effects rather than about (consistently) estimating them. In the real world, however, we can

rarely compute causal effects in the population. We need to estimate them from samples, and thus obtaining reasonably

narrow confidence intervals around our estimated effect measures is an important practical concern.

When dealing with stratum-specific effect measures, one commonly used strategy to reduce the variability of the

estimates is to combine all stratum-specific effect measures into one pooled stratum-specific effect measure. The idea is

that, if the effect measure is the same in all strata (i.e., if there is no effect-measure modification), then the pooled effect

measure will be a more precise estimate of the common effect measure. Several methods (e.g., Woolf, Mantel-Haenszel,

maximum likelihood) yield a pooled estimate, sometimes by computing a weighted average of the stratum-specific effect

measures with weights chosen to reduce the variability of the pooled estimate. Greenland and Rothman (2008) review

some commonly used methods for stratified analysis. Pooled effect measures can also be computed using regression

models that include all possible product terms between all covariates , but no product terms between treatment 

and covariates , i.e., models saturated (see Chapter 11) with respect to .

The main goal of pooling is to obtain a narrower confidence interval around the common stratum-specific effect

measure, but the pooled effect measure is still a conditional effect measure. In our heart transplant example, the pooled

stratum-specific risk ratio (Mantel-Haenszel method) was 088 for the outcome . This result is only meaningful if

the stratum-specific risk ratios 2 and 05 are indeed estimates of the same stratum-specific causal effect. For example,

suppose that the causal risk ratio is 09 in both strata but, because of the small sample size, we obtained estimates of 05

and 20. In that case, pooling would be appropriate and the Mantel-Haenszel risk ratio would be closer to the truth than

either of the stratum-specific risk ratios. Otherwise, if the causal stratum-specific risk ratios are truly 05 and 20, then

pooling makes little sense and the Mantel-Haenszel risk ratio could not be easily interpreted. In practice, it is not always

obvious to determine whether the heterogeneity of the effect measure across strata is due to sampling variability or to

effect-measure modification. The finer the stratification, the greater the uncertainty introduced by random variability.

according to the type of effect they estimate: standardization and IP weight-

ing can be used to compute either marginal or conditional effects, stratifica-Table 4.3
  

Rheia 0 0 0

Kronos 0 0 1

Demeter 0 0 0

Hades 0 0 0

Hestia 0 1 0

Poseidon 0 1 0

Hera 0 1 1

Zeus 0 1 1

Artemis 1 0 1

Apollo 1 0 1

Leto 1 0 0

Ares 1 1 1

Athena 1 1 1

Hephaestus 1 1 1

Aphrodite 1 1 0

Cyclope 1 1 0

Persephone 1 1 0

Hermes 1 1 0

Hebe 1 1 0

Dionysus 1 1 0

tion/restriction and matching can only be used to compute conditional effects

in certain subsets of the population. All four approaches require exchangeabil-

ity and positivity but the subsets of the population in which these conditions

need to hold depend on the causal effect of interest. For example, to compute

the conditional effect among individuals with  = , any of the above meth-

ods requires exchangeability and positivity in that subset only; to estimate

the marginal effect in the entire population, exchangeability and positivity are

required in all levels of .

In the absence of effect modification, the effect measures (risk ratio or risk

difference) computed via these four approaches will be equal. For example,

we concluded that the average causal effect of heart transplant  on mortality

 was null both in the entire population of Table 2.2 (standardization and IP

weighting), in the subsets of the population in critical condition  = 1 and non

critical condition  = 0 (stratification), and in the untreated (matching). All

methods resulted in a causal risk ratio equal to 1. However, the effect measures

computed via these four approaches will not generally be equal. To illustrate

how the effects may vary, let us compute the effect of heart transplant  on

high blood pressure  (1: yes, 0 otherwise) using the data in Table 4.3. We

assume that exchangeability ⊥⊥| and positivity hold. We use the risk

ratio scale for no particular reason.

Standardization and IP weighting yield the average causal effect in the
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Technical Point 4.3

Relation between marginal and conditional risk ratios. Suppose we wish to determine under which con-

ditions the marginal risk ratio Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
will be less than 1 given that we know the val-

ues of the conditional risk ratios Pr
£
 =1 = 1| = 

¤
Pr

£
 =0 = 1| = 

¤
for each stratum . To do so,

note that Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
=
P



©
Pr
£
 =1 = 1| = 

¤
Pr

£
 =0 = 1| = 

¤ª
 (), with  () =©

Pr
£
 =0 = 1| = 

¤
Pr [ = ]

ª
Pr

£
 =0 = 1

¤
and

P
 () = 1. Substituting for  (1) and  (0) followed by

some algebraic manipulations will provide the condition under which the inequality Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
 1

holds.

In our data example, Pr
£
 =1 = 1| = 

¤
Pr

£
 =0 = 1| = 

¤
is 05 for  = 1 and 20 for  = 0.

Therefore the marginal risk ratio will be less than 1 if and only if Pr
£
 =0 = 1| = 1¤ Pr £ =0 = 1| = 0¤ 

2Pr [ = 0] Pr [ = 1].

entire population Pr[=1 = 1]Pr[=0 = 1] = 08 (these and the following

calculations are left to the reader). Stratification yields the conditional causalTable 4.4

  

Rheia 1 0 0

Demeter 1 0 0

Hestia 1 0 0

Hera 1 0 0

Artemis 1 0 1

Leto 1 1 0

Athena 1 1 1

Aphrodite 1 1 1

Persephone 1 1 0

Hebe 1 1 1

Kronos 0 0 0

Hades 0 0 0

Poseidon 0 0 1

Zeus 0 0 1

Apollo 0 0 0

Ares 0 1 1

Hephaestus 0 1 1

Cyclope 0 1 1

Hermes 0 1 0

Dionysus 0 1 1

risk ratios Pr[=1 = 1| = 0]Pr[=0 = 1| = 0] = 20 in the stratum  =

0, and Pr[=1 = 1| = 1]Pr[=0 = 1| = 1] = 05 in the stratum  = 1.

Matching, using the matched pairs selected in the previous section, yields the

causal risk ratio in the untreated Pr[=1 = 1| = 0]Pr[ = 1| = 0] = 10.
We have computed four causal risk ratios and have obtained four different

numbers: 08 20 05 and 10. All of them are correct. Leaving aside random

variability (see Technical Point 4.2), the explanation of the differences is qual-

itative effect modification: Treatment doubles the risk among individuals in

noncritical condition ( = 0, causal risk ratio 20) and halves the risk among

individuals in critical condition ( = 1, causal risk ratio 05). The average

causal effect in the population (causal risk ratio 08) is beneficial because the

ratio Pr
£
 =0 = 1| = 1¤ Pr £ =0 = 1| = 0¤ of the the counterfactual risk

under no treatment in the critical group to that in the noncritical group ex-

ceeds 2 times the odds Pr [ = 0] Pr [ = 1] of being in the noncritical group

(see Technical Point 4.3). The causal effect in the untreated is null (causal

risk ratio 10), which reflects the larger proportion of individuals in noncritical

condition in the untreated compared with the entire population. This example

highlights the primary importance of specifying the population, or the subset

of a population, to which the effect measure corresponds.

The previous chapter argued that a well-defined causal effect is a prereq-

uisite for meaningful causal inference. This chapter argues that a well charac-

terized target population is another such prerequisite. Both prerequisites are

automatically present in experiments that compare two or more interventions

in a population that meets certain a priori eligibility criteria. However, thesePart II describes how standardiza-

tion, IP weighting, and stratifica-

tion can be used in combination

with parametric or semiparametric

models. For example, standard re-

gression models are a form of strati-

fication in which the association be-

tween treatment and outcome is es-

timated within levels of all the other

covariates in the model.

prerequisites cannot be taken for granted in observational studies. Rather, in-

vestigators conducting observational studies need to explicitly define the causal

effect of interest and the subset of the population in which the effect is being

computed. Otherwise, misunderstandings might easily arise when effect mea-

sures obtained via different methods are different.

In our example above, one investigator who used IP weighting (and com-

puted the effect in the entire population) and another one who used matching

(and computed the effect in the untreated) need not engage in a debate about

the superiority of one analytic approach over the other. Their discrepant effect

measures result from the different causal question asked by each investigator

rather than from their choice of analytic approach. In fact, the second investi-
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gator could have used IP weighting to compute the effect in the untreated or

in the treated (see Technical Point 4.1).

A final note. Stratification can be used to compute average causal effects

in subsets of the population, but not individual (subject-specific) effects. As

we have discussed earlier, individual causal effects can only be identified under

extreme assumptions. See Fine Points 2.1 and 3.2.
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Fine Point 4.3

Collapsibility and the odds ratio. In the absence of multiplicative effect modification by  , the causal risk ratio in

the entire population, Pr[ =1 = 1]Pr[ =0 = 1] is equal to the conditional causal risk ratios Pr[ =1 = 1| =

]Pr[ =0 = 1| = ] in every stratum  of  . More generally, the causal risk ratio is a weighted average of the

stratum-specific risk ratios. For example, if the causal risk ratios in the strata  = 1 and  = 0 were equal to 2 and 3,

respectively, then the causal risk ratio in the population would be greater than 2 and less than 3. That the value of the

causal risk ratio (and the causal risk difference) in the population is always constrained by the range of values of the

stratum-specific risk ratios is not only obvious but also a desirable characteristic of any effect measure.

Now consider a hypothetical effect measure (other than the risk ratio or the risk difference) such that the population

effect measure were not a weighted average of the stratum-specific measures. That is, the population effect measure

would not necessarily lie inside of the range of values of the stratum-specific effect measures. Such effect measure would

be an odd one. The odds ratio (pun intended) is such an effect measure, as we now discuss.

Suppose the data in Table 4.4 were collected to compute the causal effect of altitude  on depression  in a

population of 20 individuals who were not depressed at baseline. The treatment  is 1 if the individual moved to a

high altitude residence (on the top of Mount Olympus), 0 otherwise; the outcome  is 1 if the individual subsequently

developed depression, 0 otherwise; and  is 1 if the individual was female, 0 if male. The decision to move was random,

i.e., those more prone to develop depression were as likely to move as the others; effectively  ⊥⊥. Therefore the
risk ratio Pr[ = 1| = 1]Pr[ = 1| = 0] = 23 is the causal risk ratio in the population, and the odds ratio
Pr[ = 1| = 1]Pr[ = 0| = 1]
Pr[ = 1| = 0]Pr[ = 0| = 0] = 54 is the causal odds ratio

Pr[ =1 = 1]Pr[ =1 = 0]

Pr[ =0 = 1]Pr[ =0 = 0]
in the population.

The risk ratio and the odds ratio measure the same causal effect on different scales.

Let us now compute the sex-specific causal effects on the risk ratio and odds ratio scales. The (conditional) causal

risk ratio Pr[ = 1| =  = 1]Pr[ = 1| =  = 0] is 2 for men ( = 0) and 3 for women ( = 1).

The (conditional) causal odds ratio
Pr[ = 1| =  = 1]Pr[ = 0| =  = 1]

Pr[ = 1| =  = 0]Pr[ = 0| =  = 0]
is 6 for men ( = 0) and 6 for

women ( = 1). The causal risk ratio in the population, 23, is in between the sex-specific causal risk ratios 2 and 3. In

contrast, the causal odds ratio in the population, 54, is smaller (i.e., closer to the null value) than both sex-specific odds

ratios, 6. The causal effect, when measured on the odds ratio scale, is bigger in each half of the population than in the

entire population. The population causal odds ratio can be closer to the null value than the non-null stratum-specific

causal odds ratio when  is an independent risk factor for  and, as in our randomized experiment,  is independent

of  (Miettinen and Cook, 1981).

We say that an effect measure is collapsible when the population effect measure can be expressed as a weighted

average of the stratum-specific measures. In follow-up studies the risk ratio and the risk difference are collapsible effect

measures, but the odds ratio–or the rarely used odds difference–is not (Greenland 1987). The noncollapsibility of the

odds ratio, which is a special case of Jensen’s inequality (Samuels 1981), may lead to counterintuitive findings like those

described above. The odds ratio is collapsible under the sharp null hypothesis–both the conditional and unconditional

effect measures are then equal to the null value–and it is approximately collapsible–and approximately equal to the

risk ratio–when the outcome is rare (say,  10%) in every stratum of a follow-up study.

One important consequence of the noncollapsibility of the odds ratio is the logical impossibility of equating “lack of

exchangeability” and “change in the conditional odds ratio compared with the unconditional odds ratio.” In our example,

the change in odds ratio was about 10% (1 − 654) even though the treated and the untreated were exchangeable.
Greenland, Robins, and Pearl (1999) reviewed the relation between noncollapsibility and lack of exchangeability.



Chapter 5
INTERACTION

Consider again a randomized experiment to answer the causal question “does one’s looking up at the sky make

other pedestrians look up too?” We have so far restricted our interest to the causal effect of a single treatment

(looking up) in either the entire population or a subset of it. However, many causal questions are actually about

the effects of two or more simultaneous treatments. For example, suppose that, besides randomly assigning your

looking up, we also randomly assign whether you stand in the street dressed or naked. We can now ask questions

like: what is the causal effect of your looking up if you are dressed? And if you are naked? If these two causal

effects differ we say that the two treatments under consideration (looking up and being dressed) interact in bringing

about the outcome.

When joint interventions on two or more treatments are feasible, the identification of interaction allows one

to implement the most effective interventions. Thus understanding the concept of interaction is key for causal

inference. This chapter provides a formal definition of interaction between two treatments, both within our

already familiar counterfactual framework and within the sufficient-component-cause framework.

5.1 Interaction requires a joint intervention

Suppose that in our heart transplant example, individuals were assigned to

receiving either a multivitamin complex ( = 1) or no vitamins ( = 0)

before being assigned to either heart transplant ( = 1) or no heart trans-

plant ( = 0). We can now classify all individuals into 4 treatment groups:

vitamins-transplant ( = 1,  = 1), vitamins-no transplant ( = 1,  = 0),

no vitamins-transplant ( = 0,  = 1), and no vitamins-no transplant ( = 0,

 = 0). For each individual, we can now imagine 4 potential or counterfac-

tual outcomes, one under each of these 4 treatment combinations:  =1=1,

 =1=0,  =0=1, and  =0=0. In general, an individual’s counterfactual

outcome   is the outcome that would have been observed if we had inter-

vened to set the individual’s values of  and  to  and , respectively. We

refer to interventions on two or more treatments as joint interventions.The counterfactual   correspond-

ing to an intervention on  alone

is the joint counterfactual   if

the observed  takes the value ,

i.e.,   =  . In fact, consis-

tency is a special case of this recur-

sive substitution. Specifically, the

observed  =   =   , which

is our definition of consistency. See

also Technical Point 6.2.

We are now ready to provide a definition of interaction within the coun-

terfactual framework. There is interaction between two treatments  and 

if the causal effect of  on  after a joint intervention that set  to 1 differs

from the causal effect of  on  after a joint intervention that set  to 0. For

example, there would be an interaction between transplant  and vitamins

 if the causal effect of transplant on survival had everybody taken vitamins

were different from the causal effect of transplant on survival had nobody taken

vitamins.

When the causal effect is measured on the risk difference scale, we say that

there is interaction between  and  on the additive scale in the population if

Pr
£
 =1=1 = 1

¤−Pr £ =0=1 = 1
¤ 6= Pr £ =1=0 = 1

¤−Pr £ =0=0 = 1
¤


For example, suppose the causal risk difference for transplant  when every-

body receives vitamins, Pr
£
 =1=1 = 1

¤− Pr £ =0=1 = 1
¤
, were 01, and
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that the causal risk difference for transplant  when nobody receives vita-

mins, Pr
£
 =1=0 = 1

¤ − Pr £ =0=0 = 1
¤
, were 02. We say that there

is interaction between  and  on the additive scale because the risk dif-

ference Pr
£
 =1=1 = 1

¤ − Pr £ =0=1 = 1
¤
is less than the risk difference

Pr
£
 =1=0 = 1

¤− Pr £ =0=0 = 1
¤
. Using simple algebra, it can be easily

shown that this inequality implies that the causal risk difference for vitamins 

when everybody receives a transplant, Pr
£
 =1=1 = 1

¤−Pr £ =1=0 = 1
¤
,

is also less than the causal risk difference for vitamins  when nobody re-

ceives a transplant , Pr
£
 =0=1 = 1

¤−Pr £ =0=0 = 1
¤
. That is, we can

equivalently define interaction between  and  on the additive scale as

Pr
£
 =1=1 = 1

¤−Pr £ =1=0 = 1
¤ 6= Pr £ =0=1 = 1

¤−Pr £ =0=0 = 1
¤


The two inequalities displayed above show that treatments  and  have equal

status in the definition of interaction.

Let us now review the difference between interaction and effect modifica-

tion. As described in the previous chapter, a variable  is a modifier of the

effect of  on  when the average causal effect of  on  varies across levels of

 . Note the concept of effect modification refers to the causal effect of , not

to the causal effect of  . For example, sex was an effect modifier for the effect

of heart transplant in Table 4.1, but we never discussed the effect of sex on

death. Thus, when we say that  modifies the effect of  we are not consid-

ering  and  as variables of equal status, because only  is considered to be

a variable on which we could hypothetically intervene. That is, the definition

of effect modification involves the counterfactual outcomes  , not the coun-

terfactual outcomes  . In contrast, the definition of interaction between 

and  gives equal status to both treatments  and , as reflected by the two

equivalent definitions of interaction shown above. The concept of interaction

refers to the joint causal effect of two treatments  and , and thus involves

the counterfactual outcomes   under a joint intervention.

5.2 Identifying interaction

In previous chapters we have described the conditions that are required to

identify the average causal effect of a treatment  on an outcome  , either

in the entire population or in a subset of it. The three key identifying condi-

tions were exchangeability, positivity, and consistency. Because interaction is

concerned with the joint effect of two (or more) treatments  and , identi-

fying interaction requires exchangeability, positivity, and consistency for both

treatments.

Suppose that vitamins  were randomly, and unconditionally, assigned by

the investigators. Then positivity and consistency hold, and the treated  = 1

and the untreated  = 0 are expected to be exchangeable. That is, the risk

that would have been observed if all individuals had been assigned to transplant

 = 1 and vitamins  = 1 equals the risk that would have been observed if

all individuals who received  = 1 had been assigned to transplant  = 1.

Formally, the marginal risk Pr
£
 =1=1 = 1

¤
is equal to the conditional risk

Pr
£
 =1 = 1| = 1¤. As a result, we can rewrite the definition of interaction

between  and  on the additive scale as

Pr
£
 =1 = 1| = 1¤− Pr £ =0 = 1| = 1¤

6= Pr £ =1 = 1| = 0¤− Pr £ =0 = 1| = 0¤ 
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Technical Point 5.1

Interaction on the additive and multiplicative scales. The equality of causal risk differences Pr
£
 =1=1 = 1

¤−
Pr
£
 =0=1 = 1

¤
= Pr

£
 =1=0 = 1

¤− Pr £ =0=0 = 1
¤
can be rewritten as

Pr
£
 =1=1 = 1

¤
=
©
Pr
£
 =1=0 = 1

¤− Pr £ =0=0 = 1
¤ª
+Pr

£
 =0=1 = 1

¤


By subtracting Pr
£
 =0=0 = 1

¤
from both sides of the equation, we get Pr

£
 =1=1 = 1

¤− Pr £ =0=0 = 1
¤
=©

Pr
£
 =1=0 = 1

¤− Pr £ =0=0 = 1
¤ª
+
©
Pr
£
 =0=1 = 1

¤− Pr £ =0=0 = 1
¤ª



This equality is another compact way to show that treatments  and  have equal status in the definition of interaction.

When the above equality holds, we say that there is no interaction between  and  on the additive scale, and we

say that the causal risk difference Pr
£
 =1=1 = 1

¤− Pr £ =0=0 = 1
¤
is additive because it can be written as the

sum of the causal risk differences that measure the effect of  in the absence of  and the effect of  in the absence of

. Conversely, there is interaction between  and  on the additive scale if Pr
£
 =1=1 = 1

¤−Pr £ =0=0 = 1
¤ 6=©

Pr
£
 =1=0 = 1

¤− Pr £ =0=0 = 1
¤ª
+
©
Pr
£
 =0=1 = 1

¤− Pr £ =0=0 = 1
¤ª



The interaction is superadditive if the ‘not equal to’ (6=) symbol can be replaced by a ‘greater than’ () symbol. The
interaction is subadditive if the ‘not equal to’ (6=) symbol can be replaced by a ‘less than’ () symbol.

Analogously, one can define interaction on the multiplicative scale when the effect measure is the causal risk ratio,

rather than the causal risk difference. We say that there is interaction between  and  on the multiplicative scale if

Pr
£
 =1=1 = 1

¤
Pr [ =0=0 = 1]

6= Pr
£
 =1=0 = 1

¤
Pr [ =0=0 = 1]

× Pr
£
 =0=1 = 1

¤
Pr [ =0=0 = 1]



The interaction is supermultiplicative if the ‘not equal to’ (6=) symbol can be replaced by a ‘greater than’ () symbol.
The interaction is submultiplicative if the ‘not equal to’ (6=) symbol can be replaced by a ‘less than’ () symbol.

which is exactly the definition of modification of the effect of  by  on the

additive scale. In other words, when treatment  is randomly assigned, then

the concepts of interaction and effect modification coincide. The methods

described in Chapter 4 to identify modification of the effect of  by  can now

be applied to identify interaction of  and  by simply replacing the effect

modifier  by the treatment .

Now suppose treatment  was not assigned by investigators. To assess the

presence of interaction between  and , one still needs to compute the four

marginal risks Pr [  = 1]. In the absence of marginal randomization, these

risks can be computed for both treatments  and , under the usual identifying

assumptions, by standardization or IP weighting conditional on the measured

covariates. An equivalent way of conceptualizing this problem follows: rather

than viewing  and  as two distinct treatments with two possible levels (1

or 0) each, one can view  as a combined treatment with four possible levels

(11, 01, 10, 00). Under this conceptualization the identification of interaction

between two treatments is not different from the identification of the causal

effect of one treatment that we have discussed in previous chapters. The same

methods, under the same identifiability conditions, can be used. The only

difference is that now there is a longer list of values that the treatment of

interest can take, and therefore a greater number of counterfactual outcomes.

Sometimes one may be willing to assume (conditional) exchangeability for
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treatment  but not for treatment , e.g., when estimating the causal effect

of  in subgroups defined by  in a randomized experiment. In that case, one

cannot generally assess the presence of interaction between  and , but can

still assess the presence of effect modification by . This is so because one

does not need any identifying assumptions involving  to compute the effect

of  in each of the strata defined by . In the previous chapter we used the

notation  (rather than ) for variables for which we are not willing to make

assumptions about exchangeability, positivity, and consistency. For example,

we concluded that the effect of transplant  was modified by nationality  ,

but we never required any identifying assumptions for the effect of  because

we were not interested in using our data to compute the causal effect of 

on  . In Section 4.2 we argued on substantive grounds that  is a surrogate

effect modifier; that is,  does not act on the outcome and therefore does not

interact with –no action, no interaction. But  is a modifier of the effect

of  on  because  is correlated with (e.g., it is a proxy for) an unidentified

variable that actually has an effect on  and interacts with . Thus thereInteraction between  and  with-

out modification of the effect of

 by  is also logically possible,

though probably rare, because it re-

quires dual effects of  and exact

cancellations (VanderWeele 2009).

can be modification of the effect of  by another variable without interaction

between  and that variable.

In the above paragraphs we have argued that a sufficient condition for

identifying interaction between two treatments  and  is that exchangeability,

positivity, and consistency are all satisfied for the joint treatment () with

the four possible values (0 0), (0 1), (1 0), and (1 1). Then standardization

or IP weighting can be used to estimate the joint effects of the two treatments

and thus to evaluate interaction between them. In Part III, we show that this

condition is not necessary when the two treatments occur at different times.

For the remainder of Part I (except this chapter) and most of Part II, we will

focus on the causal effect of a single treatment .

In Chapter 1 we described deterministic and nondeterministic counterfac-

tual outcomes. Up to here, we used deterministic counterfactuals for simplicity.

However, none of the results we have discussed for population causal effects

and interactions require deterministic counterfactual outcomes. In contrast,

the following section of this chapter only applies in the case that counterfactu-

als are deterministic. Further, we also assume that treatments and outcomes

are dichotomous.

5.3 Counterfactual response types and interaction

Individuals can be classified in terms of their deterministic counterfactual re-

sponses. For example, in Table 4.1 (same as Table 1.1), there are four types

of people: the “doomed” who will develop the outcome regardless of what

treatment they receive (Artemis, Athena, Persephone, Ares), the “immune”

who will not develop the outcome regardless of what treatment they receive

(Demeter, Hestia, Hera, Hades), the “helped” who will develop the outcome

only if untreated (Hebe, Kronos, Poseidon, Apollo, Hermes, Dyonisus), and theTable 5.1

Type  =0  =1

Doomed 1 1

Helped 1 0

Hurt 0 1

Immune 0 0

“hurt” who will develop the outcome only if treated (Rheia, Leto, Aphrodite,

Zeus, Hephaestus, Cyclope). Each combination of counterfactual responses is

often referred to as a response pattern or a response type. Table 5.1 display

the four possible response types.

When considering two dichotomous treatments  and , there are 16 pos-

sible response types because each individual has four counterfactual outcomes,

one under each of the four possible joint interventions on treatments  and
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: (1 1), (0 1), (1 0), and (0 0). Table 5.2 shows the 16 response types for

two treatments. This section explores the relation between response types and

the presence of interaction in the case of two dichotomous treatments  and

 and a dichotomous outcome  .

The first type in Table 5.2 has the counterfactual outcome  =1=1 equal

to 1, which means that an individual of this type would die if treated with

both transplant and vitamins. The other three counterfactual outcomes are

also equal to 1, i.e.,  =1=1 =  =0=1 =  =1=0 =  =0=0 = 1, which

means that an individual of this type would also die if treated with (no trans-Table 5.2
  for each   value

Type 1 1 0 1 1 0 0 0

1 1 1 1 1

2 1 1 1 0

3 1 1 0 1

4 1 1 0 0

5 1 0 1 1

6 1 0 1 0

7 1 0 0 1

8 1 0 0 0

9 0 1 1 1

10 0 1 1 0

11 0 1 0 1

12 0 1 0 0

13 0 0 1 1

14 0 0 1 0

15 0 0 0 1

16 0 0 0 0

plant, vitamins), (transplant, no vitamins), or (no transplant, no vitamins).

In other words, neither treatment  nor treatment  has any effect on the

outcome of such individual. He would die no matter what joint treatment he

is assigned to. Now consider type 16. All the counterfactual outcomes are 0,

i.e.,  =1=1 =  =0=1 =  =1=0 =  =0=0 = 0. Again, neither treat-

ment  nor treatment  has any effect on the outcome of an individual of this

type. She would survive no matter what joint treatment she is assigned to.

If all individuals in the population were of types 1 and 16, we would say that

neither  nor  has any causal effect on  ; the sharp causal null hypothesis

would be true for the joint treatment ().

Let us now focus our attention on types 4, 6, 11, and 13. Individuals of type

4 would only die if treated with vitamins, whether they do or do not receive

a transplant, i.e.,  =1=1 =  =0=1 = 1 and  =1=0 =  =0=0 = 0.

Individuals of type 13 would only die if not treated with vitamins, whether

they do or do not receive a transplant, i.e.,  =1=1 =  =0=1 = 0 and

 =1=0 =  =0=0 = 1. Individuals of type 6 would only die if treated

with transplant, whether they do or do not receive vitamins, i.e.,  =1=1 =

 =1=0 = 1 and  =0=1 =  =0=0 = 0. Individuals of type 11 would only

die if not treated with transplant, whether they do or do not receive vitamins,

i.e.,  =1=1 =  =1=0 = 0 and  =0=1 =  =0=0 = 1.Miettinen (1982) described the 16

possible response types under two

binary treatments and outcome.

Of the 16 possible response types in Table 5.2, we have identified 6 types

(numbers 1 4, 6, 11,13, 16) with a common characteristic: for an individual

with one of those response types, the causal effect of treatment  on the out-

come  is the same regardless of the value of treatment , and the causal effect

of treatment  on the outcome  is the same regardless of the value of treat-

ment . In a population in which every individual has one of these 6 response

types, the causal effect of treatment  in the presence of treatment , as

measured by the causal risk difference Pr
£
 =1=1 = 1

¤−Pr £ =0=1 = 1
¤
,

would equal the causal effect of treatment  in the absence of treatment , as

measured by the causal risk difference Pr
£
 =1=0 = 1

¤−Pr £ =0=0 = 1
¤
.

That is, if all individuals in the population have response types 1, 4, 6, 11,

13 and 16 then there will be no interaction between  and  on the additive

scale.

The presence of additive interaction between  and  implies that, for someGreenland and Poole (1988) noted

that Miettinen’s response types

were not invariant to recoding of

 and  (i.e., switching the labels

“0” and “1”). They partitioned the

16 response types of Table 5.2 into

these three equivalence classes that

are invariant to recoding.

individuals in the population, the value of their two counterfactual outcomes

under  =  cannot be determined without knowledge of the value of , and

vice versa. That is, there must be individuals in at least one of the following

three classes:

1. those who would develop the outcome under only one of the four treat-

ment combinations (types 8, 12, 14, and 15 in Table 5.2)

2. those who would develop the outcome under two treatment combinations,

with the particularity that the effect of each treatment is exactly the

opposite under each level of the other treatment (types 7 and 10)
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Technical Point 5.2

Monotonicity of causal effects. Consider a setting with a dichotomous treatment  and outcome  . The value

of the counterfactual outcome  =0 is greater than that of  =1 only among individuals of the “helped” type. For

the other 3 types,  =1 ≥  =0 or, equivalently, an individual’s counterfactual outcomes are monotonically increasing

(i.e., nondecreasing) in . Thus, when the treatment cannot prevent any individual’s outcome (i.e., in the absence of

“helped” individuals), all individuals’ counterfactual response types are monotonically increasing in . We then simply

say that the causal effect of  on  is monotonic.

The concept of monotonicity can be generalized to two treatments  and . The causal effects of  and 

on  are monotonic if every individual’s counterfactual outcomes   are monotonically increasing in both  and .

That is, if there are no individuals with response types
¡
 =1=1 = 0  =0=1 = 1

¢
,
¡
 =1=1 = 0  =1=0 = 1

¢
,¡

 =1=0 = 0  =0=0 = 1
¢
, and

¡
 =0=1 = 0  =0=0 = 1

¢
.

3. those who would develop the outcome under three of the four treatment

combinations (types 2, 3, 5, and 9)

On the other hand, the absence of additive interaction between  and

 implies that either no individual in the population belongs to one of the

three classes described above, or that there is a perfect cancellation of equalFor more on cancellations that re-

sult in additivity even when inter-

action types are present, see Green-

land, Lash, and Rothman (2008).

deviations from additivity of opposite sign. Such cancellation would occur, for

example, if there were an equal proportion of individuals of types 7 and 10, or

of types 8 and 12.

The meaning of the term “interaction” is clarified by the classification of

individuals according to their counterfactual response types (see also Fine Point

5.1). We now introduce a tool to conceptualize the causal mechanisms involved

in the interaction between two treatments.

5.4 Sufficient causes

The meaning of interaction is clarified by the classification of individuals ac-

cording to their counterfactual response types. We now introduce a tool to

represent the causal mechanisms involved in the interaction between two treat-

ments. Consider again our heart transplant example with a single treatment

. As reviewed in the previous section, some individuals die when they are

treated, others when they are not treated, others die no matter what, and

others do not die no matter what. This variety of response types indicates

that treatment  is not the only variable that determines whether or not the

outcome  occurs.

Take those individuals who were actually treated. Only some of them died,

which implies that treatment alone is insufficient to always bring about the

outcome. As an oversimplified example, suppose that heart transplant  = 1

only results in death in individuals allergic to anesthesia. We refer to the

smallest set of background factors that, together with  = 1 are sufficient to

inevitably produce the outcome as 1. The simultaneous presence of treatment

( = 1) and allergy to anesthesia (1 = 1) is a minimal sufficient cause of the

outcome  .

Now take those individuals who were not treated. Again only some of them

died, which implies that lack of treatment alone is insufficient to bring about

the outcome. As an oversimplified example, suppose that no heart transplant
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Fine Point 5.1

More on counterfactual types and interaction. The classification of individuals by counterfactual response types

makes it easier to consider specific forms of interaction. For example, we may be interested in learning whether some

individuals will develop the outcome when receiving both treatments  = 1 and  = 1, but not when receiving only one

of the two. That is, whether individuals with counterfactual responses  =1=1 = 1 and  =0=1 =  =1=0 = 0

(types 7 and 8) exist in the population. VanderWeele and Robins (2007a, 2008) developed a theory of sufficient cause

interaction for 2 and 3 treatments, and derived the identifying conditions for synergism that are described here. The

following inequality is a sufficient condition for these individuals to exist:

Pr
£
 =1=1 = 1

¤− ¡Pr £ =0=1 = 1
¤
+Pr

£
 =1=0 = 1

¤¢
 0

or, equivalently, Pr
£
 =1=1 = 1

¤− Pr £ =0=1 = 1
¤
 Pr

£
 =1=0 = 1

¤
That is, in an experiment in which treatments  and  are randomly assigned, one can compute the three counterfactual

risks in the above inequality, and empirically check that individuals of types 7 and 8 exist.

Because the above inequality is a sufficient but not a necessary condition, it may not hold even if types 7 and 8

exist. In fact this sufficient condition is so strong that it may miss most cases in which these types exist. A weaker

sufficient condition for synergism can be used if one knows, or is willing to assume, that receiving treatments  and 

cannot prevent any individual from developing the outcome, i.e., if the effects are monotonic (see Technical Point 5.2).

In this case, the inequality

Pr
£
 =1=1 = 1

¤− Pr £ =0=1 = 1
¤
 Pr

£
 =1=0 = 1

¤− Pr £ =0=0 = 1
¤

is a sufficient condition for the existence of types 7 and 8. In other words, when the effects of  and  are monotonic,

the presence of superadditive interaction implies the presence of type 8 (monotonicity rules out type 7). This sufficient

condition for synergism under monotonic effects was originally reported by Greenland and Rothman in a previous edition

of their book. It is now reported in Greenland, Lash, and Rothman (2008).

In genetic research it is sometimes interesting to determine whether there are individuals of type 8, a form of inter-

action referred to as compositional epistasis. VanderWeele (2010a) reviews empirical tests for compositional epistasis.

 = 0 only results in death if individuals have an ejection fraction less than

20%. We refer to the smallest set of background factors that, together with

 = 0 are sufficient to produce the outcome as 2. The simultaneous absence

of treatment ( = 0) and presence of low ejection fraction (2 = 1) is another

sufficient cause of the outcome  .

Finally, suppose there are some individuals who have neither 1 nor 2
and that would have developed the outcome whether they had been treated or

untreated. The existence of these “doomed” individuals implies that there are

some other background factors that are themselves sufficient to bring about

the outcome. As an oversimplified example, suppose that all individuals with

pancreatic cancer at the start of the study will die. We refer to the smallest setBy definition of background factors,

the dichotomous variables  can-

not be intervened on, and cannot

be affected by treatment .

of background factors that are sufficient to produce the outcome regardless of

treatment status as 0. The presence of pancreatic cancer (0 = 1) is another

sufficient cause of the outcome  .

We described 3 sufficient causes for the outcome: treatment  = 1 in

the presence of 1, no treatment  = 0 in the presence of 2, and presence

of 0 regardless of treatment status. Each sufficient cause has one or more

components, e.g.,  = 1 and 1 = 1 in the first sufficient cause. Figure 5.1

represents each sufficient cause by a circle and its components as sections of

the circle. The term sufficient-component causes is often used to refer to the

sufficient causes and their components.
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Figure 5.1

The graphical representation of sufficient-component causes helps visualize

a key consequence of effect modification: as discussed in Chapter 4, the mag-

nitude of the causal effect of treatment  depends on the distribution of effect

modifiers. Imagine two hypothetical scenarios. In the first one, the population

includes only 1% of individuals with 1 = 1 (i.e., allergy to anesthesia). In

the second one, the population includes 10% of individuals with 1 = 1. The

distribution of 2 and 0 is identical between these two populations. Now,

separately in each population, we conduct a randomized experiment of heart

transplant  in which half of the population is assigned to treatment  = 1.

The average causal effect of heart transplant  on death will be greater in the

second population because there are more individuals susceptible to develop

the outcome if treated. One of the 3 sufficient causes,  = 1 plus 1 = 1, is

10 times more common in the second population than in the first one, whereas

the other two sufficient causes are equally frequent in both populations.

The graphical representation of sufficient-component causes also helps vi-

sualize an alternative concept of interaction, which is described in the next

section. First we need to describe the sufficient causes for two treatments 

and . Consider our vitamins and heart transplant example. We have al-

ready described 3 sufficient causes of death: presence/absence of  (or ) is

irrelevant, presence of transplant  regardless of vitamins , and absence of

transplant  regardless of vitamins . In the case of two treatments we need

to add 2 more ways to die: presence of vitamins  regardless of transplant ,

and absence of vitamins regardless of transplant . We also need to add four

more sufficient causes to accommodate those who would die only under certain

combination of values of the treatments  and . Thus, depending on which

background factors are present, there are 9 possible ways to die:
Greenland and Poole (1988) first

enumerated these 9 sufficient

causes.
1. by treatment  (treatment  is irrelevant)

2. by the absence of treatment  (treatment  is irrelevant)

3. by treatment  (treatment  is irrelevant)

4. by the absence of treatment  (treatment  is irrelevant)

5. by both treatments  and 

6. by treatment  and the absence of 

7. by treatment  and the absence of 

8. by the absence of both  and 

9. by other mechanisms (both treatments  and  are irrelevant)

In other words, there are 9 possible sufficient causes with treatment com-

ponents  = 1 only,  = 0 only,  = 1 only,  = 0 only,  = 1 and  = 1,

 = 1 and  = 0,  = 0 and  = 1,  = 0 and  = 0, and neither  nor

 matter. Each of these sufficient causes includes a set of background factors

from 1,..., 8 and 0. Figure 5.2 represents the 9 sufficient-component causes

for two treatments  and .
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Figure 5.2

Not all 9 sufficient-component causes for a dichotomous outcome and two

treatments exist in all settings. For example, if receiving vitamins  = 1 doesThis graphical representation of

sufficient-component causes is of-

ten referred to as “the causal pies.”

not kill any individual, regardless of her treatment , then the 3 sufficient

causes with the component  = 1 will not be present. The existence of those

3 sufficient causes would mean that some individuals (e.g., those with 3 = 1)

would be killed by receiving vitamins ( = 1), that is, their death would be

prevented by not giving vitamins ( = 0) to them.

5.5 Sufficient cause interaction

The colloquial use of the term “interaction between treatments  and ”

evokes the existence of some causal mechanism by which the two treatments

work together (i.e., “interact”) to produce certain outcome. Interestingly, the

definition of interaction within the counterfactual framework does not require

any knowledge about those mechanisms nor even that the treatments work

together (see Fine Point 5.3). In our example of vitamins  and heart trans-

plant , we said that there is an interaction between the treatments  and

 if the causal effect of  when everybody receives  is different from the

causal effect of  when nobody receives . That is, interaction is defined

by the contrast of counterfactual quantities, and can therefore be identified

by conducting an ideal randomized experiment in which the conditions of ex-

changeability, positivity, and consistency hold for both treatments  and .

There is no need to contemplate the causal mechanisms (physical, chemical,

biologic, sociological...) that underlie the presence of interaction.

This section describes a second concept of interaction that perhaps brings

us one step closer to the causal mechanisms by which treatments  and 

bring about the outcome. This second concept of interaction is not based on

counterfactual contrasts but rather on sufficient-component causes, and thus

we refer to it as interaction within the sufficient-component-cause framework

or, for brevity, sufficient cause interaction.

A sufficient cause interaction between  and  exists in the population if

 and  occur together in a sufficient cause. For example, suppose individuals

with background factors 5 = 1 will develop the outcome when jointly receiving
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Fine Point 5.2

From counterfactuals to sufficient-component causes, and vice versa. There is a correspondence between the

counterfactual response types and the sufficient component causes. In the case of a dichotomous treatment and outcome,

suppose an individual has none of the background factors 0, 1, 2. She will have an “immune” response type because

she lacks the components necessary to complete all of the sufficient causes, whether she is treated or not. The table

below displays the mapping between response types and sufficient-component causes in the case of one treatment .

Type  =0  =1 Component causes

Doomed 1 1 0 = 1 or {1 = 1 and 2 = 1}
Helped 1 0 0 = 0 and 1 = 0 and 2 = 1

Hurt 0 1 0 = 0 and 1 = 1 and 2 = 0

Immune 0 0 0 = 0 and 1 = 0 and 2 = 0

A particular combination of component causes corresponds to one and only one counterfactual type. However, a

particular response type may correspond to several combinations of component causes. For example, individuals of the

“doomed” type may have any combination of component causes including 0 = 1, no matter what the values of 1
and 2 are, or any combination including {1 = 1 and 2 = 1}.

Sufficient-component causes can also be used to provide a mechanistic description of exchangeability  
`

. For

a dichotomous treatment and outcome, exchangeability means that the proportion of individuals who would have the

outcome under treatment, and under no treatment, is the same in the treated  = 1 and the untreated  = 0. That

is, Pr[ =1 = 1| = 1] = Pr[ =1 = 1| = 0] and Pr[ =0 = 1| = 1] = Pr[ =0 = 1| = 0].
Now the individuals who would develop the outcome if treated are the “doomed” and the “hurt”, that is, those with

0 = 1 or 1 = 1. The individuals who would get the outcome if untreated are the “doomed” and the “helped”, that is,

those with 0 = 1 or 2 = 1. Therefore there will be exchangeability if the proportions of “doomed” + “hurt” and of

“doomed” + “helped” are equal in the treated and the untreated. That is, exchangeability for a dichotomous treatment

and outcome can be expressed in terms of sufficient-component causes as Pr[0 = 1 or 1 = 1| = 1] = Pr[0 = 1 or
1 = 1| = 0] and Pr[0 = 1 or 2 = 1| = 1] = Pr[0 = 1 or 2 = 1| = 0].

For additional details see Greenland and Brumback (2002), Flanders (2006), and VanderWeele and Hernán (2006).

Some of the above results were generalized to the case of two or more dichotomous treatments by VanderWeele and

Robins (2008).

vitamins ( = 1) and heart transplant ( = 1), but not when receiving only

one of the two treatments. Then a sufficient cause interaction between  and

 exists if there exists an individual with 5 = 1. It then follows that if

there exists an individual with counterfactual responses  =1=1 = 1 and

 =0=1 =  =1=0 = 0, a sufficient cause interaction between  and  is

present.

Sufficient cause interactions can be synergistic or antagonistic. There is

synergism between treatment  and treatment  when  = 1 and  = 1

are present in the same sufficient cause, and antagonism between treatment

 and treatment  when  = 1 and  = 0 (or  = 0 and  = 1) are

present in the same sufficient cause. Alternatively, one can think of antagonism

between treatment  and treatment  as synergism between treatment  and

no treatment  (or between no treatment  and treatment ).

Unlike the counterfactual definition of interaction, sufficient cause inter-

action makes explicit reference to the causal mechanisms involving the treat-

ments  and . One could then think that identifying the presence of sufficient

cause interaction requires detailed knowledge about these causal mechanisms.

It turns out that this is not always the case: sometimes we can conclude that

sufficient cause interaction exists even if we lack any knowledge whatsoever
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Fine Point 5.3

Biologic interaction. In epidemiologic discussions, sufficient cause interaction is commonly referred to as biologic

interaction (Rothman et al, 1980). This choice of terminology might seem to imply that, in biomedical applications,

there exist biological mechanisms through which two treatments  and  act on each other in bringing about the

outcome. However, this may not be necessarily the case as illustrated by the following example proposed by VanderWeele

and Robins (2007a).

Suppose  and  are the two alleles of a gene that produces an essential protein. Individuals with a deleterious

mutation in both alleles ( = 1 and  = 1) will lack the essential protein and die within a week after birth, whereas

those with a mutation in none of the alleles (i.e.,  = 0 and  = 0) or in only one of the alleles (i.e.,  = 0 and  = 1,

 = 1 and  = 0 ) will have normal levels of the protein and will survive. We would say that there is synergism between

the alleles  and  because there exists a sufficient component cause of death that includes  = 1 and  = 1. That

is, both alleles work together to produce the outcome. However, it might be argued that they do not physically act on

each other and thus that they do not interact in any biological sense.

about the sufficient causes and their components. Specifically, if the inequal-Rothman (1976) described the con-

cepts of synergism and antagonism

within the sufficient-component-

cause framework.

ities in Fine Point 5.1 hold, then there exists synergism between  and .

That is, one can empirically check that synergism is present without ever giv-

ing any thought to the causal mechanisms by which  and  work together

to bring about the outcome. This result is not that surprising because of the

correspondence between counterfactual response types and sufficient causes

(see Fine Point 5.2), and because the above inequality is a sufficient but not a

necessary condition, i.e., the inequality may not hold even if synergism exists.

5.6 Counterfactuals or sufficient-component causes?

The sufficient-component-cause framework and the counterfactual (potential

outcomes) framework address different questions. The sufficient component

cause model considers sets of actions, events, or states of nature which together

inevitably bring about the outcome under consideration. The model gives an

account of the causes of a particular effect. It addresses the question, “Given aA counterfactual framework of cau-

sation was already hinted by Hume

(1748).

particular effect, what are the various events which might have been its cause?”

The potential outcomes or counterfactual model focuses on one particular cause

or intervention and gives an account of the various effects of that cause. In

contrast to the sufficient component cause framework, the potential outcomes

framework addresses the question, “What would have occurred if a particular

factor were intervened upon and thus set to a different level than it in fact

was?” Unlike the sufficient component cause framework, the counterfactual

framework does not require a detailed knowledge of the mechanisms by which

the factor affects the outcome.The sufficient-component-cause

framework was developed in phi-

losophy by Mackie (1965). He

introduced the concept of INUS

condition for  : an Insufficient

but Necessary part of a condition

which is itself Unnecessary but

exclusively Sufficient for  .

The counterfactual approach addresses the question “what happens?” The

sufficient-component-cause approach addresses the question “how does it hap-

pen?” For the contents of this book–conditions and methods to estimate the

average causal effects of hypothetical interventions–the counterfactual frame-

work is the natural one. The sufficient-component-cause framework is helpful

to think about the causal mechanisms at work in bringing about a particular

outcome. Sufficient-component causes have a rightful place in the teaching of

causal inference because they help understand key concepts like the dependence
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Fine Point 5.4

More on the attributable fraction. Fine Point 3.4 defined the excess fraction for treatment  as the proportion of

cases attributable to treatment  in a particular population, and described an example in which the excess fraction for

 was 75%. That is, 75% of the cases would not have occurred if everybody had received treatment  = 0 rather than

their observed treatment . Now consider a second treatment . Suppose that the excess fraction for  is 50%. Does

this mean that a joint intervention on  and  could prevent 125% (75% + 50%) of the cases? Of course not.

Clearly the excess fraction cannot exceed 100% for a single treatment (either  or ). Similarly, it should be

clear that the excess fraction for any joint intervention on  and  cannot exceed 100%. That is, if we were allowed

to intervene in any way we wish (by modifying , , or both) in a population, we could never prevent a fraction of

disease greater than 100%. In other words, no more than 100% of the cases can be attributed to the lack of certain

intervention, whether single or joint. But then why is the sum of excess fractions for two single treatments greater than

100%? The sufficient-component-cause framework helps answer this question.

As an example, suppose that Zeus had background factors 5 = 1 (and none of the other background factors) and

was treated with both  = 1 and  = 1. Zeus would not have been a case if either treatment  or treatment  had

been withheld. Thus Zeus is counted as a case prevented by an intervention that sets  = 0, i.e., Zeus is part of the

75% of cases attributable to . But Zeus is also counted as a case prevented by an intervention that sets  = 0, i.e.,

Zeus is part of the 50% of cases attributable to . No wonder the sum of the excess fractions for  and  exceeds

100%: some individuals like Zeus are counted twice!

The sufficient-component-cause framework shows that it makes little sense to talk about the fraction of disease

attributable to  and  separately when both may be components of the same sufficient cause. For example, the

discussion about the fraction of disease attributable to either genes or environment is misleading. Consider the mental

retardation caused by phenylketonuria, a condition that appears in genetically susceptible individuals who eat certain

foods. The excess fraction for those foods is 100% because all cases can be prevented by removing the foods from

the diet. The excess fraction for the genes is also 100% because all cases would be prevented if we could replace the

susceptibility genes. Thus the causes of mental retardation can be seen as either 100% genetic or 100% environmental.

See Rothman, Greenland, and Lash (2008) for further discussion.

of the magnitude of causal effects on the distribution of background factors (ef-

fect modifiers), and the relationship between effect modification, interaction,

and synergism.

Though the sufficient-component-cause framework is useful from a peda-

gogic standpoint, its relevance to actual data analysis is yet to be determined.

In its classical form, the sufficient-component-cause framework is determinis-

tic, its conclusions depend on the coding on the outcome, and is by definition

limited to dichotomous treatments and outcomes (or to variables that can be

recoded as dichotomous variables). This limitation practically rules out the

consideration of any continuous factors, and restricts the applicability of the

framework to contexts with a small number of dichotomous factors. More

recent extensions of the sufficient-component-cause framework to stochastic

settings and to categorical and ordinal treatments might lead to an increasedVanderWeele (2010b) provided ex-

tensions to 3-level treatments.

VanderWeele and Robins (2012)

explored the relationship between

stochastic counterfactuals and sto-

chastic sufficient causes.

application of this approach to realistic data analysis. Finally, even allowing for

these extensions of the sufficient-component-cause framework, we may rarely

have the large amount of data needed to study the fine distinctions it makes.

To estimate causal effects more generally, the counterfactual framework will

likely continue to be the one most often employed. Some apparently alternative

frameworks–causal diagrams, decision theory–are essentially equivalent to

the counterfactual framework, as described in the next chapter.
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Technical Point 5.3

Monotonicity of causal effects and sufficient causes. When treatment  and  have monotonic effects, then some

sufficient causes are guaranteed not to exist. For example, suppose that cigarette smoking ( = 1) never prevents heart

disease, and that physical inactivity ( = 1) never prevents heart disease. Then no sufficient causes including either

 = 0 or  = 0 can be present. This is so because, if a sufficient cause including the component  = 0 existed, then

some individuals (e.g., those with 2 = 1) would develop the outcome if they were unexposed ( = 0) or, equivalently,

the outcome could be prevented in those individuals by treating them ( = 1). The same rationale applies to  = 0.

The sufficient component causes that cannot exist when the effects of  and  are monotonic are crossed out in Figure

5.3.

Figure 5.3
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Chapter 6
GRAPHICAL REPRESENTATION OF CAUSAL EFFECTS

Causal inference generally requires expert knowledge and untestable assumptions about the causal network linking

treatment, outcome, and other variables. Earlier chapters focused on the conditions and methods to compute

causal effects in oversimplified scenarios (e.g., the causal effect of your looking up on other pedestrians’ behavior,

an idealized heart transplant study). The goal was to provide a gentle introduction to the ideas underlying the

more sophisticated approaches that are required in realistic settings. Because the scenarios we considered were so

simple, there was really no need to make the causal network explicit. As we start to turn our attention towards

more complex situations, however, it will become crucial to be explicit about what we know and what we assume

about the variables relevant to our particular causal inference problem.

This chapter introduces a graphical tool to represent our qualitative expert knowledge and a priori assumptions

about the causal structure of interest. By summarizing knowledge and assumptions in an intuitive way, graphs

help clarify conceptual problems and enhance communication among investigators. The use of graphs in causal

inference problems makes it easier to follow a sensible advice: draw your assumptions before your conclusions.

6.1 Causal diagrams

This chapter describes graphs, which we will refer to as causal diagrams, to

represent key causal concepts. The modern theory of diagrams for causal infer-

ence arose within the disciplines of computer science and artificial intelligence.

This and the next three chapters are focused on problem conceptualization viaComprehensive books on this sub-

ject have been written by Pearl

(2009) and Spirtes, Glymour and

Scheines (2000).

causal diagrams.

Take a look at the graph in Figure 6.1. It comprises three nodes representing

random variables (, ,  ) and three edges (the arrows). We adopt the

convention that time flows from left to right, and thus  is temporally prior to

 and  , and  is temporally prior to  . As in previous chapters, , , and

 represent disease severity, heart transplant, and death, respectively.

The presence of an arrow pointing from a particular variable  to another

variable  indicates that we know there is a direct causal effect (i.e., an

effect not mediated through any other variables on the graph) for at least one

individual. Alternatively, the lack of an arrow means that we know that  has

L YA
Figure 6.1

no direct causal effect on for any individual in the population. For example,

in Figure 6.1, the arrow from  to  means that disease severity affects the

probability of receiving a heart transplant. A standard causal diagram does

not distinguish whether an arrow represents a harmful effect or a protective

effect. Furthermore, if, as in figure 6.1, a variable (here,  ) has two causes,

the diagram does not encode how the two causes interact.

Causal diagrams like the one in Figure 6.1 are known as directed acyclic

graphs, which is commonly abbreviated as DAGs. “Directed” because the edges

imply a direction: because the arrow from  to  is into ,  may cause , but

not the other way around. “Acyclic” because there are no cycles: a variable

cannot cause itself, either directly or through another variable.

Directed acyclic graphs have applications other than causal inference. Here

we focus on causal directed acyclic graphs. A defining property of causal DAGs
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Technical Point 6.1

Causal directed acyclic graphs. We define a directed acyclic graph (DAG)  to be a graph whose nodes (vertices)

are random variables  = (1      ) with directed edges (arrows) and no directed cycles. We use  to denote

the parents of , i.e., the set of nodes from which there is a direct arrow into . The variable  is a descendant

of  (and  is an ancestor of ) if there is a sequence of nodes connected by edges between  and  such that,

following the direction indicated by the arrows, one can reach  by starting at  . For example, consider the DAG in

Figure 6.1. In this DAG,  = 3 and we can choose 1 = , 2 = , and 3 =  ; the parents 3 of 3 =  are

(). We will adopt the ordering convention that if   ,  is not an ancestor of  . We define the distribution

of  to be Markov with respect to a DAG  (equivalently, the distribution factors according to a DAG ) if, for each

,  is independent of its non-descendants conditional on its parents.

A causal DAG is a DAG in which 1) the lack of an arrow from node  to  (i.e.,  is not a parent of ) can

be interpreted as the absence of a direct causal effect of  on  relative to the other variables on the graph, 2) all

common causes, even if unmeasured, of any pair of variables on the graph are themselves on the graph, and 3) any

variable is a cause of its descendants.

Causal DAGs are of no practical use unless we make an assumption linking the causal structure represented by

the DAG to the data obtained in a study. This assumption, referred to as the causal Markov assumption, states that,

conditional on its direct causes, a variable  is independent of any variable for which it is not a cause. That is,

conditional on its parents,  is independent of its non-descendants. This latter statement is mathematically equivalent

to the statement that the density  ( ) of the variables  in DAG  satisfies the Markov factorization

 () =

Y
=1

 ( | ) .

is that, conditional on its direct causes, any variable on the DAG is independent

of any other variable for which it is not a cause. This assumption, referred to

as the causal Markov assumption, implies that in causal DAG the common

causes of any pair of variables in the graph must be also in the graph. For a

formal definition of causal DAGs, see Technical Point 6.1.

For example, suppose in our study individuals are randomly assigned to

heart transplant  with a probability that depends on the severity of their

disease . Then  is a common cause of  and  , and needs to be included

in the graph, as shown in the causal diagram in Figure 6.1. Now suppose

YA
Figure 6.2

in our study all individuals are randomly assigned to heart transplant with

the same probability regardless of their disease severity. Then  is not a

common cause of  and  and need not be included in the causal diagram.

Figure 6.1 represents a conditionally randomized experiment, whereas Figure

6.2 represents a marginally randomized experiment.

Figure 6.1 may also represent an observational study. Specifically, Figure

6.1 represents an observational study in which we are willing to assume that

the assignment of heart transplant  has as parent disease severity  and on

no other causes of  . Otherwise, those causes of  , even if unmeasured, would

need to be included in the diagram, as they would be common causes of  and

 . In the next chapter we will describe how the willingness to consider Figure

6.1 as the causal diagram for an observational study is the graphic translation

of the assumption of conditional exchangeability given ,  ⊥⊥| for all .
Many people find the graphical approach to causal inference easier to use

and more intuitive than the counterfactual approach. However, the two ap-

proaches are intimately linked. Specifically, associated with each graph is an

underlying counterfactual model (see Technical Point 6.2). It is this model
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that provides the mathematical justification for the heuristic, intuitive graph-

ical methods we now describe. However, conventional causal diagrams do not

include the underlying counterfactual variables on the graph. Therefore the

link between graphs and counterfactuals has traditionally remained hidden.

A recently developed type of causal directed acyclic graph–the Single World

Intervention Graph (SWIG)–seamlessly unifies the counterfactual and graph-Richardson and Robins (2013) de-

veloped the Single World Interven-

tion Graph (SWIG).

ical approaches to causal inference by explicitly including the counterfactual

variables on the graph. We defer the introduction of SWIGs until Chapter 7

as the material covered in this chapter serves as a necessary prerequisite.

Causal diagrams are a simple way to encode our subject-matter knowledge,

and our assumptions, about the qualitative causal structure of a problem. But,

as described in the next sections, causal diagrams also encode information

about potential associations between the variables in the causal network. It

is precisely this simultaneous representation of association and causation that

makes causal diagrams such an attractive tool. What follows is an informal

introduction to graphic rules to infer associations from causal diagrams. Our

emphasis is on conceptual insight rather than on formal rigor.

6.2 Causal diagrams and marginal independence

Consider the following two examples. First, suppose you know that aspirin use

 has a preventive causal effect on the risk of heart disease  , i.e., Pr[ =1 =

1] 6= Pr[ =0 = 1]. The causal diagram in Figure 6.2 is the graphical transla-

tion of this knowledge for an experiment in which aspirin  is randomly, and

unconditionally, assigned. Second, suppose you know that carrying a lighter 

has no causal effect (causative or preventive) on anyone’s risk of lung cancer  ,

i.e., Pr[ =1 = 1] = Pr[ =0 = 1], and that cigarette smoking  has a causal

effect on both carrying a lighter  and lung cancer  . The causal diagram in

Figure 6.3 is the graphical translation of this knowledge. The lack of an arrow

L YA
Figure 6.3

between  and  indicates that carrying a lighter does not have a causal effect

on lung cancer;  is depicted as a common cause of  and  .

To draw Figures 6.2 and 6.3 we only used your knowledge about the causal

relations among the variables in the diagram but, interestingly, these causal

diagrams also encode information about the expected associations (or, more

exactly, the lack of them) among the variables in the diagram. We now argue

heuristically that, in general, the variables  and  will be associated in both

Figure 6.2 and 6.3, and describe key related results from causal graphs theory.

Take first the randomized experiment represented in Figure 6.2. Intuitively

one would expect that two variables  and  linked only by a causal arrow

would be associated. And that is exactly what causal graphs theory shows:

when one knows that  has a causal effect on  , as in Figure 6.2, then oneA path between two variables and

 in a DAG is a route that connects

 and  by following a sequence

of edges such that the route vis-

its no variable more than once. A

path is causal if it consists entirely

of edges with their arrows pointing

in the same direction. Otherwise it

is noncausal.

should also generally expect  and  to be associated. This is of course

consistent with the fact that, in an ideal randomized experiment with un-

conditional exchangeability, causation Pr[ =1 = 1] 6= Pr[ =0 = 1] implies

association Pr[ = 1| = 1] 6= Pr[ = 1| = 0], and vice versa. A heuristic

that captures the causation-association correspondence in causal diagrams is

the visualization of the paths between two variables as pipes or wires through

which association flows. Association, unlike causation, is a symmetric relation-

ship between two variables; thus, when present, association flows between two

variables regardless of the direction of the causal arrows. In Figure 6.2 one

could equivalently say that the association flows from  to  or from  to .
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Technical Point 6.2

Counterfactual models associated with a causal DAG. In this book, a causal DAG  represents an underlying

counterfactual model. To provide a formal definition of the counterfactual model represented by a DAG , we use the

following notation. For any random variable  , let W denote the support (i.e., the set of possible values ) of  . For

any set of ordered variables 1    , define  = (1     ). Let  denote any subset of variables in  and

let  be a value of . Then  
 denotes the counterfactual value of  when  is set to .

A nonparametric structural equation model (NPSEM) represented by a DAG  with vertex set  assumes the

existence of unobserved random variables (errors)  and deterministic unknown functions  ( ) such that

1 = 1 (1) and the one-step ahead counterfactual 
−1
 ≡  

 is given by  ( ). That is, only the parents

of  have a direct effect on  relative to the other variables on . An NPSEM implies that any variable  on

the graph can be intervened on, as counterfactuals in which  has been set to a specific value  are assumed to

exist. Both the factual variable  and the counterfactuals  
 for any  ⊂  are obtained recursively from 1 and


−1
   ≥   1. For example,  1

3 = 
1

1
2

3 , i.e., the counterfactual value  1
3 of 3 when 1 is set to 1 is the

one-step ahead counterfactual 
12
3 with 2 equal to the counterfactual value 

1
2 of 2. Similarly, 3 = 

1
1
2

3 and


14
3 =  1

3 because 4 is not a direct cause of 3.

Robins (1986) called this NPSEM a finest causally interpreted structural tree graph (FCISTGs) “as fine as the

data”. Pearl (2000) showed how to represent this model with a DAG. Robins (1986) also proposed more realistic

causally interpreted structural tree graphs in which only a subset of the variables are subject to intervention. For

expositional purposes, we will assume that every variable can be intervened on, even though the statistical methods

considered here do not actually require this assumption.

A FCISTG model does not imply that the causal Markov assumption of Technical Point 6.1 holds; additional

statistical independence assumptions are needed. For example, Pearl (2000) assumed an NPSEM in which all error

terms  are mutually independent. We refer to Pearl’s model with independent errors as an NPSEM-IE. In contrast,

Robins (1986) only assumed that the one-step ahead counterfactuals 
−1
 =  ( ) and 

−1
 =  (  ) 

   are jointly independent when −1 is a subvector of the −1, and referred to this as the finest fully randomized
causally interpreted structured tree graph (FFRCISTG) model. Robins (1986) showed this assumption implies that the

causal Markov assumption holds. An NPSEM-IE is an FFRCISTG but not vice-versa because an NPSEM-IE makes

many more independence assumptions than an FFRCISTG (Robins and Richardson 2011).

A DAG represents an NPSEM but we need to specify which type. For example, the DAG in Figure 6.2 may

correspond to either an NPSEM-IE that implies full exchangeability
¡
 =0  =1

¢⊥⊥, or to an FFRCISTG that only
implies marginal exchangeability  ⊥⊥ for both  = 0 and  = 1. In this book we assume that DAGs represent

FFRCISTGs whenever we do not mention the underlying counterfactual model.

Now let us consider the observational study represented in Figure 6.3. We

know that carrying a lighter  has no causal effect on lung cancer  . The

question now is whether carrying a lighter  is associated with lung cancer  .

That is, we know that Pr[ =1 = 1] = Pr[ =0 = 1] but is it also true that

Pr[ = 1| = 1] = Pr[ = 1| = 0]? To answer this question, imagine that a
naive investigator decides to study the effect of carrying a lighter  on the risk

of lung cancer  (we do know that there is no effect but this is unknown to

the investigator). He asks a large number of people whether they are carrying

lighters and then records whether they are diagnosed with lung cancer during

the next 5 years. Hera is one of the study participants. We learn that Hera

is carrying a lighter. But if Hera is carrying a lighter ( = 1), then it is

more likely that she is a smoker ( = 1), and therefore she has a greater than

average risk of developing lung cancer ( = 1). We then intuitively conclude

that  and  are expected to be associated because the cancer risk in those

carrying a lighter ( = 1) is different from the cancer risk in those not carrying
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a lighter ( = 0), or Pr[ = 1| = 1] 6= Pr[ = 1| = 0]. In other words,

having information about the treatment  improves our ability to predict the

outcome  , even though  does not have a causal effect on  . The investigator

will make a mistake if he concludes that  has a causal effect on  just because

 and  are associated. Causal graphs theory again confirms our intuition. In

graphic terms,  and  are associated because there is a flow of association

from  to  (or, equivalently, from  to ) through the common cause .

Let us now consider a third example. Suppose you know that certain genetic

haplotype  has no causal effect on anyone’s risk of becoming a cigarette

smoker  , i.e., Pr[ =1 = 1] = Pr[ =0 = 1], and that both the haplotype 

and cigarette smoking  have a causal effect on the risk of heart disease .
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Figure 6.4

The causal diagram in Figure 6.4 is the graphical translation of this knowledge.

The lack of an arrow between  and  indicates that the haplotype does not

have a causal effect on cigarette smoking, and  is depicted as a common

effect of  and  . The common effect  is referred to as a collider on the path

→ ←  because two arrowheads collide on this node.

Again the question is whether  and  are associated. To answer this

question, imagine that another investigator decides to study the effect of hap-

lotype  on the risk of becoming a cigarette smoker  (we do know that there

is no effect but this is unknown to the investigator). She makes genetic de-

terminations on a large number of children, and then records whether they

end up becoming smokers. Apollo is one of the study participants. We learn

that Apollo does not have the haplotype ( = 0). Is he more or less likely

to become a cigarette smoker ( = 1) than the average person? Learning

about the haplotype  does not improve our ability to predict the outcome 

because the risk in those with ( = 1) and without ( = 0) the haplotype is

the same, or Pr[ = 1| = 1] = Pr[ = 1| = 0]. In other words, we would
intuitively conclude that  and  are not associated, i.e.,  and  are inde-

pendent or ⊥⊥ . The knowledge that both  and  cause heart disease  is

irrelevant when considering the association between  and  . Causal graphs

theory again confirms our intuition because it says that colliders, unlike other

variables, block the flow of association along the path on which they lie. Thus

 and  are independent because the only path between them, → ←  ,

is blocked by the collider .

In summary, two variables are (marginally) associated if one causes the

other, or if they share common causes. Otherwise they will be (marginally) in-

dependent. The next section explores the conditions under which two variables

 and  may be independent conditionally on a third variable .

6.3 Causal diagrams and conditional independence

We now revisit the settings depicted in Figures 6.2, 6.3, and 6.4 to discuss the

concept of conditional independence in causal diagrams.

According to Figure 6.2, we expect aspirin  and heart disease  to be

associated because aspirin has a causal effect on heart disease. Now suppose

we obtain an additional piece of information: aspirin  affects the risk of heart

disease  because it reduces platelet aggregation . This new knowledge is

A YB
Figure 6.5

translated into the causal diagram of Figure 6.5 that shows platelet aggregation

 (1: high, 0: low) as a mediator of the effect of  on  .

Once a third variable is introduced in the causal diagram we can ask a new

question: is there an association between  and  within levels of (conditional
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on) ? Or, equivalently: when we already have information on , does infor-

mation about  improve our ability to predict  ? To answer this question,

suppose data were collected on , , and  in a large number of individuals,

and that we restrict the analysis to the subset of individuals with low platelet

aggregation ( = 0). The square box placed around the node  in Figure 6.5

represents this restriction. (We would also draw a box around  if the analysis

were restricted to the subset of individuals with  = 1.)Because no conditional indepen-

dences are expected in complete

causal diagrams (those in which all

possible arrows are present), it is of-

ten said that information about as-

sociations is in the missing arrows.

Individuals with low platelet aggregation ( = 0) have a lower than average

risk of heart disease. Now take one of these individuals. Regardless of whether

the individual was treated ( = 1) or untreated ( = 0), we already knew

that he has a lower than average risk because of his low platelet aggregation.

In fact, because aspirin use affects heart disease risk only through platelet

aggregation, learning an individual’s treatment status does not contribute any

additional information to predict his risk of heart disease. Thus, in the subset of

individuals with  = 0, treatment  and outcome  are not associated. (The

same informal argument can be made for individuals in the group with  = 1.)

Even though  and  are marginally associated,  and  are conditionally

independent (unassociated) given  because the risk of heart disease is the

same in the treated and the untreated within levels of : Pr[ = 1| =

1  = ] = Pr[ = 1| = 0  = ] for all . That is, ⊥⊥ |. Graphically,
we say that a box placed around variable  blocks the flow of association

through the path →  →  .

Let us now return to Figure 6.3. We concluded in the previous section that

carrying a lighter  was associated with the risk of lung cancer  because

the path  ←  →  was open to the flow of association from  to  . The

question we ask now is whether  is associated with  conditional on . This
L YA

Figure 6.6 new question is represented by the box around  in Figure 6.6. Suppose the

investigator restricts the study to nonsmokers ( = 1). In that case, learning

that an individual carries a lighter ( = 1) does not help predict his risk of

lung cancer ( = 1) because the entire argument for better prediction relied

on the fact that people carrying lighters are more likely to be smokers. This

argument is irrelevant when the study is restricted to nonsmokers or, more

generally, to people who smoke with a particular intensity. Even though 

and  are marginally associated,  and  are conditionally independent given

 because the risk of lung cancer is the same in the treated and the untreated

within levels of : Pr[ = 1| = 1  = ] = Pr[ = 1| = 0  = ] for all

. That is, ⊥⊥ |. Graphically, we say that the flow of association betweenBlocking the flow of association

between treatment and outcome

through the common cause is

the graph-based justification to

use stratification as a method to

achieve exchangeability.

 and  is interrupted because the path  ←  →  is blocked by the box

around .

Finally, consider Figure 6.4 again. We concluded in the previous section

that having the haplotype  was independent of being a cigarette smoker

 because the path between  and  ,  →  ←  , was blocked by the

collider . We now argue heuristically that, in general,  and  will be

conditionally associated within levels of their common effect . Suppose that

the investigators, who are interested in estimating the effect of haplotype 

on smoking status  , restricted the study population to individuals with heart

disease ( = 1). The square around  in Figure 6.7 indicates that they are

conditioning on a particular value of . Knowing that an individual with heart

disease lacks haplotype  provides some information about her smoking status
A LY

Figure 6.7 because, in the absence of , it is more likely that another cause of  such

as  is present. That is, among people with heart disease, the proportion of

smokers is increased among those without the haplotype . Therefore,  and

 are inversely associated conditionally on  = 1. The investigator will make a
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mistake if he concludes that  has a causal effect on  just because  and  are

associated within levels of . In the extreme, if  and  were the only causesSee Chapter 8 for more on associ-

ations due to conditioning on com-

mon effects.

of , then among people with heart disease the absence of one of them would

perfectly predict the presence of the other. Causal graphs theory shows that

indeed conditioning on a collider like  opens the path  →  ←  , which

was blocked when the collider was not conditioned on. Intuitively, whether

two variables (the causes) are associated cannot be influenced by an event

in the future (their effect), but two causes of a given effect generally become

associated once we stratify on the common effect.

As another example, the causal diagram in Figure 6.8 adds to that in Figure

A LY C
Figure 6.8

6.7 a diuretic medication  whose use is a consequence of a diagnosis of heart

disease.  and  are also associated within levels of  because  is a common

effect of  and  . Causal graphs theory shows that conditioning on a variable

 affected by a collider  also opens the path → ←  . This path is blocked

in the absence of conditioning on either the collider  or its consequence .

This and the previous section review three structural reasons why two vari-

ables may be associated: one causes the other, they share common causes, or

they share a common effect and the analysis is restricted to certain level of

that common effect (or of its descendants). Along the way we introduced aThe mathematical theory underly-

ing the graphical rules is known as

“d-separation” (Pearl 1995).

number of graphical rules that can be applied to any causal diagram to deter-

mine whether two variables are (conditionally) independent. The arguments

we used to support these graphical rules were heuristic and relied on our causal

intuitions. These arguments, however, have been formalized and mathemat-

ically proven. See Fine Point 6.1 for a systematic summary of the graphical

rules, and Fine Point 6.2 for an introduction to the concept of faithfulness.
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Figure 6.9

There is another possible source of association between two variables that

we have not discussed yet: chance or random variability. Unlike the structural

reasons for an association between two variables–causal effect of one on the

other, shared common causes, conditioning on common effects–random vari-

ability results in chance associations that become smaller when the size of the

study population increases.

To focus our discussion on structural associations rather than chance asso-

ciations, we continue to assume until Chapter 10 that we have recorded data on

every individual in a very large (perhaps hypothetical) population of interest.

6.4 Positivity and consistency in causal diagrams

Because causal diagrams encode our qualitative expert knowledge about the

causal structure, they can be used as a visual aid to help conceptualize causal

problems and guide data analyses. In fact, the formulas that we described in

Chapter 2 to quantify treatment effects–standardization and IP weighting–

can also be derived using causal graphs theory, as part of what is sometimes

referred to as the do-calculus. Therefore, our choice of counterfactual theoryPearl (2009) reviews quantitative

methods for causal inference that

are derived from graph theory.

in Chapters 1-5 did not really privilege one particular approach but only one

particular notation.

Regardless of the notation used (counterfactuals or graphs), exchangeabil-

ity, positivity, and consistency are conditions required for causal inference via

standardization or IP weighting. If any of these conditions does not hold, the

numbers arising from the data analysis may not be appropriately interpreted

as measures of causal effect. In the next section (and in Chapters 7 and 8) we

discuss how the exchangeability condition is translated into graph language.
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Fine Point 6.1

D-separation. We define a path to be either blocked or open according to the following graphical rules.

1. If there are no variables being conditioned on, a path is blocked if and only if two arrowheads on the path collide

at some variable on the path. In Figure 6.1, the path  →  →  is open, whereas the path  →  ←  is

blocked because two arrowheads on the path collide at  . We call  a collider on the path →  ← .

2. Any path that contains a non-collider that has been conditioned on is blocked. In Figure 6.5, the path between

 and  is blocked after conditioning on . We use a square box around a variable to indicate that we are

conditioning on it.

3. A collider that has been conditioned on does not block a path. In Figure 6.7, the path between  and  is open

after conditioning on .

4. A collider that has a descendant that has been conditioned on does not block a path. In Figure 6.8, the path

between  and  is open after conditioning on , a descendant of the collider .

Rules 1—4 can be summarized as follows. A path is blocked if and only if it contains a non-collider that has been

conditioned on, or it contains a collider that has not been conditioned on and has no descendants that have been

conditioned on. Two variables are d-separated if all paths between them are blocked (otherwise they are d-connected).

Two sets of variables are d-separated if each variable in the first set is d-separated from every variable in the second set.

Thus,  and  are not d-separated in Figure 6.1 because there is one open path between them ( → ), despite the

other path (→  ← )’s being blocked by the collider  . In Figure 6.4, however,  and  are d-separated because

the only path between them is blocked by the collider .

The relationship between statistical independence and the purely graphical concept of d-separation relies on the

causal Markov assumption (Technical Point 6.1): In a causal DAG, any variable is independent of its non-descendants

conditional on its parents. Pearl (1988) proved the following fundamental theorem: The causal Markov assumption

implies that, given any three disjoint sets , ,  of variables, if  is d-separated from  conditional on , then 

is statistically independent of  given . The assumption that the converse holds, i.e., that  is d-separated from 

conditional on  if  is statistically independent of  given , is a separate assumption–the faithfulness assumption

described in Fine Point 6.2. Under faithfulness,  is conditionally independent of  given  in Figure 6.5,  is not

conditionally independent of  given  in Figure 6.7, and  is not conditionally independent of  given  in Figure

6.8. The d-separation rules (‘d-’ stands for directional) to infer associational statements from causal diagrams were

formalized by Pearl (1995). An equivalent set of graphical rules, known as “moralization”, was developed by Lauritzen

et al. (1990).

Here we focus on positivity and consistency.

Positivity is roughly translated into graph language as the condition that

the arrows from the nodes  to the treatment node  are not deterministic.A more precise discussion of posi-

tivity in causal graphs is given by

Richardson and Robins (2013).

The first component of consistency–well-defined interventions–means that

the arrow from treatment  to outcome  corresponds to a possibly hypothet-

ical but relatively unambiguous intervention. In the causal diagrams discussed

in this book, positivity is implicit unless otherwise specified, and consistency

is embedded in the notation because we only consider treatment nodes with

relatively well-defined interventions. Positivity is concerned with arrows into

the treatment nodes, and well-defined interventions are only concerned with

arrows leaving the treatment nodes.

Thus, the treatment nodes are implicitly given a different status compared

with all other nodes. Some authors make this difference explicit by including

decision nodes in causal diagrams. Though this decision-theoretic approach

largely leads to the same methods described here, we do not include decision
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Fine Point 6.2

Faithfulness. In a causal DAG the absence of an arrow from  to  indicates that the sharp null hypothesis of no

causal effect of  on any individual’s  holds, and an arrow  →  (as in Figure 6.2) indicates that  has a causal

effect on the outcome  of at least one individual in the population. Thus, we would generally expect that, under

Figure 6.2, the average causal effect of  on  , Pr[ =1 = 1] 6= Pr[ =0 = 1], and the association between  and  ,

Pr[ = 1| = 1] 6= Pr[ = 1| = 0], are not null. However, that is not necessarily true: exist a setting represented by
Figure 6.2 may be one in which there is neither an average causal effect nor an association. For an example, remember

the data in Table 4.1. Heart transplant  increases the risk of death  in women (half of the population) and decreases

the risk of death in men (the other half). Because the beneficial and harmful effects of  perfectly cancel out, the

average causal effect is null, Pr[ =1 = 1] = Pr[ =0 = 1]. Yet Figure 6.2 is the correct causal diagram because

treatment  affects the outcome  of some individuals–in fact, of all individuals–in the population.

Formally, faithfulness is the assumption that, for three disjoint sets , ,  on a causal DAG, (where  may be the

empty set),  independent of  given  implies  is d-separated from  given . When, as in our example, the causal

diagram makes us expect a non-null association that does not actually exist in the data, we say that the joint distribution

of the data is not faithful to the causal DAG. In our example the unfaithfulness was the result of effect modification

(by sex) with opposite effects of exactly equal magnitude in each half of the population. Such perfect cancellation of

effects is rare, and thus we will assume faithfulness throughout this book. Because unfaithful distributions are rare, in

practice lack of d-separation (See Fine Point 6.1) can be equated to non-zero association.

There are, however, instances in which faithfulness is violated by design. For example, consider the prospective

study in Section 4.5. The average causal effect of  on  was computed after matching on . In the matched

population,  and  are not associated because the distribution of  is the same in the treated and the untreated.

That is, individuals are selected into the matched population because they have a particular combination of values of

 and . The causal diagram in Figure 6.9 represents the setting of a matched study in which selection  (1: yes,

0: no) is determined by both  and . The box around  indicates that the analysis is restricted to those selected

into the matched cohort ( = 1). According to d-separation rules, there are two open paths between  and  when

conditioning on :  →  and  →  ← . Thus one would expect  and  to be associated conditionally on .

However, matching ensures that  and  are not associated (see Chapter 4). Why the discrepancy? Matching creates

an association via the path  →  ←  that is of equal magnitude, but opposite direction, as the association via the

path → . The net result is a perfect cancellation of the associations. Matching leads to unfaithfulness.

Finally, faithfulness may be violated when there exist deterministic relations between variables on the graph. Specif-

ically, when two variables are linked by paths that include deterministic arrows, then the two variables are independent

if all paths between them are blocked, but might also be independent even if some paths are open. In this book we

will assume faithfulness unless we say otherwise. Faithfulness is also assumed when the goal of the data analysis is

discovering the causal structure (see Fine Point 6.3)

nodes in the causal diagrams presented in this chapter. Because we are always

explicit about the potential interventions on the variable , the additional

nodes (to represent the potential interventions) would be somewhat redun-Influence diagrams are causal di-

agrams augmented with decision

nodes to represent the interventions

of interest (Dawid 2000, 2002).

dant. However, we will give a different status to treatment nodes when using

SWIGs–causal diagrams with nodes representing counterfactual variables–in

subsequent chapters.

The different status of treatment nodes compared with other nodes was also

graphically explicit in the causal trees introduced in Chapter 2, in which non-

treatment branches corresponding to non-treatment variables  and  were

enclosed in circles, and in the “pies” representing sufficient causes in Chapter

5, which distinguish between potential treatments  and  and background

factors  . Also, our discussion on well-defined versions of treatment in Chapter

3 emphasizes the requirements imposed on the treatment variables  that do

not apply to other variables.
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In contrast, the causal diagrams in this chapter apparently assign the same

status to all variables in the diagram–this is indeed the case when causal dia-

grams are considered as representations of nonparametric structural equations

models (see Technical Point 6.2). The apparently equal status of all variables

in causal diagrams may be misleading, especially when some of those variables

are ill-defined. It may be okay to draw a causal diagram that includes a node

for “obesity” as the outcome  or even as a covariate . However, for the rea-

sons discussed in Chapter 3, it is generally not okay to draw a causal diagram

that includes a node for “obesity” as a treatment . In causal diagrams, nodes

for treatment variables with multiple relevant versions need to be sufficiently

well-defined.

For example, suppose that we are interested in the causal effect of the com-

pound treatment , where  = 1 is defined as “exercising at least 30 minutes

daily,” and  = 0 is defined as “exercising less than 30 minutes daily.” Individ-

uals who exercise longer than 30 minutes will be classified as  = 1, and thus

each of the possible durations 30 31 32 minutes can be viewed as a different
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Figure 6.10

version of the treatment  = 1. For each individual with  = 1 in the study,

the versions of treatment ( = 1) can take values 30 31 32  indicating all

possible durations of exercise greater or equal than 30 minutes. For each indi-

vidual with  = 0 in the study ( = 0) can take values 0 1 2 29 including

all durations of less than 30 minutes. That is, per the definition of compound

treatment, multiple values () can be mapped onto a single value  = .

Figure 6.10 shows how a causal diagram can appropriately depict a com-

pound treatment . The causal diagram also include nodes for the treatment

versions –a vector including all the variables ()–, two sets of common

causes  and  , and unmeasured variables  . Unlike other causal diagrams

described in this chapter, the one in Figure 6.10 incudes nodes ( and ) that

are deterministically related. The multiple versions  are sufficiently specified

when, as in Figure 6.10, there are no direct arrows from  to  .

Being explicit about the compound treatment  of interest and its ver-

sions () is an important step towards having a well-defined causal effect,

identifying relevant data, and choosing adjustment variables.

6.5 A structural classification of bias

The word “bias” is frequently used by investigators making causal inferences.

There are several related, but technically different, uses of the term “bias” (see

Chapter 10). We say that there is systematic bias when the data are insufficient

to identify–compute–the causal effect even with an infinite sample size. (In

this chapter, due to the assumption of an infinite sample size, bias refers to

systematic bias.) Informally, we often refer to systematic bias as any structural

association between treatment and outcome that does not arise from the causal

effect of treatment on outcome in the population of interest. Because causal

diagrams are helpful to represent different sources of association, we can use

causal diagrams to classify systematic bias according to its source, and thus to

sharpen discussions about bias.

Take the crucial source of bias that we have discussed in previous chapters:

lack of exchangeability between the treated and the untreated. For the average

causal effect in the entire population, we say that there is (unconditional) bias

when Pr[ =1 = 1] − Pr[ =0 = 1] 6= Pr[ = 1| = 1] − Pr [ = 1| = 0],
which is the case when (unconditional) exchangeability  ⊥⊥ does not hold.
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Fine Point 6.3

Discovery of causal structure. In this book we use causal diagrams as a way to represent our expert knowledge–or

assumptions–about the causal structure of the problem at hand. That is, the causal diagram guides the data analysis.

How about going in the opposite direction? Can we learn the causal structure by conducting data analyses without

making assumptions about the causal structure? The process of learning components of the causal structure through

data analysis is referred to as discovery (Spirtes et al., 2000).

We now briefly discuss causal discovery under the assumption that the observed data arose from a unknown causal

DAG that includes, in addition to the observed variables, an unknown number of unobserved variables  . Causal

discovery requires that we assume faithfulness so that statistical independencies in the observed data distribution imply

missing causal arrows on the DAG. Even assuming faithfulness, discovery is often impossible. For example, suppose

that we find a strong association between two variables  and  in our data. We cannot learn much about the causal

structure involving  and  because their association is consistent with at many causal diagrams:  causes  ( → ),

 causes , ( → ),  and  share an unmeasured cause  ( ←−  → ),  and  have an unobserved common

effect  that has been conditioned on, and various combinations. If we knew the time sequence of  and , we could

only rule out causal diagrams with either  →  (if  predates ) or  →  (if  predates  ).

There are, however, some settings in which learning causal structure from data appears possible. Suppose we

have an infinite amount of data on 3 variables ,  ,  and we know that their time sequence is  first,  second,

and  last. Our data analysis finds that all 3 variables are marginally associated with each other, and that the only

conditional independence that holds is ⊥⊥ |. Then, if we are willing to assume that faithfulness holds, the only
possible causal diagram consistent with our analysis is  →  →  with perhaps a common cause  of  and  in

addition to (or in place of) the arrow from  to . This is because, if either  was a parent of  or shared a cause

with  , or an unmeasured common cause of  and  was present, then  and  could not have been statistically

independent given  (assuming faithfulness). Thus, to explain the marginal dependency of  and , there must be a

causal arrow from  to  . In summary, the causal DAG learned implies that  is not a direct cause (parent) of  , that

no unmeasured common cause of  and  exists, and that, in fact, the average causal effect of  on  is identified by

E[ | = 1]− E[ | = 0].
The problem is, of course, that we do not have an infinite sample size. Robins et al. (2003) showed that, due

to sampling variability, there is no finite sample size at which results of independence tests can, with high probability,

distinguish between the hypotheses “ is a cause of  ” and “ does not cause  ”. Therefore, if we impose no

assumption beyond faithfulness on the unknown graph, we can never have confidence that we have discovered the

presence or absence of a causal effect from data. See the book by Peters et al. (2017) for alternatives approaches to

causal discovery.

Absence of (unconditional) bias implies that the association measure (e.g.,

associational risk ratio or difference) in the population is a consistent estimateWhen there is systematic bias, no

estimator can be consistent. Re-

view Chapter 1 for a definition of

consistent estimator.

of the corresponding effect measure (e.g., causal risk ratio or difference) in the

population.

Lack of exchangeability results in bias even when the null hypothesis of no

causal effect of treatment on the outcome holds. That is, even if the treatment

had no causal effect on the outcome, treatment and outcome would be associ-

ated in the data. We then say that lack of exchangeability leads to bias under

the null. In the observational study summarized in Table 3.1, there was bias

under the null because the causal risk ratio was 1 whereas the associational

risk ratio was 126. Any causal structure that results in bias under the null willFor example, conditioning on some

variables may cause bias under the

alternative (i.e., off the null) but

not under the null, as described

by Greenland (1977) and Hernán

(2017). See also Chapter 18.

also cause bias under the alternative (i.e.,when treatment does have a non-null

effect on the outcome). However, the converse is not true.

For the average causal effects within levels of , we say that there is con-

ditional bias whenever Pr[ =1 = 1| = ] − Pr[ =0 = 1| = ] differs from

Pr[ = 1| =   = 1] − Pr[ = 1| =   = 0] for at least one stratum
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, which is generally the case when conditional exchangeability  ⊥⊥| = 

does not hold for all  and .

So far in this book we have referred to lack of exchangeability multiple

times. However, we have yet to explore the causal structures that generate

lack of exchangeability. With causal diagrams added to our methodological

arsenal, we will be able to describe how lack of exchangeability can result from

two different causal structures:

1. Common causes: When the treatment and outcome share a common

cause, the association measure generally differs from the effect measure.

Many epidemiologists use the term confounding to refer to this bias.

2. Conditioning on common effects: This structure is the source of bias that

many epidemiologists refer to as selection bias.

Chapter 7 will focus on confounding bias due to the presence of common

causes, and Chapter 8 on selection bias due to conditioning on common effects.

Again, both are examples of bias under the null due to lack of exchangeability.

Chapter 9 will focus on another source of bias: measurement error. So far

we have assumed that all variables–treatment  , outcome  , and covariates

– are perfectly measured. In practice, however, some degree of measurement

error is expected. The bias due to measurement error is referred to as mea-

surement bias or information bias. As we will see, some types of measurement

bias also cause bias under the null.Another form of bias may also re-

sult from (nonstructural) random

variability. See Chapter 10.

Therefore, in the next three chapters we turn our attention to the three

types of systematic bias–confounding, selection, and measurement. These bi-

ases may arise both in observational studies and in randomized experiments.

The susceptibility to bias of randomized experiments may not be obvious from

previous chapters, in which we conceptualized observational studies as some

sort of imperfect randomized experiments, while only considering ideal random-

ized experiments with no participants lost during the follow-up, all participants

adhering to their assigned treatment, and unknown treatment assignment for

both study participants and investigators. While our quasi-mythological char-

acterization of randomized experiments was helpful for teaching purposes, real

randomized experiments rarely look like that. The remaining chapters of Part

I will elaborate on the sometimes fuzzy boundary between experimenting and

observing.

Before that, we take a brief detour to describe causal diagrams in the

presence of effect modification.

6.6 The structure of effect modification

Identifying potential sources of bias is a key use of causal diagrams: we can

use our causal expert knowledge to draw graphs and then search for sources of

association between treatment and outcome. Causal diagrams are less helpful

to illustrate the concept of effect modification that we discussed in Chapter 4.

V YA

Figure 6.11

Suppose heart transplant  was randomly assigned in an experiment to

identify the average causal effect of  on death  . For simplicity, let us assume

that there is no bias, and thus Figure 6.2 adequately represents this study.

Computing the effect of  on the risk of  presents no challenge. Because

association is causation, the associational risk difference Pr[ = 1| = 1] −
Pr [ = 1| = 0] can be interpreted as the causal risk difference Pr[ =1 =
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1]−Pr[ =0 = 1]. The investigators, however, want to go further because they

suspect that the causal effect of heart transplant varies by the quality of medical

care offered in each hospital participating in the study. Thus, the investigators

classify all individuals as receiving high ( = 1) or normal ( = 0) quality of

care, compute the stratified risk differences in each level of  as described in

Chapter 4, and indeed confirm that there is effect modification by  on the

additive scale. The causal diagram in Figure 6.11 includes the effect modifier

 with an arrow into the outcome  but no arrow into treatment  (which is

randomly assigned and thus independent of  ). Two important caveats.
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First, the causal diagram in Figure 6.11 would still be a valid causal diagram

if it did not include  because  is not a common cause of  and  . It is

only because the causal question makes reference to  (i.e., what is the average

causal effect of  on  within levels of  ?), that  needs to be included on the

causal diagram. Other variables measured along the path between “quality of

care”  and the outcome  could also qualify as effect modifiers. For example,

Figure 6.12 shows the effect modifier “therapy complications”  , which partly

mediates the effect of  on  .

Second, the causal diagram in Figure 6.11 does not necessarily indicate the

presence of effect modification by  . The causal diagram implies that both 

and  affect death  , but it does not distinguish among the following three

qualitatively distinct ways that  could modify the effect of  on  :

1. The causal effect of treatment  on mortality  is in the same direction

(i.e., harmful or beneficial) in both stratum  = 1 and stratum  = 0.

2. The direction of the causal effect of treatment  on mortality  in stra-

tum  = 1 is the opposite of that in stratum  = 0 (i.e., there is

qualitative effect modification).

3. Treatment  has a causal effect on  in one stratum of  but no causal

effect in the other stratum, e.g.,  only kills individuals with  = 0.

That is, valid causal graphs such as Figure 6.11 fail to distinguish between

the above three different qualitative types of effect modification by  .

In the above example, the effect modifier  had a causal effect on the

outcome. Many effect modifiers, however, do not have a causal effect on the

outcome. Rather, they are surrogates for variables that have a causal effect

on the outcome. Figure 6.13 includes the variable “cost of the treatment”

 (1: high, 0: low), which is affected by “quality of care”  but has itself

no effect on mortality  . An analysis stratified by  (but not by  ) will

generally detect effect modification by  even though the variable that truly

modifies the effect of  on  is  . The variable  is a surrogate effect modifier

whereas the variable  is a causal effect modifier (see Section 4.2). Because

causal and surrogate effect modifiers are often indistinguishable in practice,

the concept of effect modification comprises both. As discussed in Section 4.2,

some prefer to use the neutral term “heterogeneity of causal effects,” rather

than “effect modification,” to avoid confusion. For example, someone might be

tempted to interpret the statement “cost modifies the effect of heart transplantSee VanderWeele and Robins

(2007b) for a finer classification

of effect modification via causal

diagrams.

on mortality because the effect is more beneficial when the cost is higher” as an

argument to increase the price of medical care without necessarily increasing

its quality.

A surrogate effect modifier is simply a variable associated with the causal

effect modifier. Figure 6.13 depicts the setting in which such association is

due to the effect of the causal effect modifier on the surrogate effect modifier.
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However, such association may also be due to shared common causes or con-

ditioning on common effects. For example, Figure 6.14 includes the variables

“place of residence” (1: Greece, 0: Rome)  and “passport-defined national-

ity”  (1: Greece, 0: Rome). Place of residence  is a common cause of both

quality of care  and nationality  . Thus  will behave as a surrogate effect

modifier because  is associated with the causal effect modifier  . Another

(admittedly silly) example to illustrate this issue: Figure 6.15 includes the

variables “cost of care”  and “use of bottled mineral water (rather than tap

water) for drinking at the hospital”  . Use of mineral water  affects cost

 but not mortality  in developed countries. If the study were restricted to

low-cost hospitals ( = 0), then use of mineral water  would be generallySome intuition for the association

between and in low-cost hos-

pitals  = 0: suppose that low-

cost hospitals that use mineral wa-

ter need to offset the extra cost of

mineral water by spending less on

components of medical care that

decrease mortality. Then use of

mineral water would be inversely

associated with quality of medical

care in low-cost hospitals.

associated with medical care  , and thus would behave as a surrogate effect

modifier. In summary, surrogate effect modifiers can be associated with the

causal effect modifier by structures including common causes, conditioning on

common effects, or cause and effect.

Causal diagrams are in principle agnostic about the presence of interaction

between two treatments  and . However, causal diagrams can encode infor-

mation about interaction when augmented with nodes that represent sufficient-

component causes (see Chapter 5), i.e., nodes with deterministic arrows from

the treatments to the sufficient-component causes. Because the presence of

interaction affects the magnitude and direction of the association due to con-

ditioning on common effects, these augmented causal diagrams are discussed

in Chapter 8.



Chapter 7
CONFOUNDING

Suppose an investigator conducted an observational study to answer the causal question “does one’s looking up to

the sky make other pedestrians look up too?” She found an association between a first pedestrian’s looking up and

a second one’s looking up. However, she also found that pedestrians tend to look up when they hear a thunderous

noise above. Thus it was unclear what was making the second pedestrian look up, the first pedestrian’s looking

up or the thunderous noise? She concluded the effect of one’s looking up was confounded by the presence of a

thunderous noise.

In randomized experiments treatment is assigned by the flip of a coin, but in observational studies treatment

(e.g., a person’s looking up) may be determined by many factors (e.g., a thunderous noise). If those factors affect

the risk of developing the outcome (e.g., another person’s looking up), then the effects of those factors become

entangled with the effect of treatment. We then say that there is confounding, which is just a form of lack of

exchangeability between the treated and the untreated. Confounding is often viewed as the main shortcoming of

observational studies. In the presence of confounding, the old adage “association is not causation” holds even if the

study population is arbitrarily large. This chapter provides a definition of confounding and reviews the methods

to adjust for it.

7.1 The structure of confounding

The structure of confounding, the bias due to common causes of treatment

and outcome, can be represented by using causal diagrams. For example, the

L YA
Figure 7.1

diagram in Figure 7.1 (same as Figure 6.1) depicts a treatment , an outcome

 , and their shared (or common) cause . This diagram shows two sources

of association between treatment and outcome: 1) the path  →  that

represents the causal effect of  on  , and 2) the path  ←  →  between

 and  that includes the common cause . The path ← →  that links

 and  through their common cause  is an example of a backdoor path.

If the common cause  did not exist in Figure 7.1, then the only path

between treatment and outcome would be  →  , and thus the entire asso-In a causal DAG, a backdoor path

is a noncausal path between treat-

ment and outcome that remains

even if all arrows pointing from

treatment to other variables (the

descendants of treatment) are re-

moved. That is, the path has an

arrow pointing into treatment.

ciation between  and  would be due to the causal effect of  on  . That

is, the associational risk ratio Pr [ = 1| = 1] Pr [ = 1| = 0] would equal
the causal risk ratio Pr

£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
; association would be cau-

sation. But the presence of the common cause  creates an additional source of

association between the treatment  and the outcome  , which we refer to as

confounding for the effect of  on  . Because of confounding, the associational

risk ratio does not equal the causal risk ratio; association is not causation.

Examples of confounding abound in observational research. Consider the

following examples of confounding for the effect of various kinds of treatments

on health outcomes:

• Occupational factors: The effect of working as a firefighter  on the risk
of death  will be confounded if “being physically fit”  is a cause of

both being an active firefighter and having a lower mortality risk. This
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bias, depicted in the causal diagram in Figure 7.1, is often referred to as

a healthy worker bias.

• Clinical decisions: The effect of drug  (say, aspirin) on the risk of
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disease  (say, stroke) will be confounded if the drug is more likely to

be prescribed to individuals with certain condition  (say, heart disease)

that is both an indication for treatment and a risk factor for the disease.

Heart disease  is a risk factor for stroke  because  has a direct causal

effect on  as in Figure 7.1 or, as in Figure 7.2, because both  and 

Some authors prefer to replace the

unmeasured common cause  (and

the two arrows leaving it) by a bidi-

rectional edge between the mea-

sured variables that  causes.

are caused by atherosclerosis  , an unmeasured variable. This bias is

known as confounding by indication or channeling, the last term often

being reserved to describe the bias created by patient-specific risk factors

 that encourage doctors to use certain drug  within a class of drugs.

• Lifestyle: The effect of behavior  (say, exercise) on the risk of  (say,

death) will be confounded if the behavior is associated with another be-

havior  (say, cigarette smoking) that has a causal effect on  and tends

to co-occur with . The structure of the variables , , and  is depicted

in the causal diagram in Figure 7.3, in which the unmeasured variable 
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represents the sort of personality and social factors that lead to both lack

of exercise and smoking. Another frequent problem: subclinical disease

 results both in lack of exercise  and an increased risk of clinical dis-

ease  . This form of confounding is often referred to as reverse causation

when  is unknown.

• Genetic factors: The effect of a DNA sequence  on the risk of developing
certain trait  will be confounded if there exists a DNA sequence  that

has a causal effect on  and is more frequent among people carrying .

This bias, also represented by the causal diagram in Figure 7.3, is known

as linkage disequilibrium or population stratification, the last term often

being reserved to describe the bias arising from conducting studies in a

mixture of individuals from different ethnic groups. Thus the variable

 can stand for ethnicity or other factors that result in linkage of DNA

sequences.
Early statistical descriptions of con-

founding were provided by Yule

(1903) for discrete variables and by

Pearson et al. (1899) for contin-

uous variables. Yule described the

association due to confounding as

“ficticious”, “illusory”, and “appar-

ent”. Pearson et al. (1899) re-

ferred to it as a “spurious” corre-

lation. However, there is nothing

ficticious, illusory, apparent, or spu-

rious about these associations. As-

sociations due to common causes

are quite real associations, though

they cannot be causally interpreted

as treatment effects. Or, in Yule’s

words, they are associations “to

which the most obvious physical

meaning must not be assigned.”

• Social factors: The effect of income at age 65  on the level of disability
at age 75  will be confounded if the level of disability at age 55  affects

both future income and disability level. This bias may be depicted by

the causal diagram in Figure 7.1.

• Environmental exposures: The effect of airborne particulate matter  on
the risk of coronary heart disease  will be confounded if other pollutants

 whose levels co-vary with those of  cause coronary heart disease. This

bias is also represented by the causal diagram in Figure 7.3, in which the

unmeasured variable  represent weather conditions that affect the levels

of all types of air pollution.

In all these cases, the bias has the same structure: it is due to the presence

of a cause ( or ) that is shared by the treatment  and the outcome  ,

which results in an open backdoor path between  and  . We refer to the

bias caused by shared causes of treatment and outcome as confounding, and

we use other names to refer to biases caused by structural reasons other than

the presence of shared causes of treatment and outcome. For simplicity of

presentation, we assume throughout this chapter that all nodes in the causal

DAGs are perfectly measured, that there are no selection nodes  with a box
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around them (that is, the data are a random sample from the population of

interest), and that random variability is absent. Causal DAGs with selection

nodes will be discussed in Chapter 8, and causal DAGs with mismeasured

nodes in Chapter 9. Random variability is discussed in Chapter 10.

7.2 Confounding and exchangeability

We now link the concept of confounding, which we have defined using causal

diagrams, with the concept of exchangeability, which we have defined usingSee Greenland and Robins (1986,

2009) for a detailed discussion on

the relations between confounding

and exchangeability.

counterfactuals in earlier chapters. For simplicity of presentation throughout

this chapter, suppose that positivity and consistency hold, and that all causal

DAGs include perfectly measured nodes that are not conditioned on.

When exchangeability  ⊥⊥ holds, as in a marginally randomized experi-
ment in which all individuals have the same probability of receiving treatment,

the average causal effect can be identified without adjustment for any vari-

ables. For a binary treatment , the average causal effect E[ =1]− E[ =0]

is calculated as the difference of conditional means E[ | = 1]− E[ | = 0].
When exchangeability  ⊥⊥ does not hold but conditional exchangeabil-

ity  ⊥⊥| does, as in a conditionally randomized experiment in which the
probability of receiving treatment varies across values of , the average causal

effect can also be identified. However, as we described in Chapter 2, iden-

tification of the causal effect E[ =1] − E[ =0] in the population requires

adjustment for the variables  via standardization or IP weighting. Also, asUnder conditional exchangeability,

E[ =1]− E[ =0] =P
 E[ | =   = 1]Pr [ = ]−P
 E[ | =   = 0]Pr [ = ].

we described in Chapter 4, conditional exchangeability also allows the identifi-

cation of the conditional causal effects E[ =1| = ]− E[ =0| = ] for any

value  via stratification.

In practice, if we believe confounding is likely, a key question arises: can

we determine whether there exists a set of measured covariates  for which

conditional exchangeability holds? Answering this question is difficult because

thinking in terms of conditional exchangeability  ⊥⊥| is often not intuitive
in complex causal systems.

In this chapter, we will see that answering this question is possible if one

knows the causal DAG that generated the data. To do so, suppose that we

know the true causal DAG (for now, it doesn’t matter how we know it: perhaps

we have sufficient subject-matter knowledge, or perhaps an omniscient god gave

it to us). How does the causal DAG allow us to determine whether there exists

a set of variables  for which conditional exchangeability holds? There are

two main approaches: (i) the backdoor criterion applied to the causal DAGPearl (1995, 2000) proposed the

backdoor criterion for nonparamet-

ric identification of causal effects.

and (ii) the transformation of the causal DAG into a SWIG. Though the use

of SWIGs is a more direct approach, it also requires a bit more machinery so

we are going to first explain the backdoor criterion; we will describe the SWIG

approach in Section 7.5.

A set of covariates  satisfies the backdoor criterion if all backdoor paths

between  and  are blocked by conditioning on  and  contains no variables

that are descendants of treatment. Under faithfulness and a further condition

discussed in Technical Point 7.1, conditional exchangeability  ⊥⊥| holds if
and only if  satisfies the backdoor criterion. (A simple proof of this fact will

be given below based on SWIGs.) Hence, we can now answer any query we may

have about whether, for a given set of covariates , conditional exchangeability

given  holds. Thus, by trying every subset of measured non-descendants of

treatment, we can answer the question of whether conditional exchangeability
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Technical Point 7.1

Does conditional exchangeability imply the backdoor criterion? That  satisfies the backdoor criterion always

implies conditional exchangeability given , even in the absence of faithfulness. In the main text we also said that,

given faithfulness, conditional exchangeability given  implies that  satisfies the backdoor criterion. This last sentence

is true under an FFRCISTG model (see Technical Point 6.2). In contrast, under an NPSEM-IE model, conditional

exchangeability can hold even if the backdoor criterion does not, as is the case in a causal DAG with nodes , ,  and

arrows → , →  . In this book we always assume an FFRCISTG model and faithfulness, unless stated otherwise.

This difference between causal models is due to the fact that the NPSEM-IE, unlike an FFRCISTG model, assumes

cross-world independencies between counterfactuals. However a cross-world independence can never be verified, even in

principle, by any randomized experiment, which was the very reason that Robins (1986, 1987) did not assume cross-world

independence in his FFRCISTG model. For further discussion, see Chapter 22.

holds for any subset. (In fact, algorithms exist that can greatly reduce the

number of subsets that must be tried in order to answer the question.)

Let us now relate the backdoor criterion (i.e., exchangeability) to confound-

ing. The two settings in which the backdoor criterion is satisfied are

1. No common causes of treatment and outcome. In Figure 6.2, there are no

common causes of treatment and outcome, and hence no backdoor paths

that need to be blocked. Then the set of variables that satisfies the back-

door criterion is the empty set and we say that there is no confounding.

2. Common causes of treatment and outcome but a subset  of measured

non-descendants of  suffices to block all backdoor paths. In Figure 7.1,

the set of variables that satisfies the backdoor criterion is . Thus, we

say that there is confounding, but that there is no residual confounding

whose elimination would require adjustment for unmeasured variables

(which, of course, is not possible). For brevity, we say that there is no

unmeasured confounding.

The first setting describes a marginally randomized experiment in which

confounding is not expected because treatment assignment is solely deter-

mined by the flip of a coin–or its computerized upgrade: the random number

generator–and the flip of the coin cannot cause the outcome. That is, when the

treatment is unconditionally randomly assigned, the treated and the untreated

are expected to be exchangeable because no common causes exist or, equiva-

lently, because there are no open backdoor paths. Marginal exchangeability,

i.e.,  ⊥⊥, is equivalent to no common causes of treatment and outcome.
The second setting describes a conditionally randomized experiment in

which the probability of receiving treatment is the same for all individuals

with the same value of  but, by design, this probability varies across values of

. This experimental design guarantees confounding if  is (i) a risk factor for

the outcome  and (ii) either a cause of the outcome (as in Figure 7.1) or the

descendant of an unmeasured cause of the outcome as in Figure 7.2. Hence,

there are open backdoor paths. However, conditioning on the covariates 

will block all backdoor paths and therefore conditional exchangeability, i.e.,

 ⊥⊥|, will hold. We say that a set  of measured non-descendants of 
is a sufficient set for confounding adjustment when conditioning on  blocks

all backdoor paths–that is, the treated and the untreated are exchangeable

within levels of .

Mahyar Etminan
Highlight



7.3 Confounding and the backdoor criterion 87

Take our heart transplant study, a conditionally randomized experiment,

as an example. Individuals who received a transplant ( = 1) are different

from the others ( = 0) because, had the treated remained untreated, their

risk of death  would have been higher than that of those that were actually

untreated–the treated had a higher frequency of severe heart disease , a

common cause of  and  . The presence of common causes of treatment

and outcome implies that the treated and the untreated are not marginally

exchangeable but are conditionally exchangeable given . This second setting

is also what one hopes for in observational studies in which many variables 

have been measured.

The backdoor criterion does not answer questions regarding the magnitude

or direction of confounding. It is logically possible that some unblocked back-

door paths are weak (e.g., if  does not have a large effect on either  or  )

and thus induce little bias, or that several strong backdoor paths induce bias

in opposite directions and thus result in a weak net bias. Because unmeasured

confounding is not an “all or nothing” issue, in practice, it is important to

consider the expected direction and magnitude of the bias (see Fine Point 7.1).

7.3 Confounding and the backdoor criterion

We now describe several examples of the application of the backdoor criterion

to determine whether the causal effect of  on  is identifiable and, if so, which

variables are required to ensure conditional exchangeability. Remember that

all causal DAGs in this chapter include perfectly measured nodes that are not

conditioned on.

In Figure 7.1 there is confounding because the treatment  and the outcome

 share the cause , i.e., because there is an open backdoor path between 

and  through . However, this backdoor path can be blocked by conditioning

on . Thus, if the investigators collected data on  for all individuals, there is

no unmeasured confounding given .

In Figure 7.2 there is confounding because the treatment  and the outcome

 share the unmeasured cause  , i.e., there is a backdoor path between  and

 through  . (Unlike the variables , , and  , the variable  was not

measured by the investigators.) This backdoor path could be theoretically

blocked, and thus confounding eliminated, by conditioning on  , had data on

this variable been collected. However, this backdoor path can also be blocked
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Figure 7.4 by conditioning on . Thus, there is no unmeasured confounding given .

In Figure 7.3 there is also confounding because the treatment  and the

outcome  share the cause  , and the backdoor path can also be blocked by

conditioning on . Therefore there is no unmeasured confounding given .

Now consider Figure 7.4. In this causal diagram there are no common

causes of treatment  and outcome  , and therefore there is no confounding.

The backdoor path between  and  through  ( ← 2 →  ← 1 →
 ) is blocked because  is a collider on that path. Thus all the association

between  and  is due to the effect of  on  : association is causation. For

example, suppose  represents physical activity,  cervical cancer, 1 a pre-

cancer lesion,  a diagnostic test (Pap smear) for pre-cancer, and 2 a health-

conscious personality (more physically active, more visits to the doctor). Then,

under the causal diagram in Figure 7.4, the effect of physical activity  on

cancer  is unconfounded and there is no need to adjust for  to compute either

Pr[ =1] or Pr[ =0] and thus to compute the causal effect in the population.
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Fine Point 7.1

The strength and direction of confounding bias. Suppose you conducted an observational study to identify the effect

of heart transplant  on death  and that you assumed no unmeasured confounding. A thoughtful critic says “the

inferences from this observational study may be incorrect because of potential confounding due to cigarette smoking

.” A crucial question is whether the bias results in an attenuated or an exaggerated estimate of the effect of heart

transplant. For example, suppose that the risk ratio from your study was 06 (heart transplant was estimated to reduce

mortality during the follow-up by 40%) and that, as the reviewer suspected, cigarette smoking  is a common cause

of  (cigarette smokers are less likely to receive a heart transplant) and  (cigarette smokers are more likely to die).

Because there are fewer cigarette smokers ( = 1) in the heart transplant group ( = 1) than in the other group

( = 0), one would have expected to find a lower mortality risk in the group  = 1 even under the null hypothesis of

no effect of treatment  on  . Adjustment for cigarette smoking will therefore move the effect estimate upwards (say,

from 06 to 07). In other words, lack of adjustment for cigarette smoking resulted in an exaggeration of the beneficial

average causal effect of heart transplant.

An approach to predict the direction of confounding bias is the use of signed causal diagrams. Consider the causal

diagram in Figure 7.1 with dichotomous , , and  variables. A positive sign over the arrow from  to  is added if

 has a positive average causal effect on  (i.e., if the probability of  = 1 is greater among those with  = 1 than

among those with  = 0), otherwise a negative sign is added if  has a negative average causal effect on  (i.e., if the

probability of  = 1 is greater among those with  = 0 than among those with  = 1). Similarly a positive or negative

sign is added over the arrow from  to  . If both arrows are positive or both arrows are negative, then the confounding

bias is said to be positive, which implies that effect estimate will be biased upwards in the absence of adjustment for

. If one arrow is positive and the other one is negative, then the confounding is said to be negative, which implies

that the effect estimate will be biased downwards in the absence of adjustment for . Unfortunately, this simple rule

may fail in more complex causal diagrams or when the variables are non dichotomous. See VanderWeele, Hernán, and

Robins (2008) for a more detailed discussion of signed diagrams in the context of average causal effects.

Regardless of the sign of confounding, another key issue is the magnitude of the bias. Biases that are not large

enough to affect the conclusions of the study may be safely ignored in practice, whether the bias is upwards or down-

wards. A large confounding bias requires a strong confounder-treatment association and a strong confounder-outcome

association (conditional on the treatment). For discrete confounders, the magnitude of the bias depends also on preva-

lence of the confounder (Cornfield et al. 1959, Walker 1991). If the confounders are unknown, one can only guess what

the magnitude of the bias is. Educated guesses can be organized by conducting sensitivity analyses (i.e., repeating the

analyses under several assumptions regarding the magnitude of the bias), which may help quantify the maximum bias

that is reasonably expected. See Greenland (1996a), Robins, Rotnitzky, and Scharfstein (1999), Greenland and Lash

(2008), and VanderWeele and Arah (2011) for detailed descriptions of sensitivity analyses for unmeasured confounding.

Suppose, as in the last four examples, that data on , , and  suffice to

identify the causal effect. In such setting we define  to be a confounder ifAn informal definition for Figures

7.1 to 7.4: ‘A confounder is any

variable that can be used to adjust

for confounding.’ Note this defini-

tion is not circular because we have

previously provided a definition of

confounding. Another example of

a non-circular definition: “A musi-

cian is a person who plays music,”

stated after we have defined what

music is.

the data on  and  do not suffice for identification (i.e., we have structural

confounding). We define  to be a non-confounder if data on ,  alone suffice

for identification. These definitions are equivalent to defining  as a confounder

if there is conditional exchangeability but not unconditional exchangeability

(i.e., structural confounding) and as a non-confounder if there is unconditional

exchangeability.

Thus, in Figures 7.1-7.3,  is a confounder because Pr[  = 1] is identified

by the standardized risk
P

 Pr [ = 1| =  = ] Pr [ = ]. In Figures 7.2

and 7.3,  is not a common cause of  and  , yet we still say that  is a

confounder because it is needed to block the open backdoor path attributable

to the unmeasured common cause  of  and  . In Figure 7.4,  is a non-

counfounder and the identifying formula for Pr[  = 1] is just the conditional

mean Pr[ = 1| = ].
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Interestingly, in Figure 7.4, conditional exchangeability given  does notThe possibility of identification

of unconditional effects without

identification of conditional effects

was non-graphically demonstrated

by Greenland and Robins (1986).

The conditional bias in Figure 7.4

was described by Greenland et

al. (1999) and referred to as M-

bias (Greenland 2003) because the

structure of the variables involved

in it–2  1–resembles a letter

M lying on its side.

hold and thus the counterfactual risks Pr[  = 1| = ] are not equal to

the stratum-specific risks Pr[ = 1| =  = ], and the conditional treat-

ment effects with strata of  are not identified. Further, adjustment for  via

standardization
P

 Pr [ = 1| =   = ] Pr [ = ] gives a biased estimate

of Pr[ ]. This follows from the fact that adjustment for  would induce bias

because conditioning on the collider  opens the backdoor path between 

and  ( ← 2 →  ← 1 →  ), which was previously blocked by the col-

lider itself. Thus the association between  and  would be a mixture of the

association due to the effect of  on  and the association due to the open

backdoor path. Association would not be causation any more. This is the first

example we have seen for which unconditional exchangeability holds but con-

ditional exchangeability does not: the average causal effect is identified, but

generally not the conditional causal effects within levels of . We refer to theIf 1 caused 2, or 2 caused 1,

or an unmeasured 3 caused both,

there would exist a common cause

of  and  , and we would have nei-

ther unconditional nor conditional

exchangeability given .

resulting bias in the conditional effect as selection bias because it it arises from

selecting (conditioning) on the common effect  of two marginally independent

variables 1 and 2, one of which is associated with  and the other with 

(see Chapter 8).

The causal diagram in Figure 7.5 is a variation of the one in Figure 7.4.

The difference is that, in Figure 7.5, there is an arrow  → . The presence

of this arrow creates an open backdoor path  ←  ← 1 →  because 1
is a common cause of  and  , and so confounding exists. Conditioning onThe definition of collider is path-

specific:  is a collider on the path

← 2 → ← 1 →  , but not

on the path ← ← 1 →  .

 would block that backdoor path but would simultaneously open a backdoor

path on which  is a collider (← 2 → ← 1 →  ).
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Figure 7.5

Therefore, in Figure 7.5, the bias is intractable: attempting to block the

confounding path opens a selection bias path. There is neither unconditional

exchangeability nor conditional exchangeability given . A solution to the bias

in Figure 7.5 would be to measure either (i) a variable 1 between 1 and either

 or  , or (ii) a variable 2 between 2 and either  or . In the first case we

would have conditional exchangeability given 1. In the second case we would

have conditional exchangeability given both 2 and . For example, Figure

7.6 includes the variable 1 between 1 and  and the variable 2 between
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Figure 7.6

2 and . See Fine Point 7.2 for a discussion of identification of causal effects

depending on what variables are measured in Figure 7.6.

The causal diagrams in this section depict two structural sources of lack of

exchangeability that are due to the presence of open backdoor paths between

treatment and outcome. The first source is the presence of common causes

of treatment and outcome–which creates an open backdoor path. The sec-

ond source is conditioning on a common effect–which may open a previously

blocked backdoor path. For pedagogic purposes, we have reserved the term

“confounding” for the first and “selection bias” for the latter. An alterna-

tive way to structurally define confounding could be the “bias due to an open

backdoor path between  and  .” This alternative definition is identical to

ours except that it labels the bias due to conditioning on  in Figure 7.4 as

confounding rather than as selection bias. The alternative definition can be

equivalently expressed as follows: confounding is “any systematic bias that

would be eliminated by randomized assignment of ”. To see this, note that

the bias induced in Figure 7.4 by conditioning on  could not occur in an

experiment in which treatment  is randomly assigned because the random

assignment ensures the absence of an unmeasured 1 that is a common cause

of  and  and thus conditioning on  would no longer open a backdoor path.

One interesting distinction between these two definitions is the following.

The existence of a common cause of treatment and the outcome (the structural
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Fine Point 7.2

Identification of conditional and unconditional effects. Under any causal diagram, the causal effects that can be

identified depend on the variables that are measured in addition to the treatment and the outcome. Take Figure 7.6 as

an example. If we measure only 2 (but not  and 1), we have neither unconditional nor conditional exchangeability

given 2, and no causal effects can be identified. If we measure 2 and , we have conditional exchangeability given

2 and , but we do not have conditional exchangeability given either 2 alone or  alone. However, we can identify:

• The conditional causal effects within joint strata of 2 and . The identifying formula for each of the counterfactual
means is E [ | =   =  2 = 2].

• The unconditional causal effect. The identifying formula for each of the counterfactual means isP
2
E [ | =   =  2 = 2] Pr [ =  2 = 2].

• The conditional causal effects within strata of . The identifying formula for each of the counterfactual means isP
2
E [ | =   =  2 = 2] Pr [2 = 2| = ].

• The conditional causal effects within strata of 2. The identifying formula for each of the counterfactual means
is
P

 E [ | =   =  2 = 2] Pr [ = |2 = 2].

If we only measure 1, then we have conditional exchangeability given 1 so we can identify the conditional causal

effects within strata of 1 and the unconditional causal effect. If we measure 1 and , then we can also identify the

conditional causal effects within joint strata of 1 and , and within strata of  alone. If we measure , 1, and 2,

then we can also identify the conditional effects within joint strata of all three variables.

definition of confounding) is a substantive fact about the study population

and the world, independent of the method chosen to analyze the data. On

the other hand, the definition of confounding as any bias that would have been

eliminated by randomization implies that the existence of confounding depends

on the method of analysis. In Figure 7.4, we have no confounding if we do not

adjust for , but we introduce confounding if we do adjust.

Nonetheless, the choice of one definition over the other is just a matter of

taste with no practical implications as all our conclusions regarding identifiabil-

ity are based solely on whether conditional and/or unconditional exchangeabil-

ity holds and not on our definition of confounding. The next chapter provides

more detail on the distinction between structural confounding and selection

bias.

7.4 Confounding and confounders

In the previous section, we have described how to use causal diagrams to

decide whether confounding exists and, if so, to identify whether a given set

of measured variables  is a sufficient set for confounding adjustment. The

procedure requires a priori knowledge of the causal DAG that includes all

causes–both measured and unmeasured–shared by the treatment  and the

outcome  . Once the causal diagram is known, we simply need to apply the

backdoor criterion to determine what variables need to be adjusted for.

In contrast, the traditional approach to handle confounding was based

mostly on observed associations rather than on prior causal knowledge. The

traditional approach first labels variables that meet certain (mostly) associa-
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tional conditions as confounders and then mandates that these so-called con-

founders are adjusted for in the analysis. Confounding is said to exist whenTechnically, investigators do not

need structural knowledge. They

only need to know a set of vari-

ables that guarantees conditional

exchangeability. However, ac-

quring the structural knowledge–

and therefore drawing the causal

diagram–is arguably the most nat-

ural approach to reason about con-

ditional exchangeability.

the adjusted estimate differs from the unadjusted estimate.

Under the traditional approach, a confounder was defined as a variable that

meets the following three conditions: (1) it is associated with the treatment,

(2) it is associated with the outcome conditional on the treatment (with “con-

ditional on the treatment” often replaced by “in the untreated”), and (3) it

does not lie on a causal pathway between treatment and outcome. However,

this traditional approach may lead to inappropriate adjustment. To see why,

let us revisit Figures 7.1-7.4.

In Figure 7.1, the variable  is associated with the treatment (because it

has a causal effect on ), is associated with the outcome conditional on the

treatment (because it has a direct causal effect on  ), and it does not lie

on the causal pathway between treatment and outcome. In Figure 7.2, the

variable  is associated with the treatment (because it has a causal effect on

), is associated with the outcome conditional on the treatment (because it

shares the cause  with  ), and it does not lie on the causal pathway between

treatment and outcome. In Figure 7.3,  is associated with the treatment (it

shares the cause  with ), is associated with the outcome conditional on

the treatment (it has a causal effect on  ), and it does not lie on the causal

pathway between treatment and outcome.

Therefore, according to the traditional approach,  is a confounder in the

settings represented by Figures 7.1-7.3 and it needs be adjusted for. That was

also our conclusion when using the backdoor criterion in the previous section.

For Figures 7.1-7.3, there is no discrepancy between the traditional, mostly

associational approach and the application of the backdoor criterion to the

causal diagram.

Now consider Figure 7.4 again in which there is no confounding and  is a

non-confounder by the definition given in Section 7.3. However,  meets the

criteria for a traditional confounder: it is associated with the treatment (it

shares the cause 2 with ), it is associated with the outcome conditional on

the treatment (it shares the cause 1 with  ), and it does not lie on the causal

pathway between treatment and outcome. Hence, according to the traditional
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approach,  is a confounder that should be adjusted for, even in the absence

of confounding! But, as we saw above, adjustment for  results in a biased

estimator of the causal effect in the population due to selection bias. Figure

7.7 is another example in which the traditional approach leads to inappropriate

adjustment for  by inducing selection bias.
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Figure 7.8

These examples show that associational or statistical criteria are insufficient

to characterize confounding. An approach based on a definition of confounder

that relies almost exclusively on statistical considerations may lead, as shown

by Figures 7.4 and 7.7, to the wrong advice: adjust for a “confounder” even

when structural confounding does not exist. To eliminate this problem for

Figure 7.4, a follower of the traditional approach might replace the associational

condition “(2) it is associated with the outcome conditional on the treatment”

by the structural condition “(2) it is a cause of the outcome.” This modified

definition of confounder prevents inappropriate adjustment for  in Figure 7.4,

but only to create a new problem by not considering  a confounder–that

needs to be adjusted for–in Figure 7.2. See Technical Point 7.2.

The traditional approach misleads investigators into adjusting for variables

when adjustment is harmful. The problem arises because the traditional ap-

proach starts by defining confounders in the absence of sufficient causal knowl-

edge about the sources of confounding, and then mandates adjustment for
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Fine Point 7.3

Surrogate confounders. Under the causal DAG in Figure 7.8. there is confounding for the effect of  on  because

of the presence of the unmeasured common cause  . The measured variable  is a proxy or surrogate for  . For

example, the unmeasured variable socioeconomic status  may confound the effect of physical activity  on the risk

of cardiovascular disease  . Income  is a surrogate for the often ill-defined variable socioeconomic status. Should

we adjust for the variable ? On the one hand, it can be said that  is not a confounder because it does not lie on

a backdoor path between  and  . On the other hand, adjusting for the measured , which is associated with the

unmeasured  , may indirectly adjust for some of the confounding caused by  . In the extreme, if  were perfectly

correlated with  then it would make no difference whether one conditions on  or on  . Indeed if  is binary and is

a nondiferentially missclassified (see Chapter 9) version of  , conditioning on  will result in a partial blockage of the

backdoor path ←  →  under some weak conditions (Greenland 1980, Ogburn and VanderWeele 2012). Therefore

we will typically prefer to adjust, rather than not to adjust, for .

We refer to variables that can be used to reduce confounding bias even though they are not on a backdoor path (and

so could never completely eliminate confounding) as surrogate confounders. A possible strategy to fight confounding is

to measure as many surrogate confounders as possible and adjust for all of them. See Chapter 18 for discussion.

those so-called confounders. If the adjusted and unadjusted estimates dif-

fer, the traditional approach declares the existence of confounding. However,

change in estimates may occur for reasons other than confounding, including

selection bias when adjusting for non-confounders (see Chapter 8) and the use

of noncollapsible effect measures (see Fine Point 4.3). Attempts to define con-

founding based on change in estimates have been long abandoned because of

these problems.

In contrast, a structural approach starts by explicitly identifying the sources

of confounding–the common causes of treatment and outcome that, were they

all measured, would be sufficient to adjust for confounding–and then identifies

a sufficient set of adjustment variables.

The structural approach makes clear that including a particular variable

in a sufficient set depends on the variables already included in the set. For

example, in Figures 7.2 and 7.3 the set of variables  is needed to block a

backdoor path because the set of variables  is not measured. We could then

say that the variables in  are confounders. However, if the variables  had

been measured and used to block the backdoor path, then the variables 

would not be confounders given  (see also Fine Point 7.3). Given a causal

DAG, confounding is an absolute concept whereas confounder is a relative one.VanderWeele and Shpitser (2013)

also proposed a formal definition of

confounder.
A structural approach to confounding emphasizes that causal inference from

observational data requires a priori causal knowledge. This causal knowledge

is summarized in a causal DAG that encodes the researchers’ beliefs or as-

sumptions about the causal network. Of course, there is no guarantee that the

researchers’ causal DAG is correct and thus it is possible that, contrary to the

researchers’ beliefs, their chosen set of adjustment variables fails to eliminate

confounding or introduces selection bias. However, the structural approach

to confounding has two important advantages. First, it prevents inconsisten-

cies between beliefs and actions. For example, if you believe Figure 7.4 is the

true causal diagram–and therefore that there is no confounding for the effect

of  on –then you will not adjust for the variable , regardless of what

non-structural definitions of confounder may say. Second, the researchers’ as-

sumptions about confounding become explicit and therefore can be explicitly

criticized by other investigators.
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Technical Point 7.2

Fixing the traditional definition of confounder. Figures 7.4 and 7.7 depict two graphical examples in which the

traditional non-graphical definition of confounder and confounding misleads investigators into adjusting for a variable

when adjustment for such variable is not only superfluous but also harmful. The traditional definition fails because it

relies on two incorrect statistical criteria–conditions (1) and (2)–and one incorrect causal criterion–condition (3). To

“fix” the traditional definition one needs to do two things:

1. Replace condition (3) by the condition that “there exist variables  and  such that there is conditional exchange-

ability within their joint levels  ⊥⊥| . This new condition is stronger than the earlier condition because if
effectively implies that  is not on a causal pathway between  and  and that E[ | =   = ] is identified

by E[ | =   =  = ].

2. Replace conditions (1) and (2) by the following condition:  can be decomposed into two disjoint subsets 1 and

2 (i.e.,  = 1 ∪ 2 and 1 ∩ 2 is empty) such that (i) 1 and  are not associated within strata of , and

(ii) 2 and  are not associated within joint strata of , , and 1. The variables in 1 may be associated with

the variables in 2. 1 can always be chosen to be the largest subset of  that is unassociated with treatment.

If these two new conditions are met we say  is a non-confounder given data on . These conditions were

proposed by Robins (1997, Theorem 4.3) and further discussed by Greenland, Pearl, and Robins (1999, pp. 45-46, note

the condition that  = 1 ∪2 was inadvertently left out). These conditions overcome the difficulties found in Figures
7.4 and 7.7 because they allow us to dismiss variables as non-confounders (Robins 1997). For example, Greenland,

Pearl, and Robins applied these conditions to Figure 7.4 to show that there is no confounding.

7.5 Single-world intervention graphs

Exchangeability is translated into graph language as the lack of open paths

between the treatment  and outcome  nodes–other than those originating

from –that would result in an association between  and  . Chapters 7—

9 describe different ways in which lack of exchangeability can be represented

in causal diagrams. For example, in this chapter we discuss confounding, a

violation of exchangeability due to the presence of an open backdoor path

between treatment and outcome.

The equivalence between unconditional exchangeability  ⊥⊥ and the

backdoor criterion seems rather magical: there appears to be no obvious re-

lationship between counterfactual independence and the absence of backdoor

paths because counterfactuals are not included as variables on causal diagrams.

Since graphs are so useful for evaluating independencies via d-separation, it

seems natural to want to construct graphs that include counterfactuals as

nodes, so that unconditional and conditional exchangeability can be directly

read off the graph.

A new type of graph–Single-world intervention graphs (SWIGs)– unify

the counterfactual and graphical approaches by explicitly including the coun-

terfactual variables on the graph. A SWIG depicts the variables and causalRobins and Richardson (2013)

showed that SWIGs overcome some

of the shortcomings of previously

proposed twin causal diagrams

(Balke and Pearl 1994).

relations that would be observed in a hypothetical world in which all individ-

uals received treatment level . That is, a SWIG is a graph that represents

a counterfactual world created by a single intervention. In contrast, the vari-

ables on a standard causal diagram represent the actual world. A SWIG can

then be viewed as a function that transforms a given causal diagram under a

given intervention. The following examples describe this transformation.

Suppose the causal diagram in Figure 7.2 represents the observed study

Mahyar Etminan
Highlight
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data. The SWIG in Figure 7.9 is a transformation of Figure 7.2 that represents
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a world in which all individuals have received an intervention that sets their

treatment to the fixed value .

In the SWIG, the treatment node is split into left and right sides which are

to be regarded as separate nodes (variables) once split. The right side encodes

the treatment value  under the intervention and inherits all the arrows that

were out of  in the original causal DAG. The left side encodes the value of

treatment  that would have been observed in the absence of intervention,

i.e., the natural value of treatment. It inherits all nodes that were into  on

the causal DAG because its causal inputs are the same in the intervened on

(counterfactual) world as in the actual world. Note that  does not have

an arrow into  because the value  is the same for all individuals, i.e., is a

constant in the intervened on world.

We assume that the natural value of treatment  is well defined even though

we are generally unable to measure it under intervention . In some settings,

though,  may be measurable: recent experiments suggest that electroen-

cephalogram recordings can detect the choice individuals will make up to 12

second before individuals becomes conscious of their decision. If so,  could

actually be measured via electroencephalogram, while still leaving 12 second

to intervene and give treatment .

In the SWIG, the outcome is  , the value of  in the intervened on

world. Because the remaining variables are temporally prior to , they are

not affected by the intervention and therefore take the same value as in the

observed world. i.e., they are not labelled as a counterfactual variable. In

fact, any variable that is a non-descendant of  need not be labelled as a

counterfactual because, under the faithfulness assumption (which we make),

treatment has no causal effect on its non-descendants for any individual. Under

our causal model,conditional exchangeability  ⊥⊥| holds because all pathsUnder an FFRCISTG model, it can

be shown that d-separation also

implies statistical independence on

the SWIG.

between   and  are blocked after conditioning on , i.e.,   and  are

d-separated given .

Consider now the causal diagram in Figure 7.4 and the SWIG in Figure

7.10. Marginal exchangeability  ⊥⊥ holds because, on the SWIG, all paths
between   and  are blocked (without conditioning on ). In contrast,

conditional exchangeability  ⊥⊥| does not hold because, on the SWIG, the
path   ←− 1 −→ ←− 2 −→  is open when the collider  is conditioned

on. This is why the marginal - association is causal, but the conditional -

 association given  is not, and thus any method that adjusts for  results in

bias. These examples show how SWIGs unify the counterfactual and graphical

approaches. In fact it is straightforward to see that, on the SWIG,   is d-

separated from  given  if and only if  is a non-descendant of  that blocks

all backdoor paths from  to  (see also Fine Point 7.4).

7.6 Confounding adjustment

In the absence of randomization, causal inference relies on the uncheckable

assumption that we have measured a set of variables  that is a sufficient

set for confounding adjustment, that is, a set of non-descendants of treatment

 that includes enough variables to block all backdoor paths from  to  .

Under this assumption of conditional exchangeability given , standardization

and IP weighting can be used to compute the average causal effect in the

population. But, as discussed in Section 4.6, standardization and IP weighting
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Fine Point 7.4

Confounders cannot be descendants of treatment, but can be in the future of treatment. Consider the causal

DAG in Figure 7.11.  is a descendant of treatment  that blocks all backdoor paths from  to  . Unlike in Figures

7.4 and 7.7, conditioning on  does not cause selection bias because no collider path is opened. Rather, because the

causal effect of  on  is solely through the intermediate variable , conditioning on  completely blocks this pathway.

This example shows that adjusting for a variable  that blocks all backdoor paths does not eliminate bias when  is a

descendant of .

Since conditional exchangeability  ⊥⊥| implies that the adjustment for  eliminates all bias, it must be the case
thatconditional exchangeability fails to hold and the average treatment effect E[ =1]−E[ =0] cannot be identified in

this example. This failure can be verified by analyzing the SWIG in Figure 7.12, which depicts a counterfactual world in

which  has been set to the value . In this world, the factual variable  is replaced by the counterfactual variable ,

that is, the value of  that would have been observed if all individuals had received treatment value . Since  blocks

all paths from   to  we conclude that  ⊥⊥| holds, but we cannot conclude that conditional exchangeability
 ⊥⊥| holds as  is not even on the graph. (Under an FFRCISTG, any independence that cannot be read off the
SWIG cannot be assumed to hold.) Therefore, we cannot ensure that the average treatment effect E[ =1]−E[ =0]

is identified from data on (  ).

The problem arises because  is a descendant of , not because  is in the future of . If, in Figure 7.11,

the arrow from  to  did not exist, then  would be a non-descendant of  that blocks all the backdoor paths.

Analogously, on the SWIG in Figure 7.12, we can replace  by  as  is no longer a cause of  (note   and  are

now d-separated by ). Therefore adjusting for  would eliminate all bias, even if  were still in the future of . What

matters is the topology of the causal diagram (which variables cause which variables), not the time sequence of the

nodes. Rosenbaum (1984) and Robins (1986, section 11) give non-graphical discussions of the control of confounding

by temporally post-treatment variables.

are not the only available methods to adjust for confounding in observational
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studies. Methods that adjust for confounders  can be classified into two broad

categories:

• G-methods: standardization, IP weighting, and g-estimation. These

methods (the ‘g’ stands for ‘generalized.’) exploit conditional exchange-

ability given  to estimate the causal effect of  on  in the entire

population or in any subset of the population. In our heart transplant

study, we used g-methods to adjust for confounding by disease severity

 in Sections 2.4 (standardization) and 2.5 (IP weighting). Part II de-

scribes model-based extensions of g-methods: the parametric g-formula

(standardization), IP weighting of marginal structural models, and g-

estimation of nested structural models.

• Stratification-based methods: Stratification (including restriction) and
matching. These methods exploit conditional exchangeability given  to

estimate the association between  and  in subsets defined by . In our

heart transplant study, we used stratification-based methods to adjust for

confounding by disease severity  in Sections 4.4 (stratification) and 4.5

(matching). Part II describes the model-based extension of stratification:A common variation of stratifica-

tion and matching replaces each

individual’s variables  by the in-

dividual’s estimated probability of

receiving treatment Pr [ = 1|]:
the propensity score (Rosenbaum

and Rubin 1983). See Chapter 15.

conventional outcome regression.

G-methods simulate the - association in the population if backdoor

paths involving the measured variables  did not exist. For example, IP

weighting achieves this by creating a pseudo-population in which treatment

 is independent of the measured confounders , that is, by “deleting” the

arrow from  to . In contrast, stratification-based methods do not delete the
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arrow from  to  but rather compute the conditional effect in a subset of the

observed population, which is represented by adding a selection box. The ad-

vantage of “deleting” the arrow from confounders  to treatment  will become

apparent when we discuss time-varying treatments in Part III. In settings with

time-varying treatments, and therefore time-varying confounders, g-methods

are the methods of choice to adjust for confounding because stratification-based

methods may result in selection bias. The bias of stratification-based methods

is described in Chapter 20.

All the above methods require conditional exchangeability given . How-Technically, g-estimation requires

the slightly weaker assumption that

the magnitude of unmeasured con-

founding given  is known, of which

the assumption of no unmeasured

confounding is a particular case.

See Chapter 14.

ever, confounding can sometimes be handled by methods that do not require

conditional exchangeability. Some examples of these methods are difference-

in-differences (Technical Point 7.3), instrumental variable estimation (Chapter

16), the front door criterion (Technical Point 7.4), and others. Unfortunately,

these methods require alternative assumptions that, like conditional exchange-

ability, are unverifiable. Therefore, in practice, the validity of the resulting

effect estimates is not guaranteed. Also, these methods cannot be generally

employed for causal questions involving time-varying treatments. As a result,

these methods are disqualified from consideration for many research problems.

For time-fixed treatment, the choice of adjustment method will depend on

which unverifiable assumptions–either conditional exchangeability or the al-

ternative conditions–are believed more likely to hold in a particular setting.

Achieving conditional exchangeability may be an unrealistic goal in many

observational studies but, as discussed in Section 3.2, expert knowledge about

the causal structure can be used to get as close as possible to that goal. There-

fore, in observational studies, investigators measure many variables  (which

are non-descendants of treatment) in an attempt to ensure that the treated and

the untreated are conditionally exchangeable. The hope is that, even though

common causes may exist (confounding), the measured variables  are suf-

ficient to block all backdoor paths (no unmeasured confounding). However,

there is no guarantee that this attempt will be successful, which makes causal

inference from observational data a risky undertaking.

In addition, expert knowledge can be used to avoid adjusting for variables

that may introduce bias. At the very least, investigators should generallyA practical example of the ap-

plication of expert knowledge of

the causal structure to confounding

evaluation was described by Hernán

et al (2002).

avoid adjustment for variables affected by either the treatment or the outcome.

Of course, thoughtful and knowledgeable investigators could believe that two

or more causal structures, possibly leading to different conclusions regarding

confounding and confounders, are equally plausible. In that case they would

perform multiple analyses and explicitly state the assumptions about causal

structure required for the validity of each. Unfortunately, one can never be

certain that the set of causal structures under consideration includes the true

one; this uncertainty is unavoidable with observational data.

There is a scientific consequence to the always present threat of confound-

ing in observational studies. Suppose you conducted an observational study

to identify the effect of heart transplant  on death  and that you assumed

no unmeasured confounding given disease severity . A critic of your study

says “the inferences from this observational study may be incorrect because

of potential confounding.” The critic is not making a scientific statement, but

a logical one. Since the findings from any observational study may be con-

founded, it is obviously true that those of your study can be confounded. If

the critic’s intent was to provide evidence about the shortcomings of your

particular study, he failed. His criticism is noninformative because he sim-

ply restated a characteristic of observational research that you and the critic

already knew before the study was conducted.
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Technical Point 7.3

Difference-in-differences and negative outcome controls. Suppose we want to compute the average causal effect

of aspirin  (1: yes; 0: no) on blood pressure  , but there are unmeasured common causes  of  and  such

as history of heart disease. Then we cannot compute the effect via standardization or IP weighting because there is

unmeasured confounding. But there is an alternative method that, under some conditions, may adjust for the unmeasured

confounding: the use of negative outcome controls (also known as “placebo tests”).

Suppose further that, for each individual in the population, we have also measured the value of the outcome right

before treatment was available in the population. We refer to this pre-treatment outcome  as a negative outcome

control. As depicted in Figure 7.13,  is a cause of both  and  and treatment  is obviously not a cause of

the pre-treatment outcome . Now, even though the causal effect of  on  is known to be zero, the contrast

E [| = 1]−E [| = 0] is not zero because of confounding by  . In fact, E [| = 1]−E [| = 0] measures the
magnitude of confounding for the effect of  on  on the additive scale. If the magnitude of additive confounding for

the effect of  on the negative outcome control  is the same as for the effect of  on the true outcome  , then

we can compute the effect of  on  in the treated. Specifically, under the assumption of additive equi-confounding

E
£
 0| = 1¤− E £ 0| = 0¤ = E [| = 1]− E [| = 0], the effect is

E
£
 1 −  0| = 1¤ = (E [ | = 1]− E [ | = 0])− (E [| = 1]− E [| = 0])

That is, the effect in the treated is equal to the association between treatment  and outcome  (which is a mixture

of the causal effect and confounding) minus the confounding as measured by the association between treatment  and

the negative outcome control .

This method for confounding adjustment is known as difference-in-differences (Card 1990, Meyer et al. 1995,

Angrist and Krueger 1999). In practice. the method is often combined with adjustment for measured covariates using

parametric or semiparametric approaches (Abadie 2005). However, as explained by Sofer et al. (2016), the difference-

in-differences method is a somewhat restrictive approach for using negative outcome controls: it requires measurement

of the outcome both pre- and post-treatment (or at least that the true outcome  and the  are measured on the same

scale) and it requires additive equi-confounding. Sofer et al. (2016) describe more general methods that allow for 

and  to be on different scales, rely on weaker versions of equi-confounding, and incorporate adjustment for measured

covariates. For a general introduction to the use of negative outcome controls to detect confounding, see Lipsitch et al.

(2010) and Flanders et al. (2011).

To appropriately criticize your study, the critic needs to engage in a truly
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scientific conversation. For example, the critic may cite experimental or obser-

vational findings that contradict your findings, or he can say something along

the lines of “the inferences from this observational study may be incorrect

because of potential confounding due to cigarette smoking, a common cause

through which a backdoor path may remain open”. This latter option provides

you with a testable challenge to your assumption of no unmeasured confound-

ing. The burden of the proof is again yours. Your next move is to try and

adjust for smoking.

Though the above discussion was restricted to bias due to confounding, the

absence of biases due to selection and measurement is also needed for valid

causal inference from observational data. But, unlike confounding, these other

biases may arise in both randomized experiments and observational studies.

After having explored confounding in this chapter, the next chapter presents

another potential source of lack of exchangeability between the treated and the

untreated: selection of individuals into the analysis.
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Technical Point 7.4

The front door criterion. The causal diagram in Figure 7.14 depicts a setting in which the treatment  and the binary

outcome  share an unmeasured cause  , and in which there is a variable  that fully mediates the effect of  on 

and that shares no unmeasured cases with either  or  . Under this causal structure, a data analyst cannot directly use

standardization (nor IP weighting) to compute the counterfactual risks Pr
£
 =1 = 1

¤
and Pr

£
 =0 = 1

¤
because the

variable  , which is necessary to block the backdoor path between  and  , is not available. Therefore, the average

causal effect of  on  cannot be identified using the methods described in previous chapters. However, Pearl (1995)

showed that Pr [  = 1] is identified by the so-called front door formulaX


Pr [ = | = ]
X
0
Pr [ = 1| =  = 0] Pr [ = 0]

Pearl refers to this identification formula as front door adjustment because it relies on the existence of a path

from  and  that, contrary to a backdoor path, goes through a descendant  of  that completely mediates the

effect of  on  . Pearl often uses the term backdoor formula to refer to the identification formula that we refer to as

standardization or, more generally, the g-formula (Robins 1986).

A proof of the front door identification formula follows. Note that Pr [  = 1] =P
 Pr [

 = ] Pr [  = 1| = ] and that, under Figure 7.14, Pr [ = ] = Pr [ = | = ]

because there is no confounding for the effect of  on  (i.e., ⊥⊥), and Pr [  = 1| = ] =P
0 Pr [ = 1| =  = 0] Pr [ = 0]. To prove the last equality, first note that Pr [  = 1| = ] =

Pr [  = 1] because (i)   =   when  =  ( affects  only through  in Figure 7.14) and

(ii)  ⊥⊥ by d-separation on a SWIG under the joint intervention in which  is set to  and 

to . Finally, by conditional exchangeability  ⊥⊥ | on the SWIG where we intervene on  alone,

Pr [  = 1] =
P

0 Pr [ = 1| =  = 0] Pr [ = 0].
The above proof requires well-defined counterfactual outcomes   under interventions on  . We now provide a

second proof in which we assume that only counterfactual outcomes   under interventions on  are well-defined. To

do so, we reinterpret the causal DAG in Figure 7.14 as a statistical DAG and use the SWIG independence ⊥⊥| ,
where  = () and  =  are the descendants and non-descendants of , respectively. Then Pr [  = ] =

=
P



P
[Pr[

 =  =  = ]

=
P



P
 Pr[

 =  = | =   = ] Pr[ = ] (by exchangeability)

=
P



P
 Pr[ =  = | =   = ] Pr[ = ] (by consistency)

=
P



P
 Pr[ = | =  =   = ] Pr[ = | =   = ] Pr[ = ]

=
P

 Pr[ = | = ]
P

 Pr[ = | =  = ] {P0 Pr[ = | = 0] Pr[ = 0]}
by ⊥⊥ | and ⊥⊥ |

=
P

 Pr[ = | = ]
P

0 {
P

 Pr[ = | =  = 0  = ] Pr[ = | =  = 0]}Pr[ = 0]
by ⊥⊥ | and ⊥⊥ |

=
P

 Pr[ = | = ]
P

0 Pr[ = | =  = 0] Pr[ = 0].



Chapter 8
SELECTION BIAS

Suppose an investigator conducted a randomized experiment to answer the causal question “does one’s looking

up to the sky make other pedestrians look up too?” She found a strong association between her looking up and

other pedestrians’ looking up. Does this association reflect a causal effect? Well, by definition of randomized

experiment, confounding bias is not expected in this study. However, there was another potential problem: The

analysis included only those pedestrians that, after having been part of the experiment, gave consent for their data

to be used. Shy pedestrians (those less likely to look up anyway) and pedestrians in front of whom the investigator

looked up (who felt tricked) were less likely to participate. Thus participating individuals in front of whom the

investigator looked up (a reason to decline participation) are less likely to be shy (an additional reason to decline

participation) and therefore more likely to lookup. That is, the process of selection of individuals into the analysis

guarantees that one’s looking up is associated with other pedestrians’ looking up, regardless of whether one’s

looking up actually makes others look up.

An association created as a result of the process by which individuals are selected into the analysis is referred to

as selection bias. Unlike confounding, this type of bias is not due to the presence of common causes of treatment and

outcome, and can arise in both randomized experiments and observational studies. Like confounding, selection

bias is just a form of lack of exchangeability between the treated and the untreated. This chapter provides a

definition of selection bias and reviews the methods to adjust for it.

8.1 The structure of selection bias

The term “selection bias” encompasses various biases that arise from the pro-

cedure by which individuals are selected into the analysis. Here we focus on

bias that would arise even if the treatment had a null effect on the outcome,

that is, selection bias under the null (as described in Section 6.5). The struc-

ture of selection bias can be represented by using causal diagrams like the one

in Figure 8.1, which depicts dichotomous treatment , outcome  , and their
A Y C

Figure 8.1 common effect . Suppose Figure 8.1 represents a study to estimate the effect

of folic acid supplements  given to pregnant women shortly after conception

on the fetus’s risk of developing a cardiac malformation  (1: yes, 0: no) dur-

ing the first two months of pregnancy. The variable  represents death before

birth. A cardiac malformation increases mortality (arrow from  to ), and

folic acid supplementation decreases mortality by reducing the risk of malfor-

mations other than cardiac ones (arrow from  to ). The study was restricted

to fetuses who survived until birth. That is, the study was conditioned on noPearl (1995) and Spirtes et al

(2000) used causal diagrams to de-

scribe the structure of bias resulting

from selection of individuals.

death  = 0 and hence the box around the node .

The diagram in Figure 8.1 shows two sources of association between treat-

ment and outcome: 1) the open path →  that represents the causal effect

of  on  , and 2) the open path  →  ←  that links  and  through

their (conditioned on) common effect . An analysis conditioned on  will

generally result in an association between  and  . We refer to this induced

association between the treatment  and the outcome  as selection bias due

to conditioning on . Because of selection bias, the associational risk ratio

Pr[ = 1| = 1  = 0]Pr[ = 1| = 0  = 0] does not equal the causal
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risk ratio Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
; association is not causation. If the

analysis were not conditioned on the common effect (collider) , then the only

open path between treatment and outcome would be  →  , and thus the

entire association between  and  would be due to the causal effect of  on

A CY S
Figure 8.2

 . That is, the associational risk ratio Pr[ = 1| = 1]Pr[ = 1| = 0]

would equal the causal risk ratio Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
; association

would be causation.

The causal diagram in Figure 8.2 shows another example of selection bias.

This diagram includes all variables in Figure 8.1 plus a node  representing

parental grief (1: yes, 0: no), which is affected by vital status at birth. Suppose

the study was restricted to non grieving parents  = 0 because the others were

unwilling to participate. As discussed in Chapter 6, conditioning on a variable

 affected by the collider  also opens the path →  ←  .

L CA Y

U
Figure 8.3

A CL Y

U
Figure 8.4
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W

Figure 8.5
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Figure 8.6

Both Figures 8.1 and 8.2 depict examples of selection bias in which the bias

arises because of conditioning on a common effect of treatment and outcome:

 in Figure 8.1 and  in Figure 8.2. This bias arises regardless of whether there

is an arrow from  to  , that is, it is selection bias under the null. Remember

that causal structures that result in bias under the null also cause bias when

the treatment has a non-null effect. Both confounding due to common causes

of treatment and outcome (see previous chapter) and selection bias due to

conditioning on common effects of treatment and outcome are examples of

bias under the null. However, selection bias under the null can be defined

more generally as illustrated by Figures 8.3 to 8.6.

Consider the causal diagram in Figure 8.3, which represents a follow-up

study of HIV-positive individuals to estimate the effect of certain antiretroviral

treatment  on the 3-year risk of death  (to reduce clutter, there is no

arrow from  to  ). The unmeasured variable  represents high level of

immunosuppression (1: yes, 0: no). Individuals with  = 1 have a greater risk

of death. Individuals who drop out from the study or are otherwise lost to

follow-up are censored ( = 1). Individuals with  = 1 are more likely to be

censored because the severity of their disease prevents them from participating

in the study. The effect of  on censoring  is mediated by the presence of

symptoms (fever, weight loss, diarrhea, and so on), CD4 count, and viral load

in plasma, all included in , which could or could not be measured. (The

role of , when measured, in data analysis is discussed in Section 8.5; in this

section, we take  to be unmeasured.) Individuals receiving treatment are at a

greater risk of experiencing side effects, which could lead them to dropout, as

represented by the arrow from  to . The square around  indicates that the

analysis is restricted to individuals who remained uncensored ( = 0) because

those are the only ones in which  can be assessed.

According to the rules of d-separation, conditioning on the collider  opens

the path →  ← ←  →  and thus association flows from treatment 

to outcome  , i.e., the associational risk ratio is not equal to 1 even though

the causal risk ratio is equal to 1. Figure 8.3 can be viewed as a simple

transformation of Figure 8.1: the association between  and  resulting from

a direct effect of  on  in Figure 8.1 is now the result of  , a common

cause of  and . Some intuition for this bias: If a treated individual with

treatment-induced side effects (and thereby at a greater risk of dropping out)

did in fact not drop out ( = 0), then it is generally less likely that a second

independent cause of dropping out (e.g.,  = 1) was present. Therefore, an

inverse association between  and  would be expected in those who did

not drop out ( = 0). Because  is positively associated with the outcome

 , restricting the analysis to individuals who did not drop out of this study
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induces an inverse association between  and  .

The bias in Figure 8.3 is an example of selection bias that results from

conditioning on the censoring variable , which is a common effect of treat-

ment  and a cause  of the outcome  , rather than of the outcome itself.

We now present three additional causal diagrams that could lead to selection

bias by differential loss to follow up. In Figure 8.4 prior treatment  has a

direct effect on symptoms . Restricting the study to the uncensored individ-

uals again implies conditioning on the common effect  of  and  , thereby

introducing an association between treatment and outcome. Figures 8.5 and

8.6 are variations of Figures 8.3 and 8.4, respectively, in which there is a com-Figures 8.5 and 8.6 show examples

of M-bias. mon cause  of  and another measured variable.  indicates unmeasured

lifestyle/personality/educational variables that determine both treatment (ar-

row from  to ) and either attitudes toward attending study visits (arrow

from  to  in Figure 8.5) or threshold for reporting symptoms (arrow from

 to  in Figure 8.6).More generally, selection bias can

be defined as the bias resulting from

conditioning on the common ef-

fect of two variables, one of which

is either the treatment or associ-

ated with the treatment, and the

other is either the outcome or asso-

ciated with the outcome (Hernán,

Hernández-Díaz, and Robins 2004).

We have described some different causal structures, depicted in Figures 8.1-

8.6, that may lead to selection bias. In all these cases, the bias is the result

of selection on a common effect of two other variables in the diagram, i.e., a

collider. We will use the term selection bias to refer to all biases that arise

from conditioning on a common effect of two variables, one of which is either

the treatment or a cause of treatment, and the other is either the outcome or

a cause of the outcome. We now describe some examples of selection bias that

share this structure.

8.2 Examples of selection bias

Consider the following examples of bias due to the mechanism by which indi-

viduals are selected into the analysis:

• Differential loss to follow-up: This is precisely the bias described in the
previous section and summarized in Figures 8.3-8.6. It is also referred to

as bias due to informative censoring.The distinction between the two

structures leading to lack of ex-

changeability is not universally

made across disciplines. Lack

of conditional exchangeability due

to any cause is often referred as

“weak ignorability” or “ignorable

treatment assignment” in statis-

tics (Rosenbaum and Rubin, 1983),

“selection on observables” in the

social sciences (Barnow et al.,

1980), and “ommitted variable

bias” or “endogeneity” in econo-

metrics (Imbens, 2004).

• Missing data bias, nonresponse bias: The variable  in Figures 8.3-8.6

can represent missing data on the outcome for any reason, not just as a

result of loss to follow up. For example, individuals could have missing

data because they are reluctant to provide information or because they

miss study visits. Regardless of the reasons why data on  are missing,

restricting the analysis to individuals with complete data ( = 0) may

result in bias.

• Healthy worker bias : Figures 8.3—8.6 can also describe a bias that could
arise when estimating the effect of an occupational exposure  (e.g., a

chemical) on mortality  in a cohort of factory workers. The underlying

unmeasured true health status  is a determinant of both death  and

of being at work  (1: no, 0: yes). The study is restricted to individuals

who are at work ( = 0) at the time of outcome ascertainment. (

could be the result of blood tests and a physical examination.) Being

exposed to the chemical reduces the probability of being at work in the

near future, either directly (e.g., exposure can cause disabling asthma),

like in Figures 8.3 and 8.4, or through a common cause  (e.g., certain
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Fine Point 8.1

Selection bias in case-control studies. Figure 8.1 can be used to represent selection bias in a case-control study.

Suppose a certain investigator wants to estimate the effect of postmenopausal estrogen treatment  on coronary heart

disease  . The variable  indicates whether a woman in the study population (the underlying cohort, in epidemiologic

terms) is selected for the case-control study (1: no, 0: yes). The arrow from disease status  to selection  indicates

that cases in the population are more likely to be selected than noncases, which is the defining feature of a case-control

study. In this particular case-control study, the investigator decided to select controls ( = 0) preferentially among

women with a hip fracture. Because treatment  has a protective causal effect on hip fracture, the selection of controls

with hip fracture implies that treatment  now has a causal effect on selection . This effect of  on  is represented

by the arrow → . One could add an intermediate node  (representing hip fracture) between  and , but that is

unnecessary for our purposes.

In a case-control study, the association measure (the treatment-outcome odds ratio) is by definition conditional

on having been selected into the study ( = 0). If individuals with hip fracture are oversampled as controls, then the

probability of control selection depends on a consequence of treatment  (as represented by the path from  to ) and

“inappropriate control selection” bias will occur. Again, this bias arises because we are conditioning on a common effect

 of treatment and outcome. A heuristic explanation of this bias follows. Among individuals selected for the study

( = 0), controls are more likely than cases to have had a hip fracture. Therefore, because estrogens lower the incidence

of hip fractures, a control is less likely to be on estrogens than a case, and hence the - odds ratio conditional on

 = 0 would be greater than the causal odds ratio in the population. Other forms of selection bias in case-control

studies, including some biases described by Berkson (1946) and incidence-prevalence bias, can also be represented by

Figure 8.1 or modifications of it, as discussed by Hernán, Hernández-Díaz, and Robins (2004).

exposed jobs are eliminated for economic reasons and the workers laid

off) like in Figures 8.5 and 8.6.

• Self-selection bias, volunteer bias: Figures 8.3-8.6 can also represent a
study in which  is agreement to participate (1: no, 0: yes),  is cigaretteBerkson (1955) described the struc-

ture of bias due to self-selection. smoking,  is coronary heart disease,  is family history of heart disease,

and  is healthy lifestyle. ( is any mediator between  and  such as

heart disease awareness.) Under any of these structures, selection bias

may be present if the study is restricted to those who volunteered or

elected to participate ( = 0).

• Selection affected by treatment received before study entry : Suppose that
 in Figures 8.3-8.6 represents selection into the study (1: no, 0: yes)

and that treatment  took place before the study started. If treatmentRobins, Hernán, and Rotnitzky

(2007) used causal diagrams to de-

scribe the structure of bias due to

the effect of pre-study treatments

on selection into the study.

affects the probability of being selected into the study, then selection

bias is expected. The case of selection bias arising from the effect of

treatment on selection into the study can be viewed as a generalization

of self-selection bias. This bias may be present in any study that at-

tempts to estimate the causal effect of a treatment that occurred before

the study started or in which treatment includes a pre-study component.

For example, selection bias may arise when treatment is measured as the

lifetime exposure to certain factor (medical treatment, lifestyle behav-

ior...) in a study that recruited 50 year-old participants. In addition to

selection bias, it is also possible that there exists unmeasured confound-

ing for the pre-study component of treatment if confounders were only

measured during the study.

In addition to the biases described here, as well as in Fine Point 8.1 and

Technical Point 8.1, causal diagrams have been used to characterize various
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other biases that arise from conditioning on a common effect. These examples

show that selection bias may occur in retrospective studies–those in which data

on treatment  are collected after the outcome  occurs–and in prospective

studies–those in which data on treatment  are collected before the outcome

 occurs. Further, these examples show that selection bias may occur both inFor example, selection bias may be

induced by attempts to eliminate

ascertainment bias (Robins 2001),

to estimate direct effects (Cole and

Hernán 2002), and by conventional

adjustment for variables affected by

previous treatment (see Part III).

observational studies and in randomized experiments.

Take Figures 8.3 and 8.4, which could depict either an observational study

or an experiment in which treatment  is randomly assigned, because there are

no common causes of  and any other variable. Individuals in both randomized

experiments and observational studies may be lost to follow-up or drop out of

the study before their outcome is ascertained. When this happens, the risk

Pr[ = 1| = ] cannot be computed because the value of the outcome  is

unknown for the censored individuals ( = 1). Therefore only the risk among

the uncensored Pr[ = 1| =  = 0] can be computed. This restriction of

the analysis to the uncensored individuals may induce selection bias because

uncensored individuals who remained through the end of the study ( = 0)

may not be exchangeable with individuals that were lost ( = 1).

Hence a key difference between confounding and selection bias: random-

ization protects against confounding, but not against selection bias when the

selection occurs after the randomization. On the other hand, no bias arises

in randomized experiments from selection into the study before treatment is

assigned. For example, only volunteers who agree to participate are enrolled

in randomized clinical trials, but such trials are not affected by volunteer bias

because participants are randomly assigned to treatment only after agreeing to

participate ( = 0). Thus none of Figures 8.3-8.6 can represent volunteer bias

in a randomized trial. Figures 8.3 and 8.4 are eliminated because treatment

cannot cause agreement to participate . Figures 8.5 and 8.6 are eliminated

because, as a result of the random treatment assignment, there cannot exist a

common cause of treatment and any other variable.

8.3 Selection bias and confounding

C A Y

U

L

Figure 8.7

In this and the previous chapter, we describe two reasons why the treated and

the untreated may not be exchangeable: 1) the presence of common causes of

treatment and outcome, and 2) conditioning on common effects of treatment

and outcome (or causes of them). We refer to biases due to the presence of

common causes as “confounding” and to those due to conditioning on common

effects as “selection bias.” This structural definition provides a clear-cut clas-

sification of confounding and selection bias, even though it might not coincide

perfectly with the traditional terminology of some disciplines. For example,

statisticians and econometricians often use the term “selection bias” to refer

to both types of biases. Their rationale is that in both cases the bias is due

to selection: selection of individuals into the anaysis (the structural “selection

bias”) or selection of individuals into a treatment (the structural “confound-

ing”). Our goal, however, is not to be normative about terminology, but ratherFor the same reason, social scien-

tists often refer to unmeasured con-

founding as selection on unobserv-

ables.

to emphasize that, regardless of the particular terms chosen, there are two dis-

tinct causal structures that lead to bias.

The end result of both structures is lack of exchangeability between the

treated and the untreated–which implies that these two biases occur even

under the null. For example, consider a study restricted to firefighters that

aims to estimate the causal effect of being physically active  on the risk
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Technical Point 8.1

The built-in selection bias of hazard ratios. The causal DAG in Figure 8.8 describes a randomized experiment of the

effect of heart transplant  on death at times 1 (1) and 2 (2). The arrow from  to 1 represents that transplant

decreases the risk of death at time 1. The lack of an arrow from  to 2 indicates that  has no direct effect on death

at time 2. That is, heart transplant does not influence the survival status at time 2 of any individual who would survive

past time 1 when untreated (and thus when treated).  is an unmeasured haplotype that decreases the individual’s risk

of death at all times. Because of the absence of confounding, the associational risk ratios 1 =
Pr[1=1|=1]
Pr[1=1|=0] and

2 =
Pr[2=1|=1]
Pr[2=1|=0] are unbiased measures of the effect of  on death at times 1 and 2, respectively. Even though

 has no direct effect on 2, 2 will be less than 1 because it is a measure of the effect of  on total mortality

through time 2.

Consider now the time-specific hazard ratio (which, for all practical purposes, is equivalent to the rate ratio). In

discrete time, the hazard of death at time 1 is the probability of dying at time 1 and thus the associational hazard ratio

is the same as 1 . However, the hazard at time 2 is the probability of dying at time 2 among those who survived

past time 1. Thus, the associational hazard ratio at time 2 is then 2|1=0 =
Pr[2=1|=11=0]
Pr[2=1|=01=0] . The square

around 1 in Figure 8.8 indicates this conditioning. Treated survivors of time 1 are less likely than untreated survivors of

time 1 to have the protective haplotype  (because treatment can explain their survival) and therefore are more likely

to die at time 2. That is, conditional on 1, treatment  is associated with a higher mortality at time 2. Thus, the

hazard ratio at time 1 is less than 1, whereas the hazard ratio at time 2 is greater than 1, i.e., the hazards have crossed.

We conclude that the hazard ratio at time 2 is a biased estimate of the direct effect of treatment on mortality at time

2. The bias is selection bias arising from conditioning on a common effect 1 of treatment  and of  , which is a cause

of 2 that opens the associational path  → 1 ←  → 2 between  and 2. In the survival analysis literature, an

unmeasured cause of death that is marginally unassociated with treatment such as  is often referred to as a frailty.

In contrast, the conditional hazard ratio 2|1=0 is 1 within each stratum of  because the path  →
1 ←  → 2 is now blocked by conditioning on the non-collider  . Thus, the conditional hazard ratio correctly

indicates the absence of a direct effect of  on 2. That the unconditional hazard ratio 2|1=0 differs from the

stratum-specific hazard ratios 2|1=0 , even though  is independent of , shows the noncollapsibility of the

hazard ratio (Greenland, 1996b). Unfortunately, the unbiased measure 2|1=0 of the direct effect of  on 2
cannot be computed because  is unobserved. In the absence of data on  , it is impossible to know whether  has a

direct effect on 2. That is, the data cannot determine whether the true causal DAG generating the data was that in

Figure 8.8 or in Figure 8.9. All of the above applies to both observational studies and randomized experiments.

of heart disease  as represented in Figure 8.7. For simplicity, we assume

A Y1 Y2

U

Figure 8.8

A Y1 Y2

Figure 8.9

that, unknown to the investigators,  does not cause  . Parental socioe-

conomic status  affects the risk of becoming a firefighter  and, through

childhood diet, of heart disease  . Attraction toward activities that involve

physical activity (an unmeasured variable ) affects the risk of becoming a

firefighter and of being physically active ().  does not affect  , and  does

not affect . According to our terminology, there is no confounding because

there are no common causes of  and  . Thus, the associational risk ratio

Pr [ = 1| = 1] Pr [ = 1| = 0] is expected to equal the causal risk ratio
Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
= 1.

However, in a study restricted to firefighters ( = 0), the associational

and causal risk ratios would differ because conditioning on a common effect 

of causes of treatment and outcome induces selection bias resulting in lack of

exchangeability of the treated and untreated firefighters. To the study investi-

gators, the distinction between confounding and selection bias is moot because,

regardless of nomenclature, they must adjust for  to make the treated and

the untreated firefighters comparable. This example demonstrates that a struc-

tural classification of bias does not always have consequences for the analysis
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of a study. Indeed, for this reason, many epidemiologists use the term “con-

founder” for any variable  that needs to be adjusted for, regardless of whether

the lack of exchangeability is the result of conditioning on a common effect or

the result of a common cause of treatment and outcome.

There are, however, advantages of adopting a structural approach to the

classification of sources of non-exchangeability. First, the structure of the

problem frequently guides the choice of analytical methods to reduce or avoid

the bias. For example, in longitudinal studies with time-varying treatments,

identifying the structure allows us to detect situations in which adjustment

for confounding via stratification would introduce selection bias (see Part III).

In those cases, g-methods are a better alternatives. Second, even when un-

derstanding the structure of bias does not have implications for data analysis

(like in the firefighters’ study), it could still help study design. For exam-

ple, investigators running a study restricted to firefighters should make sure

that they collect information on joint risk factors for the outcome  and for

the selection variable  (i.e., becoming a firefighter), as described in the firstThe choice of terminology usually

has no practical consequences, but

disregard for the causal structure

may lead to apparent paradoxes.

For example, the so-called Simp-

son’s paradox (1951) was the re-

sult of ignoring the difference be-

tween common causes and common

effects. Interestingly, Blyth (1972)

failed to grasp the causal structure

of the paradox in Simpson’s exam-

ple and misrepresented it as an ex-

treme case of confounding. Be-

cause most people read Blyth’s pa-

per but not Simpson’s paper, the

misunderstanding was perpetuated.

See Hernán, Clayton, and Keiding

(2011) for details.

example of confounding in Section 7.1. Third, selection bias resulting from

conditioning on pre-treatment variables (e.g., being a firefighter) could explain

why certain variables behave as “confounders” in some studies but not others.

In our example, parental socioeconomic status  would not necessarily need to

be adjusted for in studies not restricted to firefighters. Finally, causal diagrams

enhance communication among investigators and may decrease the occurrence

of misunderstandings.

As an example of the last point, consider the “healthy worker bias”. We

described this bias in the previous section as an example of a bias that arises

from conditioning on the variable , which is a common effect of (a cause of)

treatment and (a cause of) the outcome. Thus the bias can be represented

by the causal diagrams in Figures 8.3-8.6. However, the term “healthy worker

bias” is also used to describe the bias that occurs when comparing the risk in

certain group of workers with that in a group of individuals from the general

population.

This second bias can be depicted by the causal diagram in Figure 7.1 in

which  represents health status,  represents membership in the group of

workers, and  represents the outcome of interest. There are arrows from  to

 and  because being healthy affects job type and risk of subsequent outcome,

respectively. In this case, the bias is caused by the common cause  and we

would refer to it as confounding. The use of causal diagrams to represent the

structure of the “healthy worker bias” prevents any confusions that may arise

from employing the same term for different sources of non-exchangeability.

All the above considerations ignore the magnitude or direction of selection

bias confounding. However, it is possible that some noncausal paths opened

by conditioning on a collider are weak and thus induce little bias. Because

selection bias is not an “all or nothing” issue, in practice, it is important to

consider the expected direction and magnitude of the bias (see Fine Point 8.2).

8.4 Selection bias and censoring

Suppose an investigator conducted a marginally randomized experiment to

estimate the average causal effect of wasabi intake on the one-year risk of

death ( = 1). Half of the 60 study participants were randomly assigned to

eating meals supplemented with wasabi ( = 1) until the end of follow-up or
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death, whichever occurred first. The other half were assigned to meals that

contained no wasabi ( = 0). After 1 year, 17 individuals died in each group.

That is, the associational risk ratio Pr [ = 1| = 1] Pr [ = 1| = 0] was 1.
Because of randomization, the causal risk ratio Pr

£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
is also expected to be 1. (If ignoring random variability bothers you, please

imagine the study had 60 million patients rather than 60.)

Unfortunately, the investigator could not observe the 17 deaths that oc-

curred in each group because many patients were lost to follow-up, or censored,

before the end of the study (i.e., death or one year after treatment assignment).

The proportion of censoring ( = 1) was higher among patients with heart dis-

ease ( = 1) at the start of the study and among those assigned to wasabi sup-

plementation ( = 1). In fact, only 9 individuals in the wasabi group and 22

individuals in the other group were not lost to follow-up. The investigator ob-

served 4 deaths in the wasabi group and 11 deaths in the other group. That is,

the associational risk ratio Pr [ = 1| = 1  = 0] Pr [ = 1| = 0  = 0]
was (49)(1122) = 089 among the uncensored. The risk ratio of 089 in

the uncensored differs from the causal risk ratio of 1 in the entire population:

There is selection bias due to conditioning on the common effect .

The causal diagram in Figure 8.3 depicts the relation between the variables

, , , and  in the randomized trial of wasabi.  represents atherosclerosis,

an unmeasured variable, that affects both heart disease  and death  . Figure

8.3 shows that there are no common causes of  and  , as expected in a

marginally randomized experiment, and thus there is no need to adjust for

confounding to compute the causal effect of  on  . On the other hand,

Figure 8.3 shows that there is a common cause  of  and  . The presence

of this backdoor path  ←  ←  →  implies that, were the investigator

interested in estimating the causal effect of censoring  on  (which is null in

Figure 8.3), she would have to adjust for confounding due to the common cause

 . The backdoor criterion says that such adjustment is possible because the

measured variable  can be used to block the backdoor path  ← ←  →  .

The causal contrast we have considered so far is “the risk if everybody

had been treated”, Pr
£
 =1 = 1

¤
, versus “the risk if everybody had remained

untreated”, Pr
£
 =0 = 1

¤
, and this causal contrast does not involve  at all.

Why then are we talking about confounding for the causal effect of ? It turns

out that the causal contrast of interest needs to be modified in the presence

of censoring or, in general, of selection. Because selection bias would not exist

if everybody had been uncensored  = 0, we would like to consider a causal

contrast that reflects what would have happened in the absence of censoring.

Let  =1=0 be an individual’s counterfactual outcome if he had received

treatment  = 1 and he had remained uncensored  = 0. Similarly, let

 =0=0 be an individual’s counterfactual outcome if he had not received

treatment  = 0 and he had remained uncensored  = 0. Our causal contrast

of interest is now “the risk if everybody had been treated and had remained

uncensored”, Pr
£
 =1=0 = 1

¤
, versus “the risk if everybody had remained

untreated and uncensored”, Pr
£
 =0=0 = 1

¤
.For example, we may want to com-

pute the causal risk ratio

E
£
 =1=0

¤
E

£
 =0=0

¤
or the causal risk difference

E
£
 =1=0

¤− E £ =0=0
¤
.

Often it is reasonable to assume that censoring does not have a causal

effect on the outcome (an exception would be a setting in which being lost to

follow-up prevents people from getting additional treatment). Because of the

lack of effect of censoring  on the outcome  , one might imagine that the

definition of causal effect could ignore censoring, i.e., that we could omit the

superscript  = 0. However, omitting the superscript would obscure the fact

that considerations about confounding for  become central when computing

the causal effect on  on  in the presence of selection bias. In fact, when
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conceptualizing the causal contrast of interest in terms of  =0=0, we can

think of censoring  as just another treatment. That is, the goal of the analysisIn causal diagrams with no arrow

from censoring  to the observed

outcome  , we could replace  by

the counterfactual outcome  =0

and add arrows  =0 −→  and

 −→  .

is to compute the causal effect of a joint intervention on  and . To eliminate

selection bias for the effect of treatment , we need to adjust for confounding

for the effect of treatment .

Since censoring  is now viewed as a treatment, it follows that we will need

to (i) ensure that the identifiability conditions of exchangeability, positivity,

and consistency hold for  as well as for , and (ii) use analytical methods

that are identical to those we would have to use if we wanted to estimate the

effect of censoring . Under these identifiability conditions and using these

methods, selection bias can be eliminated via analytic adjustment and, in the

absence of measurement error and confounding, the causal effect of treatment

 on outcome  can be identified. The next section explains how to do so.

8.5 How to adjust for selection bias

Though selection bias can sometimes be avoided by an adequate design (see

Fine Point 8.1), it is often unavoidable. For example, loss to follow up, self-

selection, and, in general, missing data leading to bias can occur no matter how

careful the investigator. In those cases, the selection bias needs to be explicitly

corrected in the analysis. This correction can sometimes be accomplished by

IP weighting (or by standardization), which is based on assigning a weight

to each selected individual ( = 0) so that she accounts in the analysis not

only for herself, but also for those like her, i.e., with the same values of  and

, who were not selected ( = 1). The IP weight  is the inverse of the

probability of her selection Pr [ = 0|].
To describe the application of IP weighting for selection bias adjustment

consider again the wasabi randomized trial described in the previous section.

The tree graph in Figure 8.10 presents the trial data. Of the 60 individuals inWe have described IP weights to

adjust for confounding,  =

1 (|), and selection bias.

 = 1Pr[ = 0|]. When
both confounding and selection bias

exist, the product weight 

can be used to adjust simultane-

ously for both biases under assump-

tions described in Chapter 12 and

Part III.

the trial, 40 had ( = 1) and 20 did not have ( = 0) heart disease at the time

of randomization. Regardless of their  status, all individuals had a 5050

chance of being assigned to wasabi supplementation ( = 1). Thus 10 individ-

uals in the  = 0 group and 20 in the  = 1 group received treatment  = 1.

This lack of effect of  on  is represented by the lack of an arrow from  to 

in the causal diagram of Figure 8.3. The probability of remaining uncensored

varies across branches in the tree. For example, 50% of the individuals without

heart disease that were assigned to wasabi ( = 0,  = 1), whereas 60% of

the individuals with heart disease that were assigned to no wasabi ( = 1,

 = 0), remained uncensored. This effect of  and  on  is represented

by arrows from  and  into  in the causal diagram of Figure 8.3. Finally,

the tree shows how many people would have died ( = 1) both among the

uncensored and the censored individuals. Of course, in real life, investigators

would never know how many deaths occurred among the censored individuals.

It is precisely the lack of this knowledge which forces investigators to restrict

the analysis to the uncensored, opening the door for selection bias. Here we

show the deaths in the censored to document that, as depicted in Figure 8.3,

treatment  is marginally independent on  , and censoring  is independent

of  within levels of . It can also be checked that the risk ratio in the entire

population (inaccessible to the investigator) is 1 whereas the risk ratio in the

uncensored (accessible to the investigator) is 089.
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Figure 8.10

Let us now describe the intuition behind the use of IP weighting to adjust

for selection bias. Look at the bottom of the tree in Figure 8.10. There

are 20 individuals with heart disease ( = 1) who were assigned to wasabi

supplementation ( = 1). Of these, 4 remained uncensored and 16 were lost

to follow-up. That is, the conditional probability of remaining uncensored in

this group is 15, i.e., Pr[ = 0| = 1  = 1] = 420 = 02. In an IP weighted
analysis the 16 censored individuals receive a zero weight (i.e., they do not

contribute to the analysis), whereas the 4 uncensored individuals receive a

weight of 5, which is the inverse of their probability of being uncensored (15).

IP weighting replaces the 20 original individuals by 5 copies of each of the

4 uncensored individuals. The same procedure can be repeated for the other

branches of the tree, as shown in Figure 8.11, to construct a pseudo-population

of the same size as the original study population but in which nobody is lost to

follow-up. (We let the reader derive the IP weights for each branch of the tree.)

The associational risk ratio in the pseudo-population is 1, the same as the risk

ratio Pr
£
 =1=0 = 1

¤
Pr

£
 =0=0 = 1

¤
that would have been computed in

the original population if nobody had been censored.



8.5 How to adjust for selection bias 109

Figure 8.11

The association measure in the pseudo-population equals the effect measure

in the original population if the following three identifiability conditions are

met.

First, the average outcome in the uncensored individuals must equal the

unobserved average outcome in the censored individuals with the same val-

ues of  and . This provision will be satisfied if the probability of selection

Pr[ = 0| = 1  = 1] is calculated conditional on treatment  and on all

additional factors that independently predict both selection and the outcome,

that is, if the variables in  and  are sufficient to block all backdoor paths

between  and  . Unfortunately, one can never be sure that these additional

factors were identified and recorded in , and thus the causal interpretation

of the resulting adjustment for selection bias depends on this untestable ex-

changeability assumption.

Second, IP weighting requires that all conditional probabilities of being

uncensored given the variables in  must be greater than zero. Note this

positivity condition is required for the probability of being uncensored ( = 0)

but not for the probability of being censored ( = 1) because we are not

interested in inferring what would have happened if study individuals had
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been censored, and thus there is no point in constructing a pseudo-population

in which everybody is censored. For example, the tree in Figure 8.10 shows

that Pr[ = 1| = 0  = 0] = 0, but this zero does not affect our ability to

construct a pseudo-population in which nobody is censored.

The third condition is consistency, including well-defined interventions. IP

weighting is used to create a pseudo-population in which censoring  has been

abolished, and in which the effect of the treatment  is the same as in the

original population. Thus, the pseudo-population effect measure is equal to

the effect measure had nobody been censored. This effect measure may be

relatively well defined when censoring is the result of loss to follow up or non-

response, but not when censoring is defined as the occurrence of a competing

event. For example, in a study aimed at estimating the effect of certain treat-A competing event is an event that

prevents the outcome of interest

from happening. A typical exam-

ple of competing event is death be-

cause, once an individual dies, no

other outcomes can occur.

ment on the risk of Alzheimer’s disease, death from other causes (cancer, heart

disease, and so on) is a competing event. Defining death as a form of censoring

is problematic: we might not wish to base our effect estimates on a pseudo-

population in which all other causes of death have been removed, because it

is unclear even conceptually what sort of intervention would produce such a

population. Also, no feasible intervention could possibly remove just one cause

of death without affecting the others as well.

Finally, one could argue that IP weighting is not necessary to adjust for

selection bias in a setting like that described in Figure 8.3. Rather, one might

attempt to remove selection bias by stratification (i.e., by estimating the ef-

fect measure conditional on the  variables) rather than by IP weighting.

Stratification could yield unbiased conditional effect measures within levels of
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 because conditioning on  is sufficient to block the backdoor path from 

to  . That is, the conditional risk ratio

Pr [ = 1| = 1  = 0  = ] Pr [ = 1| = 0  = 0  = ]

can be interpreted as the effect of treatment among the uncensored with  = .

For the same reason, under the null, stratification would work (i.e., it would

provide an unbiased conditional effect measure) if the data can be represented

by the causal structure in Figure 8.5. Stratification, however, would not work

under the structure depicted in Figures 8.4 and 8.6. Take Figure 8.4. Condi-

tioning on  blocks the backdoor path from  to  but also opens the path

 →  ←  →  from  to  because  is a collider on that path. Thus,

even if the causal effect of  on  is null, the conditional (on ) risk ratio

would be generally different from 1. And similarly for Figure 8.6. In contrast,

IP weighting appropriately adjusts for selection bias under Figures 8.3-8.6 be-

cause this approach is not based on estimating effect measures conditional on

the covariates , but rather on estimating unconditional effect measures after

reweighting the individuals according to their treatment and their values of .

This is the first time we discuss a situation in which stratification cannot

be used to validly compute the causal effect of treatment, even if the three

conditions of exchangeability, positivity, and consistency hold. We will discuss

other situations with a similar structure in Part III when considering the effect

of time-varying treatments.

8.6 Selection without bias

The causal diagram in Figure 8.12 represents a hypothetical study with di-

chotomous variables surgery , certain genetic haplotype , and death  .
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Technical Point 8.2

Multiplicative survival model. When the conditional probability of survival Pr [ = 0| =  = ] given  and  is

equal to a product ()() of functions of  and , we say that a multiplicative survival model holds. A multiplicative

survival model

Pr [ = 0| =  = ] = ()()

is equivalent to a model that assumes the survival ratio Pr [ = 0| =  = ] Pr [ = 0| =  = 0] does not

depend on  and is equal to (). The data follow a multiplicative survival model when there is no interaction

between  and  on the multiplicative scale as depicted in Figure 8.13. If Pr [ = 0| =  = ] = ()(), then

Pr [ = 1| =  = ] = 1 − ()() does not follow a multiplicative mortality model. Hence, when  and  are

conditionally independent given  = 0, they will be conditionally dependent given  = 1.

According to the rules of d-separation, surgery  and haplotype  are (i) mar-
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ginally independent, i.e., the probability of receiving surgery is the same for

people with and without the genetic haplotype, and (ii) associated condition-

ally on  , i.e., the probability of receiving surgery varies by haplotype when

the study is restricted to, say, the survivors ( = 0).

Indeed conditioning on the common effect  of two independent causes 

and  always induces a conditional association between  and  in at least

one of the strata of  (say,  = 1). However, there is a special situation under

which  and  remain conditionally independent within the other stratum

(say,  = 0).

Suppose  and  affect survival through totally independent mechanisms

in such a way that  cannot possibly modify the effect of  on  , and vice

versa. For example, suppose that the surgery  affects survival through the

removal of a tumor, whereas the haplotype  affects survival through increasing

levels of low-density lipoprotein-cholesterol levels resulting in an increased risk

of heart attack (whether or not a tumor is present). In this scenario, we can

consider 3 cause-specific mortality variables: death from tumor , death from

heart attack , and death from any other causes . The observed mortality

variable  is equal to 1 (death) when  or  or  is equal to 1, and  is

equal to 0 (survival) when  and  and  equal 0. The causal diagram in

Figure 8.13, an expansion of that in Figure 8.12, represents a causal structure

linking all these variables. We assume data on underlying cause of death (,

, ) are not recorded and thus the only measured variables are those in

Figure 8.12 (, ,  ).

Because the arrows from ,  and  to  are deterministic, condition-

ing on observed survival ( = 0) is equivalent to simultaneously conditioning

on  = 0,  = 0, and  = 0 as well, i.e., conditioning on  = 0 implies

 =  =  = 0. As a consequence, we find by applying d-separation

to Figure 8.13 that  and  are conditionally independent given  = 0,

i.e., the path, between  and  through the conditioned on collider  is

blocked by conditioning on the non-colliders ,  and . On the other

hand, conditioning on death  = 1 does not imply conditioning on any spe-

cific values of ,  and  as the event  = 1 is compatible with 7 pos-

sible unmeasured events: ( = 1  = 0  = 0), ( = 0  = 1  = 0),

( = 0  = 0  = 1), ( = 1  = 1  = 0), ( = 0  = 1  = 1),

( = 1  = 0  = 1), and ( = 1  = 1  = 1). Thus, the path be-

tween  and  through the conditioned on collider  is not blocked:  and

 are associated given  = 1.
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Fine Point 8.2

The strength and direction of selection bias. We have referred to selection bias as an “all or nothing” issue: either

bias exists or it doesn’t. In practice, however, it is important to consider the expected direction and magnitude of the

bias.

The direction of the conditional association between 2 marginally independent causes  and  within strata of

their common effect  depends on how the two causes  and  interact to cause  . For example, suppose that, in

the presence of an undiscovered background factor  that is unassociated with  or , having either  = 1 or  = 1

is sufficient and necessary to cause death (an “or” mechanism), but that neither  nor  causes death in the absence

of  . Then among those who died ( = 1),  and  will be negatively associated, because it is more likely that an

individual with  = 0 had  = 1 because the absence of  increases the chance that  was the cause of death. (Indeed,

the logarithm of the conditional odds ratio |=1 will approach minus infinity as the population prevalence of 
approaches 1.0.) This “or” mechanism was the only explanation given in the main text for the conditional association

of independent causes within strata of a common effect; nonetheless, other possibilities exist.

For example, suppose that in the presence of the undiscovered background factor  , having both  = 1 and  = 1

is sufficient and necessary to cause death (an “and” mechanism) and that neither  nor  causes death in the absence

of  . Then, among those who die, those with  = 1 are more likely to have  = 1, i.e.,  and  are positively

correlated. A standard DAG such as that in Figure 8.12 fails to distinguish between the case of  and  interacting

through an “or” mechanism from the case of an “and” mechanism. Causal DAGs with sufficient causation structures

(VanderWeele and Robins, 2007c) overcome this shortcoming.

Regardless of the direction of selection bias, another key issue is its magnitude. Biases that are not large enough

to affect the conclusions of the study may be safely ignored in practice, whether the bias is upwards or downwards.

Generally speaking, a large selection bias requires strong associations between the collider and both treatment and

outcome. Greenland (2003) studied the magnitude of selection bias under the null, which he referred to as collider-

stratification bias, in several scenarios.

In contrast with the situation represented in Figure 8.13, the variables

 and  will not be independent conditionally on  = 0 when one of the

situations represented in Figures 8.14-8.16 occur. If  and  affect survival

through a common mechanism, then there will exist an arrow either from 

to  or from  to , as shown in Figure 8.14. In that case,  and 

will be dependent within both strata of  . Similarly, if  and  are not

independent because of a common cause  as shown in Figure 8.15,  and 

will be dependent within both strata of  . Finally, if the causes  and ,

and  and , are not independent because of common causes1 and 2 as

shown in Figure 8.16, then  and  will also be dependent within both strata

of  . When the data can be summarized by Figure 8.13, we say that the data

follow a multiplicative survival model (see Technical Point 8.2).

What is interesting about Figure 8.13 is that by adding the unmeasured

variables ,  and , which functionally determine the observed variable

 , we have created an augmented causal diagram that succeeds in representingAugmented causal DAGs, intro-

duced by Hernán, Hernández-Díaz,

and Robins (2004), can be ex-

tended to represent the sufficient

causes described in Chapter 5 (Van-

derWeele and Robins, 2007c).

both the conditional independence between  and  given  = 0 and the their

conditional dependence given  = 1.

In summary, conditioning on a collider always induces an association be-

tween its causes, but this association could be restricted to certain levels of the

common effect. In other words, it is theoretically possible that selection on a

common effect does not result in selection bias when the analysis is restricted

to a single level of the common effect. Collider stratification is not always a

source of selection bias.



Chapter 9
MEASUREMENT BIAS

Suppose an investigator conducted a randomized experiment to answer the causal question “does one’s looking

up to the sky make other pedestrians look up too?” She found a weak association between her looking up and

other pedestrians’ looking up. Does this weak association reflect a weak causal effect? By definition of randomized

experiment, confounding bias is not expected in this study. In addition, no selection bias was expected because

all pedestrians’ responses–whether they did or did not look up–were recorded. However, there was another

problem: the investigator’s collaborator who was in charge of recording the pedestrians’ responses made many

mistakes. Specifically, the collaborator missed half of the instances in which a pedestrian looked up and recorded

these responses as “did not look up.” Thus, even if the treatment (the investigator’s looking up) truly had a strong

effect on the outcome (other people’s looking up), the misclassification of the outcome will result in a dilution of

the association between treatment and the (mismeasured) outcome.

We say that there is measurement bias when the association between treatment and outcome is weakened

or strengthened as a result of the process by which the study data are measured. Since measurement errors can

occur under any study design–including randomized experiments and observational studies–measurement bias

need always be considered when interpreting effect estimates. This chapter provides a description of biases due to

measurement error.

9.1 Measurement error

In previous chapters we implicitly made the unrealistic assumption that all

variables were perfectly measured. Consider an observational study designed to
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Figure 9.1

estimate the effect of a cholesterol-lowering drug on the risk of liver disease  .

We often expect that treatment  will be measured imperfectly. For example,

if the information on drug use is obtained by medical record abstraction, the

abstractor may make a mistake when transcribing the data, the physician may

forget to write down that the patient was prescribed the drug, or the patient

may not take the prescribed treatment. Thus, the treatment variable in our

analysis data set will not be the true use of the drug, but rather the measured

use of the drug. We will refer to the measured treatment as ∗ (read A-star),
which will not necessarily equal the true treatment  for a given individual.

The psychological literature sometimes refers to  as the “construct” and to

∗ as the “measure” or “indicator.” The challenge in observational disciplines
is making inferences about the unobserved construct (e.g., cholesterol-lowering

drug use) by using data on the observed measure (e.g., information on statin

use from medical records).

The causal diagram in Figure 9.1 depicts the variables , ∗, and  . For

simplicity, we chose a setting with neither confounding nor selection bias for

the causal effect of  on  . The true treatment  affects both the outcome 

and the measured treatment ∗. The causal diagram also includes the node 
to represent all factors other than  that determine the value of ∗. We refer
to  as the measurement error for . Note that the node  is unnecessaryMeasurement error for discrete vari-

ables is known as misclassification. in discussions of confounding (it is not part of a backdoor path) or selection

bias (no variables are conditioned on) and therefore we omitted it from the
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Technical Point 9.1

Independence and nondifferentiality. Let (·) denote a probability density function (pdf). The measurement errors
 for treatment and  for outcome are independent if their joint pdf equals the product of their marginal pdfs, i.e.,
(  ) = ( )(). The measurement error  for the treatment is nondifferential if its pdf is independent of
the outcome  , i.e., (| ) = (). Analogously, the measurement error  for the outcome is nondifferential if

its pdf is independent of the treatment , i.e., ( |) = ( ).

causal diagrams in Chapters 7 and 8. For the same reasons, the determinants

of the variables  and  are not included in Figure 9.1.
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Figure 9.2

Besides treatment , the outcome  can be measured with error too. The

causal diagram in Figure 9.2 includes the measured outcome  ∗, and the mea-
surement error  for  . Figure 9.2 illustrates a common situation in practice.

One wants to compute the average causal effect of the treatment  on the out-

come  , but these variables  and  have not been, or cannot be, measured

correctly. Rather, only the mismeasured versions ∗ and  ∗ are available to
the investigator who aims at identifying the causal effect of  on  .

Figure 9.2 also represents a setting in which there is neither confounding nor

selection bias for the causal effect of treatment  on outcome  . According to

our reasoning in previous chapters, association is causation in this setting. We

can compute any association measure and endow it with a causal interpretation.

For example, the associational risk ratio Pr [ = 1| = 1] Pr [ = 1| = 0] is
equal to the causal risk ratio Pr

£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
. Our implicit as-

sumption in previous chapters, which we now make explicit, was that perfectly

measured data on  and  were available.

We now consider the more realistic setting in which treatment and outcome

are measured with error. Then there is no guarantee that the measure of

association between ∗ and  ∗ will equal the measure of causal effect of 
on  . The associational risk ratio Pr [ ∗ = 1|∗ = 1] Pr [ ∗ = 1|∗ = 0] will
generally differ from the causal risk ratio Pr

£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
. We

say that there is measurement bias or information bias. In the presence of

measurement bias, the identifiability conditions of exchangeability, positivity,

and consistency are insufficient to compute the causal effect of treatment  on

outcome  .

9.2 The structure of measurement error
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Figure 9.3

The causal structure of confounding can be summarized as the presence of

common causes of treatment and outcome, and the causal structure of selec-

tion bias can be summarized as conditioning on common effects of treatment

and outcome (or of their causes). Measurement bias arises in the presence of

measurement error, but there is no single structure to summarize measurement

error. This section classifies the structure of measurement error according to

two properties–independence and nondifferentiality–that we describe below

(see Technical Point 9.1 for formal definitions).

The causal diagram in Figure 9.2 depicts the measurement errors  and

 for both treatment  and outcome  , respectively. According to the rules

of d-separation, the measurement errors  and  are independent because
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the path between them is blocked by colliders (either ∗ or  ∗). Independent
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Figure 9.4

errors are expected to arise if, for example, information on both drug use 

and liver toxicity  was obtained from electronic medical records in which data

entry errors occurred haphazardly. In other settings, however, the measure-

ment errors for exposure and outcome may be dependent, as depicted in Figure

9.3. For example, dependent measurement errors will occur if the information

were obtained retrospectively by phone interview and an individual’s ability to

recall her medical history ( ) affected the measurement of both  and  .

Both Figures 9.2 and 9.3 represent settings in which the error for treatment

 is independent of the true value of the outcome  , and the error for the

outcome  is independent of the true value of treatment. We then say that the
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measurement error for treatment is nondifferential with respect to the outcome,

and that the measurement error for the outcome is nondifferential with respect

to the treatment. The causal diagram in Figure 9.4 shows an example of

independent but differential measurement error in which the true value of the

outcome affects the measurement of the treatment (i.e., an arrow from  to

). Some examples of differential measurement error of the treatment follow.

Suppose that the outcome  were dementia rather than liver toxicity, and

that drug use  were ascertained by interviewing study participants. Since

the presence of dementia affects the ability to recall , one would expect an

arrow from  to . Similarly, one would expect an arrow from  to  in a

study to compute the effect of alcohol use during pregnancy  on birth defects

 if alcohol intake is ascertained by recall after delivery–because recall may

be affected by the outcome of the pregnancy. The resulting measurement bias

in these two examples is often referred to as recall bias. A bias with the same

structure might arise if blood levels of drug ∗ are used in place of actual drug
use , and blood levels are measured after liver toxicity  is present–because

liver toxicity affects the measured blood levels of the drug. The resulting

measurement bias is often referred to as reverse causation bias.

The causal diagram in Figure 9.5 shows an example of independent but

differential measurement error in which the true value of the treatment affects

the measurement of the outcome (i.e., an arrow from  to  ). A differential

measurement error of the outcome will occur if physicians, suspecting that drug

use  causes liver toxicity  , monitored patients receiving drug more closely

than other patients. Figures 9.6 and 9.7 depict measurement errors that are

both dependent and differential, which may result from a combination of the

settings described above.

In summary, we have discussed four types of measurement error: indepen-

dent nondifferential (Figure 9.2), dependent nondifferential (Figure 9.3), inde-

pendent differential (Figures 9.4 and 9.5), and dependent differential (Figures

9.6 and 9.7). The particular structure of the measurement error determines

the methods that can be used to correct for it. For example, there is a large

literature on methods for measurement error correction when the measurement

error is independent nondifferential. In general, methods for measurement er-

ror correction rely on a combination of modeling assumptions and validation

samples, i.e., subsets of the data in which key variables are measured with

little or no error. The description of methods for measurement error correc-

tion is beyond the scope of this book. Rather, our goal is to highlight that

the act of measuring variables (like that of selecting individuals) may intro-

duce bias (see Fine Point 9.1 for a discussion of its strength and direction).

Realistic causal diagrams need to simultaneously represent biases arising from

confounding, selection, and measurement. The best method to fight bias due

to mismeasurement is, obviously, to improve the measurement procedures.
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Fine Point 9.1

The strength and direction of measurement bias. In general, measurement error will result in bias. A notable

exception is the setting in which  and  are unassociated and the measurement error is independent and nondifferential:

If the arrow from  to  did not exist in Figure 9.2, then both the - association and the ∗- ∗ association would
be null. In all other circumstances, measurement bias may result in an ∗- ∗ association that is either further from
or closer to the null than the - association. Worse, for non-dichotomous treatments, measurement bias may result

in ∗- ∗ and - associations in opposite directions. This association or trend reversal may occur even under the

independent and nondifferential measurement error structure of Figure 9.2 when the mean of ∗ is a nonmonotonic
function of . See Dosemeci, Wacholder, and Lubin (1990) and Weinberg, Umbach, and Greenland (1994) for details.

VanderWeele and Hernán (2009) described a more general framework using signed causal diagrams.

The magnitude of the measurement bias depends on the magnitude of the measurement error. That is, measurement

bias generally increases with the strength of the arrows from  to 
∗ and from  to 

∗. Causal diagrams do not
encode quantitative information, and therefore they cannot be used to describe the magnitude of the bias.

9.3 Mismeasured confounders

Besides the treatment  and the outcome  , the confounders  may also be

measured with error. Mismeasurement of confounders will result in bias even

if both treatment and outcome are perfectly measured. To see this, consider

the causal diagram in Figure 9.8, which includes the variables drug use , liver

disease  , and history of hepatitis . Individuals with prior hepatitis  are less
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likely to be prescribed drug  and more likely to develop liver disease  . As

discussed in Chapter 7, there is confounding for the effect of the treatment  on

the outcome  because there exists an open backdoor path ← →  , but

there is no unmeasured confounding given  because the backdoor path ←
→  can be blocked by conditioning on . That is, there is exchangeability

of the treated and the untreated conditional on the confounder , and one can

apply IP weighting or standardization to compute the average causal effect of

 on  . The standardized, or IP weighted, risk ratio based on ,  , and 

will equal the causal risk ratio Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
.

Again the implicit assumption in the above reasoning is that the confounder

 was perfectly measured. Suppose investigators did not have access to the

study participants’ medical records. Rather, to ascertain previous diagnoses of

hepatitis, investigators had to ask participants via a questionnaire. Since not all

participants provided an accurate recollection of their medical history–some

did not want anyone to know about it, others had memory problems or simply
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made a mistake when responding to the questionnaire–the confounder  was

measured with error. Investigators had data on the mismeasured variable ∗

rather than on the variable . Unfortunately, the backdoor path ← → 

cannot be generally blocked by conditioning on ∗. The standardized (or

IP weighted) risk ratio based on ∗,  , and  will generally differ from the

causal risk ratio Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
. We then say that there is

measurement bias or information bias.

The causal diagram in Figure 9.9 shows an example of confounding of the

causal effect of  on  in which  is not the common cause shared by  and

 . Here too mismeasurement of  leads to measurement bias because the

backdoor path ← ←  →  cannot be generally blocked by conditioning

on ∗. (Note that Figures 9.8 and 9.9 do not include the measurement error 
because the particular structure of this error is not relevant to our discussion.)
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Alternatively, one could view the bias due to mismeasured confounders in

Figures 9.8 and 9.9 as a form of unmeasured confounding rather than as a form

of measurement bias. In fact the causal diagram in Figure 9.8 is equivalent

to that in Figure 7.6. One can think of  as an unmeasured variable and of

∗ as a surrogate confounder (see Fine Point 7.2). The particular choice of
terminology–unmeasured confounding versus bias due to mismeasurement of

the confounders–is irrelevant for practical purposes.

Mismeasurement of confounders may also result in apparent effect modi-

fication. As an example, suppose that all study participants who reported a

prior diagnosis of hepatitis (∗ = 1) and half of those who reported no prior
diagnosis of hepatitis (∗ = 0) did actually have a prior diagnosis of hepatitis
( = 1). That is, the true and the measured value of the confounder coincide

in the stratum ∗ = 1, but not in the stratum ∗ = 0. Suppose further that
treatment  has no effect on any individual’s liver disease  , i.e., the sharp

null hypothesis holds. When investigators restrict the analysis to the stratum

∗ = 1, there will be no confounding by  because all participants included in
the analysis have the same value of  (i.e.,  = 1). Therefore they will find no

association between  and  in the stratum ∗ = 1. However, when the inves-
tigators restrict the analysis to the stratum ∗ = 0, there will be confounding
by  because the stratum ∗ = 0 includes a mixture of individuals with both
 = 1 and  = 0. Thus the investigators will find an association between 

and  as a consequence of uncontrolled confounding by . If the investigators

are unaware of the fact that there is mismeasurement of the confounder in the

stratum ∗ = 0 but not in the stratum ∗ = 1, they could naively conclude

that both the association measure in the stratum ∗ = 0 and the association
measure in the stratum ∗ = 1 can be interpreted as effect measures. Because
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Figure 9.10

these two association measures are different, the investigators will say that ∗

is a modifier of the effect of  on  even though no effect modification by the

true confounder  exists.

Finally, it is also possible that a collider  is measured with error as repre-

sented in Figure 9.10. In this setting, conditioning on the mismeasured collider

∗ will generally introduce selection bias because ∗ is a common effect of the
treatment  and the outcome  .

9.4 Intention-to-treat effect: the effect of a misclassified treatment

Consider a marginally randomized experiment to compute the causal effect

of heart transplant on 5-year mortality  . So far in this book we have used

the notation  = 1 to refer to the study participants who were assigned and

therefore received treatment (heart transplant in this example), and  = 0

to the others. This notation is appropriate for ideal randomized experiments

in which all participants assigned to treatment actually received treatment,

and in which all participants assigned to no treatment actually did not receive

treatment. This notation, however is not detailed enough for real randomized

experiments in which participants may not comply with the assigned treatment.

In real randomized experiments we need to distinguish between two treat-

ment variables: the assigned treatment  (1 if the person is assigned to trans-

plant, 0 otherwise) and the received treatment  (1 if the person receives a

transplant, 0 otherwise). For a given individual, the value of  and  may

differ because of lack of adherence to the assigned treatment. For example,

an individual randomly assigned to receive a heart transplant ( = 1) may
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not receive it ( = 0) because he refuses to undergo the surgical procedure,

or an individual assigned to medical therapy only ( = 0) may still obtain a

transplant ( = 1) outside of the study. In that sense, when individuals do not

adhere to their assigned treatment, the assigned treatment  is a misclassified

version of the treatment  that was truly received by the study participants.

Figure 9.11 represents a randomized experiment with , , and  (the variable

 in discussed in the next section).
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But there is a key difference between the assigned treatment  in random-

ized experiments and the misclassified treatments ∗ that we have considered
so far. The mismeasured treatment ∗ in Figures 9.1-9.7 does not have a
causal effect on the outcome  . The association between ∗ and  is entirely

due to their common cause . Indeed, in observational studies, one generally

expects no causal effect of the measured treatment ∗ on the outcome, even
if the true treatment  has a causal effect. On the other hand, as shown in

Figure 9.11, the assigned treatment  in randomized experiments can have a

causal effect on the outcome  through two different pathways.

First, treatment assignment  may affect the outcome  simply because

it affects the received treatment . Individuals assigned to heart transplant

are more likely to receive a heart transplant, as represented by the arrow from

 to . If receiving a heart transplant has a causal effect on mortality, as

represented by the arrow from  to  , then assignment to heart transplant

has a causal effect on the outcome  through the pathway  → →  .

Second, treatment assignment  may affect the outcome  through path-

ways that are not mediated by received treatment . For example, awareness

of the assigned treatment might lead to changes in the behavior of study par-

ticipants: patients who are aware of receiving a transplant may spontaneously

change their diet in an attempt to keep their new heart healthy, doctors may

take special care of patients who were not assigned to a heart transplant...

These behavioral changes are represented by the direct arrow from  to  .

Hence, the causal effect of the assigned treatment  is not equal to the effect

of received treatment  because the magnitude of the effect of  depends not

only on the strength of the arrow −→  (the effect of the received treatment),

but also on the strength of the arrows  −→  (the degree of adherence to

the assigned treatment in the study) and  −→  (the concurrent behavioral

changes).
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Often investigators try to partly “de-contaminate” the effect of  by elim-

inating the arrow  →  as shown in Figure 9.12, which depicts the exclusion

restriction of no direct arrow from  to  (see Technical Point 9.2). To do

so, they withhold knowledge of the assigned treatment  from participants

and their doctors. For example, if  were aspirin the investigators would ad-

minister an aspirin pill to those randomly assigned to  = 1, and a placebo

(an identical pill except that it does not contain aspirin) to those assigned to

 = 0. Because participants and their doctors do not know whether the pill

they are given is the active treatment or a placebo, they are are said to be

“blinded” and the study is referred to as a double-blind placebo-controlled ran-

domized experiment. A double-blind treatment assignment, however, is often

unfeasible. For example, in our heart transplant study, there is no practicalOther studies cannot be effectively

blinded because known side effects

of a treatment will make apparent

who is taking it.

way of administering a convincing placebo for open heart surgery.

Again, a key point is that the effect of  does not measure “the effect

of treating with ” but rather “the effect of assigning participants to being

treated with ” or “the effect of having the intention of treating with ,”

which is why the causal effect of randomized assignment  is referred to as the

intention-to-treat effect. Yet, despite its dependence on adherence and other
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Technical Point 9.2

The exclusion restriction. If the exclusion restriction holds, then there is no direct arrow from assigned treatment 

to the outcome  , that is, that all of the effect of  on  is mediated through the received treatment . Let   be

the counterfactual outcome under randomized treatment assignment  and actual treatment received . Formally, we

say that the exclusion restriction holds when  =0 =  =1 for all individuals and all values  and, specifically, for

the value  observed for each individual. Instrumental variable methods (see Chapter 16) rely critically on the exclusion

restriction being true.

factors, the effect of treatment assignment  is the effect that investigators

pursue in most randomized experiments. Why would one be interested in the

effect of assigned treatment  rather than in the effect of the treatment truly

received ? The next section provides some answers to this question.

9.5 Per-protocol effect

In randomized experiments, the per-protocol effect is the causal effect of treat-

ment that would have been observed if all individuals had adhered to their

assigned treatment as specified in the protocol of the experiment. If all study

participants happen to adhere to the assigned treatment, the values of assigned

treatment  and received treatment  coincide for all participants, and there-

fore the per-protocol effect can be equivalently defined as either the average

causal effect of  or of . As explained in Chapter 2, in ideal experiments

with perfect adherence, the treated ( = 1) and the untreated ( = 0) are ex-

changeable,  ⊥⊥, and association is causation. The associational risk ratio
Pr[ = 1| = 1]Pr[ = 1| = 0] is expected to equal the causal risk ratio

Pr[ =1 = 1]Pr[ =0 = 1], which measures the per-protocol effect on the

risk ratio scale.

Consider now a setting in which some individuals do not adhere to the

assigned treatment so that their values of assigned treatment  and received

treatment  differ. For example, suppose that the most severely ill individuals

in the  = 0 group tend to seek a heart transplant ( = 1) outside of the

study. If that occur, then the group  = 1 would include a higher proportion

of severely ill individuals than the group  = 0: the groups  = 1 and  = 0

would not be exchangeable, and thus association between  and  would not

be causation. The associational risk ratio Pr[ = 1| = 1]Pr[ = 1| = 0]
would not equal the causal per-protocol risk ratio Pr[ =1 = 1]Pr[ =0 = 1].

The setting described in the previous paragraph is represented by Figure

9.11, with  representing severe illness (1: yes, 0: no). As indicated by the

backdoor path  ←  →  , there is confounding for the effect of  on

 . Because the reasons why participants receive treatment  include prog-

nostic factors  , computing the per-protocol effect requires adjustment for

confounding. That is, computation of the per-protocol effect requires viewing

the randomized experiment as an observational study. If the factors  remain

unmeasured, the effect of received treatment  cannot be correctly computed.

See Fine Point 9.2 for a description of approaches to quantify the per-protocol

effect when the prognostic factors that predict adherence are measured.

In contrast, there is no confounding for the effect of assigned treatment
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Fine Point 9.2

Per-protocol analyses. In randomized trials, two common attempts to estimate the per-protocol effect of treatment

 are ‘as treated’ and ‘per protocol’ analyses.

A conventional as-treated analysis compares the distribution of the outcome  in those who received treatment

( = 1) versus those who did not receive treatment ( = 0), regardless of their treatment assignment . Clearly, a

conventional as-treated comparison will be confounded if the reasons that moved participants to take treatment were

associated with prognostic factors  that were not measured, as in Figures 9.11 and 9.12. On the other hand, consider

a setting in which all backdoor paths between  and  can be blocked by conditioning on measured factors , as in

Figure 9.13. Then an as-treated analysis will succeed in estimating the per-protocol effect if it appropriately measures

and adjusts for the factors .

A conventional per-protocol analysis–also referred to as an on-treatment analysis–only includes individuals who

adhered to the study protocol: the so-called per-protocol population of participants with  = . The analysis then

compares, in the per-protocol population only, the distribution of the outcome  in those with were assigned to treatment

( = 1) versus those who were not assigned to treatment ( = 0). That is, a conventional per-protocol analysis, which

is just an intention-to-treat analysis restricted to the per-protocol population, will generally result in a biased estimate

of the per-protocol effect. To see why, consider the causal diagram in Figure 9.14, which includes an indicator of

selection  into the per-protocol population:  = 1 if  =  and  = 0 otherwise. Selection bias will arise unless the

per-protocol analysis appropriately measures and adjusts for the factors .

That is, as-treated and per-protocol analyses are observational analyses of a randomized experiment and, like any

observational analysis, require appropriate adjustment for confounding and selection bias to obtain valid estimates of

the per-protocol effect. For examples and additional discussion, see Hernán and Hernández-Díaz (2012).

. Because  is randomly assigned, exchangeability  ⊥⊥ holds for the

assigned treatment  even if it does not hold for the received treatment .

There are no backdoor paths from  to  in Figure 9.11. Association between

 and  implies a causal effect of  on  , whether or not all individuals

adhere to the assigned treatment. The associational risk ratio Pr[ = 1| =

1]Pr[ = 1| = 0] equals the causal intention-to-treat risk ratio Pr[ =1 =The analysis that estimates the un-

adjusted association between  and

 to estimate the intention-to-treat

effect is referred to as an intention-

to-treat analysis. See Fine Point

9.4 for more on intention-to-treat

analyses.

1]Pr[ =0 = 1].

The lack of confounding largely explains why the intention-to-treat effect is

privileged in many randomized experiments: “the effect of having the intention

of treating with ” may not measure the treatment effect that we want–“the

effect of treating with ” or the per-protocol effect–but it is easier to compute

correctly than the per-protocol effect. As often occurs when a less interesting

quantity is easier to compute than a more interesting quantity, we tend to

come up with arguments to justify the use of the less interesting quantity.

The intention-to-treat effect is no exception. We now discuss why several well-

known justifications for the intention-to-treat effect need to be taken with a

grain of salt. See also Fine Point 9.4.

A common justification for the intention-to-treat effect is that it preserves

the null. That is, if treatment  has a null effect on  , then assigned treatment

 will also have a null effect on  . Null preservation is a key property because

it ensures no effect will be declared when no effect exists. More formally, underIn statistical terms, the intention-

to-treat analysis provides a valid–

though perhaps underpowered–-

level test of the null hypothesis of

no average treatment effect.

the sharp causal null hypothesis and the exclusion restriction, it can be shown

that Pr[ = 1| = 1]Pr[ = 1| = 0] = Pr[ =1 = 1]Pr[ =0 = 1] = 1.

However, this equality is not true when the exclusion restriction does not hold,

as represented in Figure 9.11. In those cases–experiments that are not double-

blind placebo-controlled–the effect of  may be null while the effect of  is

non-null. To see that, mentally erase the arrow  −→  in Figure 9.11: there
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Fine Point 9.3

Pseudo-intention-to-treat analysis. The intention-to-treat effect can only be directly computed from an intention-to-

treat analysis if there are no losses to follow-up or other forms of censoring. When some individuals do not complete the

follow-up, their outcomes are unknown and thus the analysis needs to be restricted to individuals with complete follow-

up. Thus, we can only conduct a pseudo-intention-to-treat analysis Pr[ = 1| = 1  = 0]Pr[ = 1| = 0  = 0]
where  = 0 indicates that an individual remained uncensored until the measurement of  . As described in Chapter 8,

censoring may induce selection bias and thus the pseudo-intention-to-treat estimate may be a biased estimate, in either

direction, of the intention-to-treat effect. In the presence of loss to follow-up or other forms of censoring, the analysis

of randomized experiments requires appropriate adjustment for selection bias even to compute the intention-to-treat

effect. For additional discussion, see Little et al (2012).

is still an arrow from  to  .
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A related justification for the intention-to-treat effect is that its value is

guaranteed to be closer to the null than the value of the per-protocol effect.

The intuition is that imperfect adherence results in an attenuation–not an

exaggeration–of the effect. Therefore, the intention-to-treat risk ratio Pr[ =

1| = 1]Pr[ = 1| = 0] will have a value between 1 and that of the per-

protocol risk ratio Pr[ =1 = 1]Pr[ =0 = 1]. The intention-to-treat effect

can thus be interpreted as a lower bound for the per-protocol effect, i.e., as

a conservative effect estimate. There are, however, three problems with this

answer.

First, this justification assumes monotonicity of effects (see Technical Point

5.2), that is, that the treatment effect is in the same direction for all individuals.

If this were not the case and the degree of non-adherence were high, then the

per-protocol effect may be closer to the null than the intention-to-treat effect.

For example, suppose that 50% of the individuals assigned to treatment did

not adhere (e.g., because of mild adverse effects after taking a couple of pills),

and that the direction of the effect is opposite in those who did and did not

adhere. Then the intention-to-treat effect would be anti-conservative.

Second, suppose the effects are monotonic. The intention-to-treat effect

may be conservative in placebo-controlled experiments, but not necessarily in

head-to-head trials in which individuals are assigned to two active treatments.

Suppose individuals with a chronic and painful disease were randomly assigned

to either an expensive drug ( = 1) or ibuprofen ( = 0). The goal was to de-

termine which drug results in a lower risk of severe pain  after 1 year of follow-

up. Unknown to the investigators, both drugs are equally effective to reduce

pain, that is, the per-protocol (causal) risk ratio Pr[ =1 = 1]Pr[ =0 = 1]

is 1. However, adherence to ibuprofen happened to be lower than adherence

to the expensive drug because of a mild, easily palliated side effect. As a re-

sult, the intention-to-treat risk ratio Pr[ = 1| = 1]Pr[ = 1| = 0] was

greater than 1, and the investigators wrongly concluded that ibuprofen was

less effective than the expensive dug to reduce severe pain.

Third, suppose the intention-to-treat effect is indeed conservative. ThenA similar argument against

intention-to-treat analyses applies

to non-inferiority trials, in which

the goal is to demonstrate that

one treatment is not inferior to the

other.

the intention-to-treat effect is a dangerous effect measure when the goal is

evaluating a treatment’s safety: one could naïvely conclude that a treatment 

is safe because the intention-to-treat effect of  on the adverse outcome is close

to null, even if treatment  causes the adverse outcome in a significant fraction

of the patients. The explanation may be that many individuals assigned to

 = 1 did not take, or stopped taking, the treatment before developing the
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Fine Point 9.4

Effectiveness versus efficacy. Some authors refer to the per-protocol effect, e.g., Pr[ =1 = 1]Pr[ =0 = 1] as

the treatment’s “efficacy,” and to the intention-to-treat effect, e.g., Pr[ =1 = 1]Pr[ =0 = 1], as the treatment’s

“effectiveness.” A treatment’s “efficacy” closely corresponds to what we have referred to as the average causal effect of

treatment  in an ideal randomized experiment. In contrast, a treatment’s “effectiveness” would correspond to the effect

of assigning treatment  in a setting in which the interventions under study will not be optimally implemented, typically

because a fraction of study individuals will not adhere. Using this terminology, it is often argued that “effectiveness” is

the most realistic measure of a treatment’s effect because “effectiveness” includes any effects of treatment assignment 

not mediated through the received treatment , and already incorporates the fact that people will not perfectly adhere

to the assigned treatment. A treatment’s “efficacy,” on the other hand, does not reflect a treatment’s effect in real

conditions. Thus it is claimed that one is justified to report the intention-to-treat effect as the primary finding from a

randomized experiment not only because it is easy to compute, but also because “effectiveness” is the truly interesting

effect measure.

Unfortunately, the above argumentation is problematic. First, the intention-to-treat effect measures the effect of

assigned treatment under the adherence conditions observed in a particular experiment. The actual adherence in real

life may be different (e.g., participants in a study may adhere better if they are closely monitored), and may actually

be affected by the findings from that particular experiment (e.g., people will be more likely to adhere to a treatment

after they learn it works). Second, the above argumentation implies that we should refrain from conducting double-blind

randomized clinical trials because, in real life, both patients and doctors are aware of the received treatment. Thus a true

“effectiveness” measure should incorporate the effects stemming from assignment awareness (e.g., behavioral changes)

that are eliminated in double-blind randomized experiments. Third, individual patients who are planning to adhere to

the treatment prescribed by their doctors will be more interested in the per-protocol effect than in the intention-to-treat

effect. For more details, see the discussion by Hernán and Hernández-Díaz (2012).

adverse outcome.

Thus the exclusive reporting of intention-to-treat effect estimates as the

findings from a randomized experiment is hard to justify for experiments with

substantial non-adherence, and for those aiming at estimating harms rather

than benefits. Unfortunately, computing the per-protocol effect requires ad-

justment for confounding under the assumption of exchangeability conditional

on the measured covariates, or via instrumental variable estimation (a partic-

ular case of g-estimation, see Chapter 16) under alternative assumptions.For a non-technical discussion of

per-protocol effects in complex ran-

domized experiments, see Hernán

and Robins (2017).

Our discussion of per-protocol has been necessarily oversimplified because

we have not yet introduced time-varying treatments in this book. When, as

often happens, treatment can vary over time in a randomized experiment,

we define the per-protocol effect as the effect that would have been observed

if everyone had adhered to their assigned treatment strategy throughout the

follow-up. Part III describes the concepts and methods that are required to

define and estimate per-protocol effects in the general case.

In summary, in the analysis of randomized experiments there is trade-off

between bias due to potential unmeasured confounding–when choosing the

per-protocol effect–and misclassification bias–when choosing the intention-

to-treat effect. Reporting only the intention-to-treat effect implies preference

for misclassification bias over confounding, a preference that needs to be jus-

tified in each application.



Chapter 10
RANDOM VARIABILITY

Suppose an investigator conducted a randomized experiment to answer the causal question “does one’s looking

up to the sky make other pedestrians look up too?” She found an association between her looking up and other

pedestrians’ looking up. Does this association reflect a causal effect? By definition of randomized experiment,

confounding bias is not expected in this study. In addition, no selection bias was expected because all pedestrians’

responses–whether they did or did not look up–were recorded, and no measurement bias was expected because

all variables were perfectly measured. However, there was another problem: the study included only 4 pedestrians,

2 in each treatment group. By chance, 1 of the 2 pedestrians in the “looking up” group, and neither of the 2

pedestrians in the “looking straight” group, was blind. Thus, even if the treatment (the investigator’s looking

up) truly had a strong average effect on the outcome (other people’s looking up), half of the individuals in the

treatment group happened to be immune to the treatment. The small size of the study population led to a dilution

of the estimated effect of treatment on the outcome.

There are two qualitatively different reasons why causal inferences may be wrong: systematic bias and ran-

dom variability. The previous three chapters described three types of systematic biases: selection bias, measure-

ment bias–both of which may arise in observational studies and in randomized experiments–and unmeasured

confounding–which is not expected in randomized experiments. So far we have disregarded the possibility of

bias due to random variability by restricting our discussion to huge study populations. In other words, we have

operated as if the only obstacles to identify the causal effect were confounding, selection, and measurement. It is

about time to get real: the size of study populations in etiologic research rarely precludes the possibility of bias

due to random variability. This chapter discusses random variability and how we deal with it.

10.1 Identification versus estimation

The first nine chapters of this book are concerned with the computation of

causal effects in study populations of near infinite size. For example, when

computing the causal effect of heart transplant on mortality in Chapter 2, we

only had a twenty-person study population but we regarded each individual

in our study as representing 1 billion identical individuals. By acting as if

we could obtain an unlimited number of individuals for our studies, we could

ignore random fluctuations and could focus our attention on systematic biases

due to confounding, selection, and measurement. Statisticians have a name for

problems in which we can assume the size of the study population is effectively

infinite: identification problems.

Thus far we have reduced causal inference to an identification problem. Our

only goal has been to identify (or, as we often said, to compute) the average

causal effect of treatment  on the outcome  . The concept of identifiability

was first described in Section 3.1–and later discussed in Sections 7.2 and

8.4–where we also introduced some conditions generally required to identify

causal effects even if the size of the study population could be made arbitrarily

large. These so-called identifying conditions were exchangeability, positivity,

and consistency.

Our ignoring random variability may have been pedagogically convenient

to introduce systematic biases, but also extremely unrealistic. In real research
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projects, the study population is not effectively infinite and hence we cannot

ignore the possibility of random variability. To this end let us return to our

twenty-person study of heart transplant and mortality in which 7 of the 13

treated individuals died.

Suppose our study population of 20 can be conceptualized as being a ran-

dom sample from a super-population so large compared with the study popu-

lation that we can effectively regard it as infinite. Further, suppose our goal is

to make inferences about the super-population. For example, we may want

to make inferences about the super-population probability (or proportion)

Pr[ = 1| = ]. We refer to the parameter of interest in the super-population,

the probability Pr[ = 1| = ] in this case, as the estimand. An estimator

is a rule that takes the data from any sample from the super-population and

produces a numerical value for the estimand. This numerical value for a par-

ticular sample is the estimate from that sample. The sample proportion of

individuals that develop the outcome among those receiving treatment level

, cPr[ = 1 |  = ], is an estimator of the super-population probability

Pr[ = 1| = ]. The estimate from our sample is cPr[ = 1 |  = ] = 713.

More specifically, we say that 713 is a point estimate. The value of the esti-

mate will depend on the particular 20 individuals randomly sampled from the

super-population.

As informally defined in Chapter 1, an estimator is consistent for a par-

ticular estimand if the estimates get (arbitrarily) closer to the parameter as

the sample size increases (see Technical Point 10.1 for the formal definition).

Thus the sample proportion cPr[ = 1 |  = ] consistently estimates the

super-population probability Pr[ = 1| = ], i.e., the larger the num-

ber  of individuals in our study population, the smaller the magnitude of

Pr[ = 1| = ] − cPr[ = 1 |  = ] is expected to be. Previous chap-

ters were exclusively concerned with identification; from now on we will be

concerned with statistical estimation.For an introduction to statistics,

see the book by Wasserman (2004).

For a more detailed introduction,

see Casella and Berger (2002).

Even consistent estimators may result in point estimates that are far from

the super-population value. Large differences between the point estimate and

the super-population value of a proportion are much more likely to happen

when the size of the study population is small compared with that of the super-

population. Therefore it makes sense to have more confidence in estimates

that originate from larger study populations. Statistical theory allows one

to quantify this confidence in the form of a confidence interval around the

point estimate. The larger the size of the study population, the narrower the

confidence interval. A common way to construct a 95% confidence interval for

a point estimate is to use a 95% Wald confidence interval centered at a point

estimate. It is computed as follows.

First, estimate the standard error of the point estimate under the assump-

tion that our study population is a random sample from a much larger super-

population. Second, calculate the upper limit of the 95% Wald confidence

interval by adding 196 times the estimated standard error to the point esti-

mate, and the lower limit of the 95% confidence interval by subtracting 196

times the estimated standard error from the point estimate. For example, con-

sider our estimator cPr[ = 1 |  = ] = ̂ of the super-population parameter

Pr[ = 1| = ] = . Its standard error is

q
(1−)


(the standard error of a

binomial) and thus its estimated standard error is

q
̂(1−̂)


=

q
(713)(613)

13
=

0138. Recall that the Wald 95% confidence interval for a parameter  based

on an estimator b is b±196× b³b´ where b³b´ is an estimate of the (exact
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or large sample) standard error of b and 196 is the upper 975% quantile of

a standard normal distribution with mean 0 and variance 1. Therefore the

95% Wald confidence interval for our estimate is 027 to 081. The length and

centering of the 95%Wald confidence interval will vary from sample to sample.

A 95% confidence interval is calibrated if the estimand is contained in theA Wald confidence interval cen-

tered at ̂ is only guaranteed to be

valid in large samples. For simplic-

ity, here we assume that our sample

size is sufficiently large for the va-

lidity of our Wald interval.

interval in 95% of random samples, conservative if the estimand is contained in

more than 95% of samples, and anticonservative otherwise. We will say that a

confidence interval is valid if, for any value of the true parameter, the interval

is either calibrated or conservative, i.e. it covers the true parameter at least

95% of the time. We would like to choose the valid interval whose width is

narrowest.

The validity of confidence intervals is defined in terms of the frequency of

coverage in repeated samples from the super-population, but we only see one

of those samples when we conduct a study. Why should we care about what

would have happened in other samples that we did not see? One important

answer is that the definition of confidence interval also implies the following.

Suppose we and all of our colleagues keep conducting research studies for the

rest of our lifetimes. In each new study, we construct a valid 95% confidence

interval for the parameter of interest. Then, at the end of our lives, we can look

back at all the studies that were conducted, and conclude that the parameters

of interest were trapped in–or covered by–the confidence interval in at least

95% of the studies. Unfortunately, we will have no way of identifying the (up

to) 5% of the studies in which the confidence interval failed to include the

super-population quantity.

Importantly, the 95% confidence interval from a single study does not im-

ply that there is a 95% probability that the estimand is in the interval. In

our example, we cannot conclude that the probability that the estimand lies

between the values 027 and 081 is 95%. The estimand is fixed, which implies

that either it is or it is not included in the particular interval (027, 081).

In this sense, the probability that the estimand is included in that interval is

either 0 or 1. A confidence interval only has a frequentist interpretation. Its

level (e.g., 95%) refers to the frequency with which the interval will trap theIn contrast with a frequentist 95%

confidence interval, a Bayesian 95%

credible interval can be interpreted

as “there is a 95% probability that

the estimand is in the interval”.

However, for a Bayesian, probabil-

ity is defined not as a frequency

over hypothetical repetitions but as

degree-of-belief. In this book we

adopt the frequency definition of

probability. See Fine Point 11.2 for

more on Bayesian intervals.

unknown super-population quantity of interest over a collection of studies (or

in hypothetical repetitions of a particular study).

Confidence intervals are often classified as either small-sample or large-

sample confidence intervals. A small-sample valid (conservative or calibrated

) confidence interval is one that is valid at all sample sizes for which it is

defined. Small-sample calibrated confidence intervals are sometimes called ex-

act confidence intervals. A large-sample (equivalently, asymptotic) valid con-

fidence interval is one that is valid only in large samples. A large-sample

calibrated 95% confidence interval is one whose coverage becomes arbitrarily

close to 95% as the sample size increases. The Wald confidence interval for

Pr[ = 1| = ] =  mentioned above is a large-sample calibrated confidence

interval, but not a small-sample valid interval. (There do exist small-sample

valid confidence intervals for , but they are not often used in practice.) WhenThere are many valid large-sample

confidence intervals other than the

Wald interval (Casella and Berger,

2002). One of these might be pre-

ferred over the Wald interval, which

can be badly anti-conservative in

small samples (Brown et al, 2001).

the sample size is small, a valid large-sample confidence interval, such as the

Wald 95% confidence interval of our example above, may not be valid. In this

book, when we use the term 95% confidence interval, we mean a large-sample

valid confidence interval, like a Wald interval, unless stated otherwise. See also

Fine Point 10.1.

However, not all consistent estimators can be used to center a valid Wald

confidence interval, even in large samples. Most users of statistics will consider

an estimator unbiased if it can center a valid Wald interval and biased if it
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Fine Point 10.1

Honest confidence intervals. The smallest sample size at which a large-sample, valid 95% confidence interval covers

the true parameter at least 95% of the time may depend on the unknown value of the true parameter. We say a

large-sample valid 95% confidence interval is uniform or honest if there exists a sample size  at which the interval is

guaranteed to cover the true parameter value at least 95% of the time, whatever be the value of the true parameter. We

demand honest intervals because, in the absence of uniformity, at any finite sample size there may be data generating

distributions under which the coverage of the true parameter is much less than 95%. Unfortunately, for a large-sample,

honest confidence interval, the smallest such  is generally unknown and is difficult to determine even by simulation.

See Robins and Ritov (1997) for technical details.

In the remainder of the text, when we refer to valid confidence intervals, we will mean large-sample honest confidence

intervals. By definition, any small-sample valid confidence interval is uniform or honest for all  for which the interval

is defined.

cannot (see Technical Point 10.1 for details). For now, we will equate the term

bias with the inability to center valid Wald confidence intervals.

10.2 Estimation of causal effects

Suppose our heart transplant study was a marginally randomized experiment,

and that the 20 individuals were a random sample of all individuals in a nearly

infinite super-population of interest. Suppose further that all individuals in

the super-population were randomly assigned to either  = 1 or  = 0, and

that all of them adhered to their assigned treatment. Exchangeability of the

treated and the untreated would hold in the super-population, i.e., Pr[  =

1] = Pr[ = 1| = ], and therefore the causal risk difference Pr[ =1 = 1]−
Pr[ =0 = 1] equals the associational risk difference Pr[ = 1| = 1]−Pr[ =

1| = 0] in the super-population.
Because our study population is a random sample of the super-population,

the sample proportion of individuals that develop the outcome among those

with observed treatment value  = , cPr[ = 1 |  = ], is an unbiased

estimator of the super-population probability Pr[ = 1| = ]. Because of

exchangeability in the super-population, the sample proportion cPr[ = 1 |
 = ] is also an unbiased estimator of Pr[  = 1]. Thus testing the causal

null hypothesis Pr[ =1 = 1] = Pr[ =0 = 1] boils down to comparing, via

standard statistical procedures, the sample proportions cPr [ = 1 |  = 1] =
713 and cPr [ = 1 |  = 0] = 37. Standard statistical methods can also

be used to compute 95% confidence intervals for the causal risk difference and

causal risk ratio in the super-population, which are estimated by (713)−(37)
and (713)(37), respectively. Slightly more involved, but standard, statistical

procedures are used in observational studies to obtain confidence intervals for

standardized, IP weighted, or stratified association measures.

There is an alternative way to think about sampling variability in random-

ized experiments. Suppose only individuals in the study population, not all

individuals in the super-population, are randomly assigned to either  = 1

or  = 0. Because of the presence of random sampling variability, we do

not expect that exchangeability will exactly hold in our sample. For example,

suppose that only the 20 individuals in our study were randomly assigned to
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Technical Point 10.1

Bias and consistency in statistical inference. We have discussed systematic bias (due to unknown sources of

confounding, selection, or measurement error) and consistent estimators in earlier chapters. Here we discuss these and

other concepts of bias, and describe how they are related.

To provide a formal definition of consistent estimator for an estimand , suppose we observe  independent, iden-

tically distributed (i.i.d.) copies of a vector-valued random variable whose distribution  lies in a setM of distributions

(our model). Then the estimator b is consistent for  =  ( ) in modelM if b converges to  in probability for every
 ∈M i.e.

Pr

h
|b −  ( ) |  

i
→ 0 as →∞ for every   0  ∈M.

The estimator b is exactly unbiased in modelM if, for every  ∈ME

hbi =  ( ). The exact bias under  is

the difference E

hbi−  ( ). We denote the estimator by b rather than by simply b to emphasize that the estimate
depends on the sample size . On the other hand, the parameter  ( ) is a fixed, though unknown, quantity depending

on  ∈M. When  is the distribution generating the data in our study, we often suppress the  in the notation and

, e.g., write E
hbi = . For many parameters  such as the risk ratio Pr[ = 1| = 1]Pr[ = 1| = 0], exactly

unbiased estimators do not exist.

A systematically biased estimator is neither consistent nor exactly unbiased. Robins and Morgenstern (1987)

argue that most applied researchers (e.g., epidemiologists) will declare an estimator unbiased only if it can center a

valid Wald confidence interval. They show that under this definition, an estimator is only unbiased if it is uniformly

asymptotic normal and unbiased (UANU), as only UANU estimators can center valid standard Wald intervals for  ( )

under the modelM. An estimator b is UANU in modelM if there exists sequences  ( ) such that the z-statistic³b −  ( )
´
 ( ) converges uniformly to a standard normal random variable in the following sense: for  ∈ 

sup
∈M

|Pr
h
12

³b −  ( )
´
 ( )  

i
−Φ () |→ 0 as →∞

where Φ () is the standard normal cumulative distribution function (Robins and Ritov,1997).

All inconsistent estimators and some consistent estimators (see Chapter 18 for examples), are biased under this

definition. In the text, whenever we say an estimator is unbiased (without further qualification) we mean that it is

UANU.

either heart transplant ( = 1) or medical treatment ( = 0). Suppose further

that each individual can be classified as good or bad prognosis at the time of

randomization. We say that the groups  = 0 and  = 1 are exchangeable

if they include exactly the same proportion of individuals with bad prognosis.

By chance, it is possible that 2 out of the 13 individuals assigned to  = 1

and 3 of the 7 individuals assigned to  = 0 had bad prognosis. However, if

we increased the size of our sample then there is a high probability that the

relative imbalance between the groups  = 1 and  = 0 would decrease.

Under this conceptualization, there are two possible targets for inference.

First, investigators may be agnostic about the existence of a super-population

and restrict their inference to the sample that was actually randomized. This is

referred to as randomization-based inference, and requires taking into account

some technicalities that are beyond the scope of this book. Second, investiga-See Robins (1988) for a discussion

of randomization-based inference. tors may still be interested in making inferences about the super-population

from which the study sample was randomly drawn. From an inference stand-

point, this latter case turns out to be mathematically equivalent to the con-

ceptualization of sampling variability described at the start of this section in
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which the entire super-population was randomly assigned to treatment. That

is, randomization followed by random sampling is equivalent to random sam-

pling followed by randomization.

In many cases we are not interested in the first target. To see why, consider

a study that compares the effect of two first-line treatments on the mortality

of cancer patients. After the study ends, we may determine that it is better

to initiate one of the two treatments, but this information is now irrelevant

to the actual study participants. The purpose of the study was not to guide

the choice of treatment for patients in the study but rather for a group of

individuals similar to–but larger than–the studied sample. Heretofore we

have assumed that there is a larger group–the super-population–from which

the study participants were randomly sampled. We now turn our attention to

the concept of the super-population.

10.3 The myth of the super-population

As discussed in Chapter 1, there are two sources of randomness: sampling

variability and nondeterministic counterfactuals. Below we discuss both.

Consider our estimate cPr[ = 1 |  = 1] = ̂ = 713 of the super-

population risk Pr[ = 1| = ] = . Nearly all investigators would report a

binomial confidence interval ̂±196
q

̂(1−̂)


= 713±196
q

(713)(613)

13
for the

probability . If asked why these intervals, they would say it is to incorporate

the uncertainty due to random variability. But these intervals are valid only

if ̂ has a binomial sampling distribution. So we must ask when would that

happen. In fact there are two scenarios under which ̂ has a binomial samplingRobins (1988) discussed these two

scenarios in more detail. distribution.

• Scenario 1. The study population is sampled at random from an es-

sentially infinite super-population, sometimes referred to as the source

or target population, and our estimand is the proportion  = Pr[ =The term i.i.d. used in Techni-

cal Point 10.1 means that our data

were a random sample of size 

from a super-population.

1| = 1] of treated individuals who developed the outcome in the super-
population. It is then mathematically true that, in repeated random

samples of size 13 from the treated individuals in the super-population,

the number of individuals who develop the outcome among the 13 is a

binomial random variable with success probability Pr[ = 1| = 1]. As
a result, the 95%Wald confidence interval calculated in the previous sec-

tion is asymptotically calibrated for Pr[ = 1| = 1]. This is the model
we have considered so far.

• Scenario 2. The study population is not sampled from any super-population.
Rather (i) each individual  among the 13 treated individuals has an indi-

vidual nondeterministic (stochastic) counterfactual probability =1 (ii)

the observed outcome  =  =1
 for subject  occurs with probabil-

ity =1 and (iii) =1 takes the same value, say , for each of the 13

treated individuals. Then the number of individuals who develop the

outcome among the 13 treated is a binomial random variable with suc-

cess probability . As a result, the 95% confidence interval calculated in

the previous section is asymptotically calibrated for .

Scenario 1 assumes a hypothetical super-population. Scenario 2 does not.

However, Scenario 2 is untenable because the probability =1 of developing
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the outcome when treated will almost certainly vary among the 13 treated in-

dividuals due to between-individual differences in risk. For example we would

expect the probability of death =1 to have some dependence on an indi-

vidual’s genetic make-up. If the =1 are nonconstant then the estimand of

interest in the actual study population would generally be the average, say , of

the 13 =1 . But in that case the number of treated who develop the outcome

is not a binomial random variable with success probability  and the 95% con-

fidence interval for  calculated in the previous section is not asymptotically

calibrated but conservative.

Therefore, any investigator who reports a binomial confidence interval for

Pr[ = 1| = ], and who acknowledges that there exists between-individual

variation in risk, must be implicitly assuming Scenario 1: the study individuals

were sampled from a near-infinite super-population and that all inferences are

concerned with quantities from that super-population. Under Scenario 1, the

number with the outcome among the 13 treated is a binomial variable regard-

less of whether the underlying counterfactual is deterministic or stochastic.

An advantage of working under the hypothetical super-population scenario

is that nothing hinges on whether the world is deterministic or nondetermin-

istic. On the other hand, the super-population is generally a fiction; in most

studies individuals are not randomly sampled from any near-infinite popula-

tion. Why then has the myth of the super-population endured? One reason is

that it leads to simple statistical methods.

A second reason has to do with generalization. As we mentioned in the

previous section, investigators generally wish to generalize their findings about

treatment effects from the study population (e.g., the 20 individuals in our

heart transplant study) to some large target population (e.g., all immortals in

the Greek pantheon). The simplest way of doing so is to assume the study

population is a random sample from a large population of individuals who

are potential recipients of treatment. Since this is a fiction, a 95% confi-

dence interval computed under Scenario 1 should be interpreted as covering

the super-population parameter had, often contrary to fact, the study individ-

uals been sampled randomly from a near infinite super-population. In other

words, confidence intervals obtained under Scenario 1 should be viewed as

what-if statements.

It follows from the above that an investigator might not want to entertain

Scenario 1 if the size of the pool of potential recipients is not much larger

than the size of the study population, or if the target population of potential

recipients is believed to differ from the study population to an extent that

cannot be accounted for by sampling variability (see Fine Point 10.2).

Here we will accept that individuals were randomly sampled from a super-

population, and explore the consequences of random variability for causal in-

ference in that context. We first explore this question in a simple randomized

experiment.

10.4 The conditionality “principle”

Table 10.1 summarizes the data from a randomized trial to estimate the average

causal effect of treatment  (1: yes, 0: no) on the 1-year risk of death  (1:

yes, 0: no). The experiment included 240 individuals, 120 in each treatment

group. The associational risk difference is Pr[ = 1| = 1] − Pr[ = 1| =

0] = 24
120
− 42

120
= −015. Suppose the experiment had been conducted in a
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Fine Point 10.2

Quantitative bias analysis. The width of the usual Wald-type confidence intervals is a function of the standard error

of the estimator and thus reflects only uncertainty due to random error. However, the possible presence of systematic

bias due to confounding, selection, or measurement is another important source of uncertainty which renders the usual

Wald interval invalid.

This uncertainty due to systematic bias is well recognized by investigators and usually a central part of the discussion

section of scientific articles. However, most discussions revolve around informal judgments about the potential direction

and magnitude of the systematic bias. Some authors argue that quantitative methods need to be used to produce

intervals around the effect estimate that integrate random and systematic sources of uncertainty. These methods are

referred to as quantitative bias analysis. See the book by Lash, Fox, and Fink (2009). Bayesian alternatives are discussed

by Greenland and Lash (2008), and Greenland (2009a, 2009b).

super-population of near-infinite size, the treated and the untreated would be

exchangeable, i.e.,  ⊥⊥, and the associational risk difference would equal
the causal risk difference Pr

£
 =1 = 1

¤ − Pr £ =0 = 1
¤
. Suppose the study

investigators computed a 95% confidence interval (−026−004) around the
point estimate −015 and published an article in which they concluded that
treatment was beneficial because it reduced the risk of death by 15 percentageThe estimated variance of the un-

adjusted estimator is
24
120

96
120

120
+

42
120

78
120

120
= 31

9600
. The Wald

95% confidence interval is then

−015 ± ¡ 31
9600

¢12 × 196 =

(−026−004).

points.

However, the study population had only 240 individuals and is therefore

likely that, due to chance, the treated and the untreated are not perfectly

exchangeable. Random assignment of treatment does not guarantee exact ex-

changeability for the sample consisting of the 240 individuals in the trial; it only

guarantees that any departures from exchangeability are due to random vari-

ability rather than to a systematic bias. In fact, one can view the uncertainty

resulting from our ignorance of the chance correlation between unmeasured

baseline risk factors and the treatment  in the study sample as contributing

to the length 022 of the confidence interval.Table 10.1

 = 1  = 0

 = 1 24 96

 = 0 42 78

A few months later the investigators learn that information on a third

variable, cigarette smoking  (1: yes, 0: no), had also been collected and

decide to take a look at it. The study data, stratified by , is shown in Table

10.2. Unexpectedly, the investigators find that the probability of receiving

treatment for smokers (80120) is twice that for nonsmokers (40120), which

suggests that the treated and the untreated are not exchangeable and thus

that adjustment for smoking is necessary. When the investigators adjust viaTable 10.2

L = 1  = 1  = 0

 = 1 4 76

 = 0 2 38

L = 0  = 1  = 0

 = 1 20 20

 = 0 40 40

stratification, the associational risk difference in smokers, Pr[ = 1| = 1  =
1]− Pr[ = 1| = 0  = 1], is equal to 0. The associational risk difference in
nonsmokers, Pr[ = 1| = 1  = 0] − Pr[ = 1| = 0  = 0], is also equal

to 0. Treatment has no effect in both smokers and nonsmokers, even though

the marginal risk difference −015 suggested a net beneficial effect in the study
population.

The estimated variance of the ad-

justed estimator is described in

Technical Point 10.5. The Wald

95% confidence interval is then

(−0076 0076).

These new findings are disturbing to the investigators. Either someone did

not assign the treatment at random (malfeasance) or randomization did not

result in approximate exchangeability (very very bad luck). A debate ensues

among the investigators. Should they retract their article and correct the

results? They all agree that the answer to this question would be affirmative

if the problem were due to malfeasance. If that were the case, there would

be confounding by smoking and the effect estimate should be adjusted for

smoking. But they all agree that malfeasance is impossible given the study’s
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Technical Point 10.2

A formal statement of the conditionality principle. The likelihood for the observed data has three factors: the

density of  given  and , the density of  given , and the marginal density of . Consider a simple example with

one dichotomous , exchangeability  ⊥⊥|, the stratum-specific risk difference  = Pr ( = 1| =   = 1)−
Pr ( = 1| =   = 0) known to be constant across strata of , and in which the parameter of interest is the stratum-

specific causal risk difference. Then the likelihood of the data is

Y
=1

 (| ;  0)×  (|;)×  (; )

where 0 = (01 02) with 0 = Pr ( = 1| =   = 0), , and  are nuisance parameters associated with the

conditional density of  given  and , the conditional density of  given , and the marginal density of , respectively.

See, for example, Casella and Berger (2002).

The data on  and  are said to be exactly ancillary for the parameter of interest when, as in this case, the

distribution of the data conditional on these variables depends on the parameter of interest, but the joint density of 

and  does not share parameters with  (| ;  0). The conditionality principle states that one should always

perform inference on the parameter of interest conditional on any ancillary statistics. Thus one should condition on the

ancillary statistic { ;  = 1  }. Analogously, if the risk ratio (rather than the risk difference) were known to be
constant across strata of , { ;  = 1  } remains ancillary for the risk ratio.

quality assurance procedures. It is therefore clear that the association between

smoking and treatment is entirely due to bad luck. Should they still retract

their article and correct the results?

One investigator says that they should not retract the article. His argument

goes as follows: “Okay, randomization went wrong for smoking, but why should

we privilege the adjusted over the unadjusted estimator? It is likely that

imbalances on other unmeasured factors  cancelled out the effect of the chance

imbalance on , so that the unadjusted estimator is still the closer to the true

value in the super-population.” A second investigator says that they should

retract the article and report the adjusted null result. Her argument goes as

follows: “We should adjust for  because the strong association between  and

 introduces confounding in our effect estimate. Within levels of , we have

mini randomized trials and the confidence intervals around the corresponding

point estimates will reflect the uncertainty due to the possible  - associations

conditional on .”

To determine which investigator is correct, here are the facts of the matter.

Suppose, for simplicity, the true causal risk difference is constant across strata

of , and suppose we could run the randomized experiment trillions of times.

We then select only (i.e., condition on) those runs in which smoking  and

treatment  are as strongly positively associated as in the observed data. We

would find that, within each level of , the fraction of these runs in which

any given risk factor  for  was positively associated with  essentially

equals the number of runs in which it was negatively associated. (This is true

even if  and  are highly correlated in both the super-population and in

the study data.) As a consequence, the adjusted estimate of the treatment

effect is unbiased but the unadjusted estimate is greatly biased when averaged

over these runs. Unconditionally–over all the runs of the experiment–both

the unadjusted and adjusted estimates are unbiased but the variance of the

adjusted estimate is smaller than that of the unadjusted estimate. That is, the
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Technical Point 10.3

Approximate ancillarity. Suppose that the stratum-specific risk difference () is known to vary over strata of .

Under our usual identifiability assumptions, the causal risk difference in the population is identified by the standardized

risk difference

 =
X


[Pr ( = 1| =   = 1; )− Pr ( = 1| =   = 0;)]  (; )

which depends on the parameters  = { 0;  = 0 1} and  (see Technical Point 10.2). In unconditionally

randomized experiments,  equals the associational , Pr ( = 1| = 1) − Pr ( = 1| = 0), because ⊥⊥
in the super-population. Due to the dependence of  on , { ;  = 1  } is no longer exactly ancillary and
in fact no exact ancillary exists.

Consider the statistic e = d −  where  =  () =
Pr(=1|=1;) Pr(=0|=0;)
Pr(=1|=0;) Pr(=0|=1;) is the -

odds ratio in the super-population, and d is  but with the the population proportions Pr ( = | = ;)

replaced by the empirical sample proportions cPr ( = | = ). e is asymptotically normal with mean 0. Let b =e b(e), where b(e) is an estimate of the standard error of e. The distribution of b converges to a standard normal
distribution in large samples, so that b quantifies the - association in the data on a standardized scale. For example,
if b = 2, then b is two standard deviations above its (asymptotic) expected value of 0.

When the true value of  is known, b is referred to as an approximate (or large sample) ancillary statistic.
To see why, consider a randomized experiment with  = 1. Then b, like an exact ancillary statistic, i) can be
computed from the data (i.e., b =

³d − 1
´
 b(e)), ii) b = b () depends on a parameter  that does not

occur in the estimand of interest, iii) the likelihood factors into a term  (|;) that depends only on  and a term
 ( |; )  (; ) that does not depend on , and iv) conditional on b, the adjusted estimate of  is unbiased,

while the unadjusted estimate of  is biased (Technical Point 10.4 defines and compares adjusted and unadjusted

estimators). Any other statistic that quantifies the - association in the data, e.g.,
Pr(=1|=1)Pr(=1|=0) − 1, can be used in

place of e.
Now consider a continuity principle wherein inferences about an estimand should not change discontinuously in

response to an arbitrarily small known change in the data generating distribution (Buehler 1982). If one accepts both

the conditionality and continuity principles, then one should condition on an approximate ancillary statistic. For example,

when  = 1 is known, the continuity principle would be violated if, following the conditionality principle, we treated

the unadjusted estimate of  as biased when  was known to be a constant, but treated it as unbiased when

the  were almost constant. We will say that a researcher who always conditions on both exact and approximate

ancillaries follows the extended conditionality principle.

adjusted estimator is both conditionally unbiased and unconditionally more

efficient. Hence either from the conditional or unconditional point of view, theThe unconditional efficiency of the

adjusted estimator results from the

adjusted estimator being the maxi-

mum likelihood estimator (MLE) of

the risk difference when data on 

are available.

Wald interval centered on the adjusted estimator is the better analysis and the

article needs to be retracted. The second investigator is correct.

The idea that one should condition on the observed - association is an

example of what is referred to in the statistical literature as the conditionality

principle. In statistics, the observed - association is said to be an ancil-

lary statistic for the causal risk difference. The conditionality principle states

that inference on a parameter should be performed conditional on ancillary

statistics (see Technical Points 10.2 and 10.3 for details). The discussion in

the preceding paragraph then implies that many researchers intuitively follow

the conditionality principle when they consider an estimator to be biased if it

cannot center a valid Wald confidence interval conditional on any ancillary sta-

tistics. For such researchers, our previous definition of bias was not sufficiently

restrictive. They would say that an estimator is unbiased if and only if it can
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Technical Point 10.4

Comparison between adjusted and unadjusted estimators. The adjusted estimator of  in Technical Point

10.3 is the maximum likelihood estimator d, which replaces the population proportions in the  by their

sample proportions. The unadjusted estimator of  is d = cPr ( = 1| = 1) − cPr ( = 1| = 0). Un-
conditionally, both d and d are asymptotically normal and unbiased for  with asymptotic variances

 
³d

´
and  

³d

´
.

In the text we stated that d is both unconditionally inefficient and conditionally biased. We now explain that

both properties are logically equivalent. Robins and Morgenstern (1987) prove that d has the same asymptotic

distribution conditional on the approximate ancillary b as it does unconditionally, which implies   ³d

´
=

 
³d |b´. They also show that   ³d

´
equals  

³d

´
−
h


³bd

´i2
. Henced is unconditionally inefficient if and only if 

³bd

´
6= 0, i.e., b andd are correlated uncondition-

ally. Further, the conditional asymptotic bias E
hd |bi− is shown to equal 

³bd

´ b. Hence,d is conditionally biased if and only if it is unconditionally inefficient.

It can be shown that 
³bd

´
= 0 if and only if ⊥⊥ |. Therefore, when data on a measured risk

factor for  are available, d is preferred over d .

center a valid Wald interval conditional on ancillary statistics. Technical Point

10.5 argues that most researchers implicitly follow the conditionality principle.

When confronted with the frequentist argument that “Adjustment for 

is unnecessary because unconditionally–over all the runs of the experiment–

the unadjusted estimate is unbiased,” investigators that intuitively apply the

conditionality principle would aptly respond “Why should the various -

associations in other hypothetical studies affect what I do in my study? In my

study  acts as a confounder and adjustment is needed to eliminate bias.” This

is a convincing argument for both randomized experiments and observational

studies when, as above, the number of measured confounders is not large.

However, when the number of measured confounders is large, strictly following

the conditionality principle is no longer a wise strategy.

10.5 The curse of dimensionality

The derivations in previous sections above are based on an asymptotic theory

that assumed the number of strata of  was small compared with the sample

size. In this section, we study the cases in which the number of strata of a

vector  can be very large, even much larger than the sample size.

Suppose the investigators had measured 100 pre-treatment binary variables

rather than only one, then the pre-treatment variable  formed by combining

the 100 variables  = (1  100) has 2
100 strata. When, as in this case,

there are many possible combinations of values of the pre-treatment variables,

we say that the data is of high dimensionality. For simplicity, suppose that

there is no additive effect modification by , i.e., the super-population risk

difference Pr[ = 1| = 1  = ]− Pr[ = 1| = 0  = ] is constant across

the 2100 strata. In particular, suppose that the constant stratum-specific risk
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Technical Point 10.5

Most researchers intuitively follow the extended conditionality principle. Consider again the randomized trial data

in Table 10.2. Assuming without loss of generality that the  is constant over the strata of a dichotomous , the

estimated variance of the MLE of  is b0 b1³b0 + b1´ where b is the estimated variance of d.

Two possible choices for b1 are b 
1 =

4
80

76
80

80
+

2
40

38
40

40
= 178×10−3 = and b exp

1 =
4
80

76
80

60
+

2
40

38
40

60
= 158×10−3 that

differ only in that b 
1 divides by the observed number of individuals in stratum  = 1 with  = 1 and  = 0 (80 and

40, respectively) while b exp
1 divides by the expected number of subjects (60) given that ⊥⊥. Mathematically, b 

1 is

the variance estimator based on the observed information and b exp
1 is the estimator based on the expected information.

In our experience, nearly all researchers would choose b 
1 over b exp

1 as the appropriate variance estimator. Results

of Efron and Hinkley (1982) and Robins and Morgenstern (1987) imply that such researchers are implicitly conditioning

on an approximate ancillary b and thus, whether aware of this fact or not, are following the extended conditionality
principle. Specifically, these authors proved that that the variance of d, and thus of the MLE, conditioned on an

approximate ancillary b differs from the unconditional variance by order −32. (As noted in Technical Point 10.4,
the conditional and unconditional asymptotic variance of an MLE are equal, as equality of asymptotic variances implies

equality only up to order −1.) Further, they showed that the variance estimator based on the observed information
differs from the conditional variance by less than order −32, while an estimator based on the expected information
differs from the unconditional variance by less than −32. Thus, a preference for b 

1 over b exp
1 implies a preference

for conditional over unconditional inference.

difference is 0.

The investigators debate again whether to retract the article and report

their estimate of the stratified risk difference. They have by now agreed that

they should follow the conditionality principle because the unadjusted risk

difference −015 is conditionally biased. However, they notice that, when there
are 2100 strata, a 95% confidence interval for the risk difference based on the

adjusted estimator is much wider than that based on the unadjusted estimator.

This is exactly the opposite of what was found when  had only two strata.

In fact, the 95% confidence interval based on the adjusted estimator may be

so wide as to be completely uninformative.

To see why, note that, because 2100 is much larger than the number of

individuals (240), there will at most be only a few strata of  that will contain

both a treated and an untreated individual. Suppose only one of 2100 strata

contains a single treated individual and a single untreated individual, and no

other stratum contains both a treated and untreated individual. Then the

95% confidence interval for the common risk difference based on the adjusted

estimator is (−1 1) , and therefore completely uninformative, because in the
single stratum with both a treated and an untreated individual, the empirical

risk difference could be −1, 0, or 1 depending on the value of  for each indi-

vidual. In contrast, the 95% confidence interval for the common risk difference

based on the unadjusted estimator remains (−026−004) as above because
its width is unaffected by the fact that more covariates were measured. These

results reflect the fact that the adjusted estimator is only guaranteed to be

more efficient than the unadjusted estimator when the ratio of number of indi-

viduals to the number of unknown parameters is large (a frequently used rule

of thumb is a minimum ratio of 10, though the minimum ratio depends on the

characteristics of the data).

What should the investigators do? By trying to do the right thing–

following the conditionality principle–in the simple setting with one dichoto-
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Technical Point 10.6

Can the curse of dimensionality be reversed? In high-dimensional settings with many strata of , informative

conditional inference for the common risk difference given the exact ancillary statistic { ;  = 1 } is not possible
regardless of the estimator used. This is not true for unconditional inference in marginally randomized experiments. For

example, the unconditional statistical behavior of the unadjusted estimator d is unaffected by the dimension of

. In particular, it remains unbiased with the width of the associated Wald 95% confidence interval proportional to

112. Because d relies on prior information not used by the MLE, it is an unbiased estimator of the common

risk difference only it is known that ⊥⊥ in the super-population.
However, even unconditionally, the confidence intervals associated with the MLE, i.e., the adjusted estimator,

remain uninformative. This raises the question of whether data on  can be used to construct an estimator that is also

unconditionally unbiased but that is more efficient that the unadjusted estimator. In Chapter 18 we show that this is

indeed possible.

mous variable, they put themselves in a corner for the high-dimensional set-

ting. This is the curse of dimensionality : conditional on all 100 covariates

the marginal estimator is still biased, but now the conditional estimator is

uninformative. This shows that, just because conditionality is compelling inRobins and Wasserman (1999) pro-

vide a technical description of the

curse of dimensionality.

simple examples, it should not be raised to a principle since it cannot be car-

ried through for high-dimensional models. Though we have discussed this issue

in the context of a randomized experiment, our discussion applies equally to

observational studies. See Technical Point 10.6

Finding a solution to the curse of dimensionality is a difficult problem and

an active area of research. In Chapter 18 we review this research and offer some

practical guidance. Chapters 11 through 17 provide necessary background

information on the use of models for causal inference.
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Part II

Causal inference with models





Chapter 11
WHY MODEL?

Do not worry. No more chapter introductions around the effect of your looking up on other people’s looking up.

We squeezed that example well beyond what seemed possible. In Part II of this book, most examples involve real

data. The data sets can be downloaded from the book’s web site.

Part I was mostly conceptual. Calculations were kept to a minimum, and could be carried out by hand. In

contrast, the material described in Part II requires the use of computers to fit regression models, such as linear

and logistic models. Because this book cannot provide a detailed introduction to regression techniques, we assume

that readers have a basic understanding and working knowledge of these commonly used models. Our web site

provides links to computer code in R, SAS, Stata, and Python to replicate the analyses described in the text. The

code margin notes specify the portion of the code that is relevant to the analysis described in the text.
This chapter describes the differences between the nonparametric estimators used in Part I and the parametric

(model-based) estimators used in Part II. It also reviews the concept of smoothing and, briefly, the bias-variance

trade-off involved in any modeling decision. The chapter motivates the need for models in data analysis, regardless

of whether the analytic goal is causal inference or, say, prediction. We will take a break from causal considerations

until the next chapter. Please bear in mind that the statistical literature on modeling is vast; this chapter can

only highlight some of the key issues.

11.1 Data cannot speak for themselves

Consider a study population of 16 individuals infected with the human im-

munodeficiency virus (HIV). Unlike in Part I of this book, we will not view

these individuals as representatives of 1 billion individuals identical to them.

Rather, these are just 16 individuals randomly sampled from a large, possibly

hypothetical super-population: the target population.

At the start of the study each individual receives a certain level of a treat-

ment  (antiretroviral therapy), which is maintained during the study. At the

end of the study, a continuous outcome  (CD4 cell count, in cells/mm3) is

measured in all individuals. We wish to consistently estimate the mean of 

among individuals with treatment level  =  in the population from which the

16 individuals were randomly sampled. That is, the estimand is the unknown

population parameter E[ | = ].

As defined in Chapter 10, an estimator bE[ | = ] of E[ | = ] is some

function of the data that is used to estimate the unknown population parame-

ter. Informally, a consistent estimator bE[ | = ] meets the requirement thatSee Chapter 10 for a rigorous defi-

nition of a consistent estimator. “the larger the sample size, the closer the estimate to the population value

E[ | = ].” Two examples of possible estimators bE[ | = ] are (i) the

sample average of  among those receiving  = , and (ii) the value of the

first observation in the dataset that happens to have the value  = . The

sample average of  among those receiving  =  is a consistent estimator of

the population mean; the value of the first observation with  =  is not. In

practice we require all estimators to be consistent, and therefore we use the

sample average to estimate the population mean.

Suppose treatment  is a dichotomous variable with two possible values: no
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treatment ( = 0) and treatment ( = 1). Half of the individuals were treated

( = 1). Figure 11.1 is a scatter plot that displays each of the 16 individuals

as a dot. The height of the dot indicates the value of the individual’s outcome

Figure 11.1

 . The 8 treated individuals are placed along the column  = 1, and the 8

untreated along the column  = 0. As defined in Chapter 10, an estimate of

the mean of  among individuals with level  =  in the population is the

numerical result of applying the estimator–in our case, the sample average–to

a particular data set.

Our estimate of the population mean in the treated is the sample aver-

age 14625 for those with  = 1, and our estimate of the population mean

in the untreated is the sample average 6750 in those with  = 0. Under ex-

changeability of the treated and the untreated, the difference 14625 − 6750
would be interpreted as an estimate of the average causal effect of treatment

 on the outcome  in the target population. However, this chapter is not

about making causal inferences. Our current goal is simply to motivate the

need for models when trying to estimate population quantities like the mean

E[ | = ], irrespective of whether the estimates do or do not have a causal

interpretation.

Now suppose treatment  is a polytomous variable that can take 4 possible

values: no treatment ( = 1), low-dose treatment ( = 2), medium-dose treat-

ment ( = 3), and high-dose treatment ( = 4). A quarter of the individuals

received each treatment level. Figure 11.2 displays the outcome value for the

16 individuals in the study population. To estimate the population means in

the 4 groups defined by treatment level, we compute the corresponding sample

averages. The estimates are 700, 800, 1175, and 1950 for  = 1,  = 2,code: Program 11.1
 = 3, and  = 4, respectively.

Figure 11.2

Figures 11.1 and 11.2 depict examples of discrete (categorical) treatment

variables with 2 and 4 categories, respectively. Because the number of study

individuals is fixed at 16, the number of individuals per category decreases as

the number of categories increase. The sample average in each category is still

an exactly unbiased estimator of the corresponding population mean, but the

probability that the sample average is close to the corresponding population

mean decreases as the number of individuals in each category decreases. The

length of the 95% confidence intervals (see Chapter 10) for the category-specific

means will be greater for the data in Figure 11.2 than for the data in Figure

11.1.

Finally, suppose that treatment  is variable representing the dose of treat-

ment in mg/day, and that it takes integer values from 0 to 100 mg. Figure

Figure 11.3

11.3 displays the outcome value for each of the 16 individuals. Because the

number of possible values of treatment is much greater than the number of in-

dividuals in the study, there are many values of  that no individual received.

For example, there are no individuals with treatment dose  = 90 in the study

population.

This creates a problem: how can we estimate the mean of the outcome 

among individuals with treatment level  = 90 in the target population? The

estimator we used for the data in Figures 11.1 and 11.2–the treatment-specific

sample average–is undefined for treatment levels for which there are zero in-

dividuals in Figure 11.3. If treatment  were a truly continuous variable, then

the sample average would be undefined for nearly all treatment levels. (A con-

tinuous variable  can be viewed as a categorical variable with an uncountably

infinite number of categories.)

The above description shows that we cannot always let the data “speak

for themselves” to obtain a meaningful estimate. Rather, we often need to
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supplement the data with a model, as we describe in the next section.

11.2 Parametric estimators of the conditional mean

We want to estimate the mean of  among individuals with treatment level

 = 90, i.e., E[ | = 90], from the data in Figure 11.3. Suppose we expect the
mean of  among individuals with treatment level  = 90 to lie between the

mean among individuals with  = 80 and the mean among individuals with

 = 100. In fact, suppose we knew that the treatment-specific population

mean of  is a linear function of the value of treatment  throughout the

range of . More precisely, we know that the mean of  , E[ |], increases (or
decreases) from some value 0 for  = 0 by 1 units per unit of . Or, more

compactly,

E[ |] = 0 + 1

This equation is a restriction on the shape of conditional mean function E[ |].More generally, the restriction on

the shape of the relation is known

as the functional form. and, by

some authors, as the dose-response

curve. We do not use the latter

term because it suggests that the

dose of treatment causally effects

the response, which could be false

in the presence of confounding.

This particular restriction is referred to as a linear mean model, and the quan-

tities 0 and 1 are referred to as the parameters of the model. Models that

describe the conditional mean function in terms of a finite number of parame-

ters are referred to as parametric conditional mean models. In our example,

the parameters 0 and 1 define a straight line that crosses (intercepts) the

vertical axis at 0 and that has a slope 1. That is, the model specifies that

all conditional mean functions are straight lines, though their intercepts and

slopes may vary.

We are now ready to combine the data in Figure 11.3 with our parametric

mean model to estimate E[ | = ] for all values  from 0 to 100. The first

step is to obtain estimates ̂0 and ̂1 of the parameters 0 and 1. The second

step is to use these estimates to estimate the mean of  for any value  = .

Figure 11.4

For example, to estimate the mean of  among individuals with treatment

level  = 90, we use the expression bE[ | = 90] = ̂0 + 90̂1. The estimatebE[ |] for each individual is referred to as the predicted value.
An exactly unbiased estimator of 0 and 1 can be obtained by the method

of ordinary least squares. A nontechnical motivation of the method follows.

Consider all possible candidate straight lines for Figure 11.3, each of them

with a different combination of values of intercept 0 and slope 1. For each

candidate line, one can calculate the vertical distance from each dot to the line

(the residual), square each of those 16 residuals, and then sum the 16 squared

residuals. The line for which the sum is the smallest is the “least squares” line,

and the parameter values ̂0 and ̂1 of this “least squares” line are the “least

squares” estimates. The values ̂0 and ̂1 can be easily computed using linear

algebra, as described in any statistics textbook.

In our example, the parameter estimates are ̂0 = 2455 and ̂1 = 214,code: Program 11.2
Under the assumption that the vari-

ance of the residuals does not de-

pend on  (homoscedasticity), the

Wald 95% confidence intervals are

(−212 703) for 0, (128 299)

for 1, and (1721 2616) for

E[ | = 90].

which define the straight line shown in Figure 11.4. The predicted mean of

 among individuals with treatment level  = 90 is therefore bE[ | = 90] =
2455 + 90 × 214 = 2169. Because ordinary least squares estimation uses all
data points to find the best line, the mean of  in the group  = , i.e.,

E[ | = ], is estimated by borrowing information from individuals who have

values of treatment  not equal to .

So what is a model? A model is defined by an a priori restriction on the

joint distribution of the data. Our linear conditional mean model says that the
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conditional mean function E[ |] is a straight line, which restricts its shape.
For example, the model restricts the mean of  for  = 90 to be between the

mean of  for  = 80 and the mean of  for  = 100. This restriction is

encoded by the parameters 0 and 1. A parametric conditional mean model

is, through its a priori restrictions, adding information to compensate for the

lack of sufficient information in the data.

Parametric estimators–those based on a parametric conditional mean model–

allow us to estimate quantities that cannot be estimated otherwise, e.g., the

mean of  among individuals in the target population with treatment level

 = 90 when no such individuals exist in the study population. But this is not

a free lunch. When using a parametric model, the inferences are correct only

if the restrictions encoded in the model are correct, i.e. if the model is cor-

rectly specified. Thus model-based causal inference–to which a large fraction

of the remainder of this book is devoted–relies on the condition of (approx-

imately) no model misspecification. Because parametric models are rarely, if

ever, perfectly specified, a certain degree of model misspecification is almost al-

ways expected. This can be at least partially rectified by using nonparametric

estimators, which we describe in the next section.

11.3 Nonparametric estimators of the conditional mean

Let us return to the data in Figure 11.1. Treatment  is dichotomous and we

want to consistently estimate the mean of  in the treated E[ | = 1] and in
the untreated E[ | = 0]. Suppose we have become so enamored with models
that we decide to use one to estimate these two quantities. Again we proposed

a linear model

E[ |] = 0 + 1

where E[ | = 0] = 0 + 0× 1 = 0 and E[ | = 1] = 0 + 1× 1 = 0 + 1.

We use the least squares method to obtain estimates of the parameters 0 and

1. These estimates are ̂0 = 675 and ̂1 = 7875. We therefore estimatecode: Program 11.2 bE[ | = 0] = 675 and bE[ | = 1] = 14625. Note that our model-based

estimates of the mean of  are identical to the sample averages we calculated

in Section 11.1. This is not a coincidence but an expected finding.In this book we define “model” as

an a priori mathematical restric-

tion on the possible states of nature

(Robins, Greenland 1986). Part I

was entitled “Causal inference with-

out models” because it only de-

scribed saturated models.

Let us take a second look at the model E[ | = ] = 0 + 1 with a

dichotomous treatment . If we rewrite the model as E[ | = 1] = E[ | =
0] + 1, we see that the model simply states that the mean in the treated

E[ | = 1] is equal to the mean in the untreated E[ | = 0] plus a quantity
1, where 1 may be negative, positive or zero. But this statement is of course

always true! The model imposes no restrictions whatsoever on the values of

E[ | = 1] and E[ | = 0]. Therefore E[ | = ] = 0+ 1 with a dichoto-

mous treatment  is not a model because it lets the data speak for themselves,

just like the sample average does. “Models” which do not impose restrictions

on the distribution of the data are saturated models. Because they formally

look like models even if they do not fit our definition of model, saturated models

are ordinarily referred to as models too.

Generally, the model is saturated whenever the number of parameters in a

conditional mean model is equal to the number of unknown conditional means

in the population. For example, the linear model E[ |] = 0 + 1 has two

parameters and, when  is dichotomous, there exist two unknown conditional

means: the means E[ | = 1] and E[ | = 0]. Since the values of the two
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Fine Point 11.1

Fisher consistency. Our definition of a nonparametric estimator in the main text coincides with what is known in

statistics as a Fisher consistent estimator (Fisher 1922). That is, an estimator of a population quantity that, when

calculated using the entire population rather than a sample, yields the true value of the population parameter. By

definition, a Fisher consistent estimator lacks any model restrictions but, as discussed in the text, a Fisher consistent

estimate may not exist for many population quantities. Technically, Fisher consistent estimators are the nonparametric

maximum likelihood estimators of population quantities under a saturated model.

In the statistical literature, the term nonparametric estimator is sometimes used to refer to estimators that are not

Fisher consistent but that impose very weak restrictions, such as kernel regression models. See Technical Point 11.1 for

details.

parameters are not restricted by the model, neither are the values of the means.A saturated model has the same

number of unknowns on both sides

of the equal sign.

As a contrast, consider the data in Figure 11.3 where  can take values from 0

to 100. The linear model E[ |] = 0+1 has two parameters but estimates

101 quantities, i.e., E[ | = 0]E[ | = 1] E[ | = 100]. The only hope
for unbiasedly estimating 101 quantities with these two parameters is to be

fortunate to have all 101 means E[ | = ] lie along a straight line. When a

model has only a few parameters but it is used to estimate many population

quantities, we say that the model is parsimonious.

Here we define nonparametric estimators of the conditional mean function

as those that produce estimates from the data without any a priori restrictions

on the conditional mean function (see Fine Point 11.1 for a more rigorous de-

finition). An example of a nonparametric estimator of the population mean

E[ | = ] for a dichotomous treatment is its empirical version, the sample

average or, equivalently, the saturated model described in this section. WhenFor causal inference, identifiability

assumptions are the assumptions

that we would have to make even if

we had an infinite amount of data.

Modeling assumptions are the as-

sumptions that we have to make

precisely because we do not have

an infinite amount of data.

 is discrete with 100 levels and no individual in the sample has  = 90, no

nonparametric estimator of E[ | = 90] exists. All methods for causal infer-
ence that we described in Part I of this book–standardization, IP weighting,

stratification, matching–were based on nonparametric estimators of popula-

tion quantities under a saturated model because they did not impose any a

priori restrictions on the value of the effect estimates. In contrast, most meth-

ods for causal inference described in Part II of this book rely on estimators

that are parametric estimators of some part of the distribution of the data.

Parametric estimation and other approaches to borrow information are our

only hope when, as is often the case, data are unable to speak for themselves.

11.4 Smoothing

Consider again the data in Figure 11.3 and the linear model E[ |] = 0+1.

The parameter 1 is the difference in mean outcome per unit of treatment dose

. Because 1 is a single number, the model specifies that the difference in

mean outcome  per unit of treatment  must be constant throughout the

entire range of , that is, the model requires the conditional mean outcome to

follow a straight line as a function of treatment dose . Figure 11.4 shows the

best-fitting straight line.

But one can imagine situations in which the difference in mean outcome is

larger for a one-unit change at low doses of treatment, and smaller for a one-
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unit change at high doses. This would be the case if, once the treatment dose

reaches certain level, higher doses have an increasingly small effect. Under this

scenario, the model E[ |] = 0 + 1 is incorrect. However, linear modelsCaution: Often the term “linear”

is used with two different mean-

ings. A model is linear when it is

expressed as a linear combination

of parameters and functions of the

variables, even if the latter are non-

linear functions (e.g., higher powers

or logarithms) of the covariates.

can be made more flexible.

For example, suppose we fit the model E[ |] = 0 + 1 + 2
2, where

2 =  ×  is -squared, to the data in Figure 11.3. This is still referred

to as a linear model because the conditional mean is expressed as a linear

combination, i.e., as the sum of the products of each covariate ( and 2)

with its associated coefficient (the parameters 1 and 2) plus an intercept

(0). However, whenever 2 is not zero, the parameters 0, 1, and 2 now

define a curve–a parabola–rather than a straight line. We refer to 1 as the

parameter for the linear term , and to 2 as the parameter for the quadratic

term 2.

The curve under the 3-parameter linear model E[ |] = 0 + 1+ 2
2

can be found via ordinary least squares estimation applied to the data in

Figure 11.3. The estimated curve is shown in Figure 11.5. The parameter

estimates are ̂0 = −741, ̂1 = 411, and ̂2 = −002. The predicted meancode: Program 11.3
Under the homoscedasticity as-

sumption, the Wald 95% confi-

dence interval for bE[ | = 90] is

(1428 2515).

of  among individuals with treatment level  = 90 is obtained from the

expression bE[ | = 90] = ̂0 + 90̂1 + 90× 90̂2 = 1971.
We could keep adding parameters for a cubic term (3

3), a quartic term

(4
4)... until we reach a 15th-degree term (15

15). At that point the number

of parameters in our model equals the number of data points (individuals). The

shape of the curve would change as the number of parameters increases. In

general, the more parameters in the model, the more inflection points will

appear.

That is, the curve generally becomes more “wiggly,” or less smooth, as the

number of parameters increase. A linear model with 2 parameters–a straight

line–is the smoothest model. A linear model with as many parameters as data

points is the least smooth model because it has as many possible inflection

points as data points. In fact, such model interpolates the data, i.e., each data

point in the sample lies on the estimated conditional mean function.

Figure 11.5

Often modeling can be viewed as a procedure to transform noisy data into

more or less smooth curves. This smoothing occurs because the model borrows

information from many data points to predict the outcome value at a particular

combination of values of the covariates. The smoothing results from E[ | =
] being estimated by borrowing information from individuals with  not equal

to . All parametric estimators incorporate some degree of smoothing.

The degree of smoothing depends on how much information is borrowed

across individuals. The 2-parameter model E[ |] = 0 + 1 estimates

E[ | = 90] by borrowing information from all individuals in the study popu-

lation to find the least squares straight line. A model with as many parameters

as individuals does not borrow any information to estimate E[ |] at the values
of  that occur in the data, though it borrows information (by interpolation)

for values of  that do not occur in the data.

Intermediate degrees of smoothing can be achieved by using an intermediate

number of parameters or, more generally, by restricting the number of individ-

uals that contribute to the estimation. For example, to estimate E[ | = 90]We used a model for continuous

outcomes as an example. The same

reasoning applies to models for di-

chotomous outcomes such as lo-

gistic models (see Technical Point

11.1)

we could decide to fit a 2-parameter model E[ |] = 0 + 1 restricted to

individuals with treatment doses between 80 and 100. That is, we would only

borrow information from individuals in a 10-unit window of  = 90. The wider

the window around  = 90, the more smoothing would be achieved.

In our simplistic examples above, all models included a single covariate

(with either a single parameter for  or two parameters for  and 2) so that
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Fine Point 11.2

Model dimensionality and the relation between frequentist and Bayesian intervals. In frequentist statistical

inference, probability is defined as frequency. In Bayesian inference, probability is defined as degree-of-belief–a concept

very different from probability as frequency. Chapter 10 described the confidence intervals used in frequentist statistical

inference. Bayesian statistical inference uses credible intervals, which have a more natural interpretation: A Bayesian

95% credible interval means that, given the observed data, “there is a 95% probability that the estimand is in the

interval”. However, in part because of the requirement to specify the investigators’ degree of belief, Bayesian inference

is less commonly used than frequentist inference.

Interestingly, in simple, low-dimensional parametric models with large sample sizes, 95% Bayesian credible intervals

are also 95% frequentist confidence intervals, whereas in high-dimensional or nonparametric models, a Bayesian 95%

credible interval may not be a 95% confidence interval as it may trap the estimand much less than 95% of the time.

The underlying reason for these results is that Bayesian inference requires the specification of a prior distribution for

all unknown parameters. In low-dimensional parametric models the information in the data swamps that contained in

reasonable priors. As a result, inference is relatively insensitive to the particular prior distribution selected. However,

this is no longer the case in high-dimensional models. Therefore if the true parameter values that generated the data

are unlikely under the chosen prior distribution, the center of Bayes credible interval will be pulled away from the true

parameters and towards the parameter values given the greatest probability under the prior.

the curves can be represented on a two-dimensional book page. In realistic

applications, models often include many different covariates so that the curves

are really hyperdimensional surfaces. Regardless of the dimensionality of the

problem, the concept of smoothing remains invariant: the fewer parameters in

the model, the smoother the prediction (response) surface will be.

11.5 The bias-variance trade-off

In previous sections we have used the 16 individuals in Figure 11.3 to estimate

the mean outcome  among people receiving a treatment dose of  = 90 in

the target population, E[ | = 90]. Since nobody in the study population

received  = 90, we could not let the data speak for themselves. So we

combined the data with a linear model. The estimate bE[ | = 90] varied with
the model. Under the 2-parameter model E[ |] = 0 + 1, the estimate

was 2169 (95% confidence interval: 1721, 2616). Under the 3-parameter

model E[ |] = 0 + 1 + 2
2, the estimate was 1971 (95% confidence

interval: 1428, 2515). We used two different parametric models that yielded

two different estimates. Which one is better? Is 2169 or 1971 closer to the

mean in the target population?

If the relation is truly curvilinear, then the estimate from the 2-parameter

model will be biased because this model assumes a straight line. On the other

hand, if the relation is truly a straight line, then the estimates from both models

will be valid. This is so because the 3-parameter model E[ |] = 0 + 1+

2
2 is correctly specified whether the relation follows a straight line (in which

case 2 = 0) or a parabolic curve (in which case 2 6= 0). One safe strategy

would be to use the 3-parameter model E[ |] = 0+ 1+ 2
2 rather than

the 2-parameter model E[ |] = 0 + 1. Because the 3-parameter model is

correctly specified under both a straight line and a parabolic curve, it is less

likely to be biased. In general, the larger the number of parameters in the
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model, the fewer restrictions the model imposes; the less smooth the model,

the more protection afforded against bias from model misspecification.

Although less smooth models may yield a less biased estimate, they also

result in a larger variance, i.e., wider 95% confidence intervals around the

estimate. For example, the estimated 95% confidence interval around bE[ | =
90] was much wider when we used the 3-parameter model than when we used

the 2-parameter model. However, when the estimate bE[ | = 90] based on the
2-parameter model is biased, the standard (nominal) 95% confidence interval

is not calibrated, that is, it does not cover the true parameter E[ | = 90]

95% of the time.Fine Point 11.2 discusses the impli-

cations of model dimensionality for

frequentist and Bayesian intervals.

This bias-variance trade-off is at the heart of many data analyses. Investi-

gators using models need to decide whether some protection against bias–by,

say, adding more parameters to the model–is worth the cost in terms of vari-

ance. Though some formal procedures exist to aid these decisions, in practice

many investigators decide which model to use based on criteria like tradition,

interpretability of the parameters, and software availability. In this book we

will usually assume that our parametric models are correctly specified. This

is an unrealistic assumption, but it allows us to focus on the problems that

are specific to causal analyses. Model misspecification is, after all, a problem

that can arise in any sort of data analysis, regardless of whether the estimates

are endowed with a causal interpretation. In practice, careful investigators will

always question the validity of their models, and will conduct an analysis to

assess the sensitivity of their estimates to model specification.

We are now ready to describe the use of models for causal inference.
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Technical Point 11.1

A taxonomy of commonly used models. The main text describes linear conditional mean models of the form

E[ |] =  ≡
P
=0

 where  is a vector of covariates 01  with 0 = 1 for all  individuals. These

models are a subset of larger class of conditional mean models which have two components: a linear functional form or

predictor
P
=0

 and a link function  {·} such that  {E[ |]} =
P
=1

.

The linear conditional mean models described in the main text uses the identity link function. Conditional mean

models for outcomes with strictly positive values (e.g., counts, the numerator of incidence rates) often use the log

link function to ensure that all predicted values will be greater than zero, i.e., log {E[ |]} =
P
=0

 so E[ |] =

exp

µ
P
=0



¶
. Conditional mean models for dichotomous outcomes (i.e., those that only take values 0 and 1) often

use a logit link i.e., log
n

E[ |X]
1−E[ |X]

o
=

P
=0

, so that E[ |] = expit
µ

P
=0



¶
. This link ensures that all predicted

values will be greater than 0 and less than 1. Conditional mean models that use the logit function are referred to as

logistic regression models, and they are widely used in this book. For these links (referred to as canonical links) we can

estimate  by maximum likelihood under a normal model for the identity link, a Poisson model for the log link, and a

logistic regression model for the logit link. These estimates are consistent for  as long as the conditional mean model

for E[ |] is correct. Generalized estimating equation (GEE) models, often used to deal with repeated measures, are
a further example of a conditional mean models (Liang and Zeger, 1986).

Conditional mean models only specify a parametric form for E[ |] but do not otherwise restrict the distribution of
 | or the marginal distribution of . Therefore, when  or  are continuous, a parametric conditional mean model

is a semiparametric model for the joint distribution of the data ( ) because parts of the distribution are modeled

parametrically whereas others are left unrestricted. The model is semiparametric because the set of all unrestricted

components of the joint distribution cannot be represented by a finite number of parameters.

Conditional mean models themselves can be generalized by relaxing the assumption that E[ |] takes a parametric
form. For example, a kernel regression model does not impose a specific functional form on E[ |] but rather estimates
E[ | = ] for any  by

P
=1

 (−)
P
=1

 (−) where  () is a positive function, known as a kernel

function, that attains its maximum value at  = 0 and decreases to 0 as || gets large at a rate that depends on the
parameter  subscripting . As another example, generalized additive models (GAMs) replace the linear combination
P
=0

 of a conditional mean model by a sum of smooth functions
P
=0

(). The model can be estimated using a

backfitting algorithm with (·) estimated at iteration  by, for example, kernel regression (Hastie and Tibshirani 1990).
In the text we discuss smoothing with parametric models which specify an a priori functional form for E[ | = ],

such as a parabola. In estimating E [ | = ], the model may borrow information from values of  that are far from

. In contrast, kernel regression models do not specify an a priori functional form and borrow information only from

values of  near to  when estimating E [ | = ]. A kernel regression model is an example of a “non-parametric”

regression model. This use of the term “nonparametric” differs from our previous usage. Our nonparametric estimators

of E [ | = ] only used those individuals for whom  equalled  exactly; no information was borrowed even from

close neighbors. Here “nonparametric” estimators of E [ | = ] use individuals with values of  near to . How near

is controlled by a smoothing parameter referred to as the bandwidth .
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Chapter 12
IP WEIGHTING AND MARGINAL STRUCTURAL MODELS

Part II is organized around the causal question “what is the average causal effect of smoking cessation on body

weight gain?” In this chapter we describe how to use IP weighting to estimate this effect from observational data.

Though IP weighting was introduced in Chapter 2, we only described it as a nonparametric method. We now

describe the use of models together with IP weighting which, under additional assumptions, will allow us to tackle

high-dimensional problems with many covariates and nondichotomous treatments.

To estimate the effect of smoking cessation on weight gain we will use real data from the NHEFS, an acronym

that stands for (ready for a long name?) National Health and Nutrition Examination Survey Data I Epidemi-

ologic Follow-up Study. The NHEFS was jointly initiated by the National Center for Health Statistics and the

National Institute on Aging in collaboration with other agencies of the United States Public Health Service. A

detailed description of the NHEFS, together with publicly available data sets and documentation, can be found at

wwwn.cdc.gov/nchs/nhanes/nhefs/. For this and future chapters, we will use a subset of the NHEFS data that

is available from this book’s web site. We encourage readers to improve upon and refine our analyses.

12.1 The causal question

Our goal is to estimate the average causal effect of smoking cessation (the

treatment)  on weight gain (the outcome)  . To do so, we will use data

from 1566 cigarette smokers aged 25-74 years who, as part of the NHEFS, hadWe restricted the analysis to indi-

viduals with known sex, age, race,

weight, height, education, alcohol

use and intensity of smoking at

the baseline (1971-75) and follow-

up (1982) visits, and who answered

the medical history questionnaire at

baseline. See Fine Point 12.1.

a baseline visit and a follow-up visit about 10 years later. Individuals were

classified as treated  = 1 if they reported having quit smoking before the

follow-up visit, and as untreated  = 0 otherwise. Each individual’s weight

gain  was measured (in kg) as the body weight at the follow-up visit minus

the body weight at the baseline visit. Most people gained weight, but quitters

gained more weight on average. The average weight gain was bE[ | = 1] = 45
kg in the quitters, and bE[ | = 0] = 20 kg in the non-quitters. The difference
E[ | = 1] − E[ | = 0] was therefore estimated to be 25, with a 95%

confidence interval from 17 to 34. A conventional statistical test of the nullTable 12.1
Mean baseline 

characteristics 1 0

Age, years 46.2 42.8

Men, % 54.6 46.6

White, % 91.1 85.4

University, % 15.4 9.9

Weight, kg 72.4 70.3

Cigarettes/day 18.6 21.2

Years smoking 26.0 24.1

Little exercise, % 40.7 37.9

Inactive life, % 11.2 8.9

hypothesis that this difference was equal to zero yielded a P-value 0001.

We define E[ =1] as the mean weight gain that would have been observed

if all individuals in the population had quit smoking before the follow-up visit,

and E[ =0] as the mean weight gain that would have been observed if all

individuals in the population had not quit smoking. We define the average

causal effect on the additive scale as E[ =1]−E[ =0], that is, the difference

in mean weight that would have been observed if everybody had been treated

compared with untreated. This is the causal effect that we will be primarily

concerned with in this and the next chapters.

The associational difference E[ | = 1]−E[ | = 0], which we estimated
in the first paragraph of this section, is generally different from the causal

difference E[ =1] − E[ =0]. The former will not generally have a causal

interpretation if quitters and non-quitters differ with respect to characteristics

that affect weight gain. For example, quitters were on average 4 years older

than non-quitters (quitters were 44% more likely to be above age 50 than non
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Fine Point 12.1

Setting a bad example. Our smoking cessation example is convenient: it does not require deep subject-matter

knowledge and the data are publicly available. One price we have to pay for this convenience is potential selection bias.

We classified individuals as treated  = 1 if they reported (i) being smokers at baseline in 1971-75, and (ii) having

quit smoking in the 1982 survey. Condition (ii) implies that the individuals included in our study did not die and were

not otherwise lost to follow-up between baseline and 1982 (otherwise they would not have been able to respond to the

survey). That is, we selected individuals into our study conditional on an event–responding the 1982 survey–that

occurred after the start of the treatment–smoking cessation. If treatment affects the probability of selection into the

study, we might have selection bias as described in Chapter 8. (Because different individuals quit smoking at different

times,  is actually a time-varying treatment, which we will ignore throughout Part II. Time-varying treatments are

discussed in Part III.)

A randomized experiment of smoking cessation would not have this problem. Each individual would be assigned to

either smoking cessation or no smoking cessation at baseline, so that their treatment group would be known even if the

individual did not make it to the 1982 visit. In Section 12.6 we describe how to deal with potential selection bias due

to censoring or missing data for the outcome–something that may occur in both observational studies and randomized

experiments–but the situation described in this Fine Point is different: the missing data concerns the treatment itself.

This selection bias can be handled through sensitivity analysis, as was done by Hernán et al. (2008, Appendix 3).

The choice of this example allows us to describe, in our own analysis, a ubiquitous problem in published analyses

of observational data: a misalignment of treatment assignment and eligibility at the start of follow-up (Hernán et al.

2016). Though we decided to ignore this issue in order to keep our analysis simple, didactic convenience would not be

a good excuse to avoid dealing with this bias in real life.

quitters), and older people gained less weight than younger people, regardless

of whether they did or did not quit smoking. We say that age is a (surrogate)Fine Point 7.3 defined surrogate

confounders. confounder of the effect of  on  and our analysis needs to adjust for age. The

unadjusted estimate 25 might underestimate the true causal effect E[ =1]−
E[ =0].

As shown in Table 12.1, quitters and non-quitters also differed in their

distribution of other variables such as sex, race, education, baseline weight,code: Program 12.1 computes the
descriptive statistics shown in this

section

and intensity of smoking. If these variables are confounders, then they also

need to be adjusted for in the analysis. In Chapter 18 we discuss strategies

for confounder selection. Here we assume that the following 9 variables, all

measured at baseline, are sufficient to adjust for confounding: sex (0: male,

1: female), age (in years), race (0: white, 1: other), education (5 categories),

intensity and duration of smoking (number of cigarettes per day and years

of smoking), physical activity in daily life (3 categories), recreational exercise

(3 categories), and weight (in kg). That is,  represents a vector of 9 mea-

sured covariates. In the next section we use IP weighting to adjust for these

covariates.

12.2 Estimating IP weights via modeling

IP weighting creates a pseudo-population in which the arrow from the covari-

ates  to the treatment  is removed. More precisely, the pseudo-population

has the following two properties:  and  are statistically independent and

the mean E[ | = ] in the pseudo-population equals the standardized meanP
 E[ | =  = ] Pr [ = ] in the actual population. These properties are
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true even if conditional exchangeability  ⊥⊥| does not hold in the ac-

tual population (see Technical Point 2.3). Now, if conditional exchangeability

 ⊥⊥| holds in the actual population, then these properties imply that (i)
the mean of   is the same in both populations, (ii) unconditional exchange-

ability (i.e., no confounding) holds in the pseudo-population, (iii) the counter-

factual mean E[ ] in the actual population is equal to E[ | = ] in the

pseudo-population, and (iv) association is causation in the pseudo-population.

Please reread Chapter 2 if you need a refresher on IP weighting.

Informally, the pseudo-population is created by weighting each individual

by the inverse (reciprocal) of the conditional probability of receiving the treat-

ment level that she indeed received. The individual-specific IP weights for

treatment  are defined as  = 1 (|). For our dichotomous treat-

ment , the denominator  (|) of the IP weight is the probability of quit-
ting conditional on the measured confounders, Pr [ = 1|], for the quitters,The conditional probability of treat-

ment Pr [ = 1|] is known as

the propensity score. More about

propensity scores in Chapter 15.

and the probability of not quitting conditional on the measured confounders,

Pr [ = 0|], for the non-quitters. We only need to estimate Pr [ = 1|] be-
cause Pr [ = 0|] = 1− Pr [ = 1|].
In Section 2.4 we estimated the quantity Pr [ = 1|] nonparametrically:

we simply counted how many people were treated ( = 1) in each stratum of

, and then divided this count by the number of individuals in the stratum.

All the information required for this calculation was taken from a causally

interpreted structured tree with 4 branches (2 for  times 2 for ). But non-

parametric estimation of Pr [ = 1|] is out of the question when, as in our
example, we have high-dimensional data with many confounders, some of them

with many levels. Even if we were willing to recode all 9 confounders exceptThe curse of dimensionality was in-

troduced in Chapter 10. age to a maximum of 6 categories each, our tree would still have over 2 mil-

lion branches. And many more millions if we use the actual range of values

of duration and intensity of smoking, and weight. We cannot obtain meaning-

ful nonparametric stratum-specific estimates when there are 1566 individuals

distributed across millions of strata. We need to resort to modeling.

To obtain parametric estimates of Pr [ = 1|] in each of the millions of
strata defined by , we fit a logistic regression model for the probability of

quitting smoking with all 9 confounders included as covariates. We used linear

and quadratic terms for the (quasi-)continuous covariates age, weight, inten-

sity and duration of smoking, and we included no product terms between the

covariates. That is, our model restricts the possible values of Pr [ = 1|] such
that, on the logit scale, the conditional relation between the continuous covari-

ates and the risk of quitting can be represented by a parabolic curve, and each

covariate’s contribution to the (logit of the) risk is independent of that of the

other covariates. Under these parametric restrictions, we were able to obtaincode: Program 12.2
The estimated IP weights 

ranged from 1.05 to 16.7, and their

mean was 2.00.

an estimate cPr [ = 1|] for each combination of  values, and therefore for
each of the 1566 individuals in the study population.

The next step is computing the difference bE[ | = 1] − bE[ | = 0]

in the pseudo-population created by the estimated IP weights. If there is no

confounding for the effect of  in the pseudo-population and the model for

Pr [ = 1|] is correct, association is causation and an unbiased estimator of
the associational difference E[ | = 1]−E[ | = 0] in the pseudo-populationE[ |] = 0 + 1 is a saturated

model because it has 2 parameters,

0 and 1, to estimate two quanti-

ties, E[ | = 1] and E[ | = 0].
In this model, 1 = E[ | = 1] −
E[ | = 0].

is also an unbiased estimator of the causal difference E[ =1]−E[ =0] in the

actual population.

Our approach to estimate E[ | = 1] − E[ | = 0] in the pseudo-

population was to fit the (saturated) linear mean model E[ |] = 0 + 1

by weighted least squares, with individuals weighted by their estimated IP

weights c : 1cPr [ = 1|] for the quitters, and 1³1−cPr [ = 1|]´ for the
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Technical Point 12.1

Horvitz-Thompson estimators. In Technical Point 3.1, we defined the “apparent” IP weighted mean for treatment

level , E

∙
 ( = )

 (|)
¸
, which is equal to the counterfactual mean E[ ] under positivity and exchangeability. This

IP weighted mean is consistently estimated by the original Horvitz-Thompson (1952) estimator bE ∙ ( = )

 (|)
¸
. In

this chapter, however, we estimated E[ ] via the IP weighted least squares estimate ̂0 + ̂1, which is the modified

Horvitz-Thompson estimator

bE∙ ( = )

 (|)
¸

bE ∙ ( = )

 (|)
¸ (Robins 1998).

This modified Horvitz-Thompson estimator is an unbiased estimator of

E

∙
 ( = )

 (|)
¸

E

∙
 ( = )

 (|)
¸ which, under positivity, is

equal to E

∙
 ( = )

 (|)
¸
because E

∙
 ( = )

 (|)
¸
= 1. In practice, the modified estimator is preferred because, unlike

the unmodified estimator, it is guaranteed to lie between 0 and 1 for dichotomous  .

On the other hand, if positivity does not hold, then the ratio

E

∙
 ( = )

 (|)
¸

E

∙
 ( = )

 (|)
¸ equals

P


E [ | =  =   ∈ ()] Pr [ = | ∈ ()] and, if exchangeability holds, it equals E [ | ∈ ()] where

() = {; Pr ( = | = )  0} is the set of values  for which  =  may be observed with positive probability.

Therefore, as discussed in Technical Point 3.1, the difference between modified Horvitz-Thompson estimators with

 = 1 versus  = 0 does not have a causal interpretation in the absence of positivity.

non-quitters. The parameter estimate ̂1 was 34. That is, we estimated that

quitting smoking increases weight by ̂1 = 34 kg on average. See Technical

Point 12.1 for a formal definition of the estimator.

To obtain a 95% confidence interval around the point estimate ̂1 = 34

we need a method that takes the IP weighting into account. One possibil-

ity is to use statistical theory to derive the corresponding variance estimator.

This approach requires that the data analyst programs the estimator, whichThe weighted least squares esti-

mates ̂0 and ̂1 with weight 

of 0 and 1 are the minimizers

of
P


c [ − (0 + 1)]

2
. Ifc = 1 for all individuals i, we ob-

tain the ordinary least squares es-

timates described in the previous

chapter.

The estimate bE[ | = ] = ̂0 +

̂1 is equal to

P
=1 

cP
=1

c

where

the sum is over all subjects with

 = .

is not generally available in standard statistical software. A second possibility

is to approximate the variance by nonparametric bootstrapping (see Techni-

cal Point 13.1). This approach requires appropriate computing resources, or

lots of patience, for large databases. A third possibility is to use the robust

variance estimator (e.g., as used for GEE models with an independent working

correlation) that is a standard option in most statistical software packages.

The 95% confidence intervals based on the robust variance estimator are valid

but, unlike the above analytic and bootstrap estimators, conservative–they

cover the super-population parameter more than 95% of the time. The con-

servative 95% confidence interval around ̂1 was (24 45). In this chapter, all

confidence intervals for IP weighted estimates are conservative. If the model

for Pr [ = 1|] is misspecified, the estimates of 0 and 1 will be biased and,

like we discussed in the previous chapter, the confidence intervals may cover

the true values less than 95% of the time.
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12.3 Stabilized IP weights

The goal of IP weighting is to create a pseudo-population in which there is

no association between the covariates  and treatment . The IP weights

 = 1 (|) simulate a pseudo-population in which all members of the
study population are replaced by two copies of themselves. One copy receives

treatment value  = 1 and the other copy receives treatment value  = 0.

In Chapter 2 we showed how the original study population in Figure 2.1 was

transformed into the pseudo-population in Figure 2.3. Note that the expected

mean of the weights  is 2 because, heuristically, in the pseudo-population

all individuals are included both under treatment and under no treatment.

However, there are other ways to create a pseudo-population in which  and

 are independent. For example, a pseudo-population in which all individuals

have a probability of receiving  = 1 equal to 05 and a probability of receiving

 = 0 also equal to 05, regardless of their values of . Such pseudo-population

is constructed by using IP weights 05 (|). This pseudo-population would
be of the same size as the study population and it would be algebraically equal

to the pseudo-population of the previous paragraph if all weights are divided

by 2. Hence, the expected mean of the weights 05 (|) is 1 and the effect
estimate obtained in the pseudo-population created by weights 05 (|) is
equal to that obtained in the pseudo-population created by weights 1 (|).
(You can check this empirically by using the data in Figure 2.1, or see the proofThe average causal effect in the

treated subpopulation can be esti-

mated by using IP weights in which

 = Pr[ = 1|]. See Technical
Point 4.1.

in Technical Point 12.2.) The same goes for any other IP weights  (|)
with 0   ≤ 1. The weights  = 1 (|) are just one particular example
of IP weights with  = 1.

Let us take our reasoning a step further. The key requirement for confound-

ing adjustment is that, in the pseudo-population, the probability of treatment

 does not depend on the confounders . We can achieve this requirement

by assigning treatment with the same probability  to everyone in the pseudo-

population. But we can also achieve it by creating a pseudo-population in

which different people have different probabilities of treatment, as long as the

probability of treatment does not depend on the value of . For example, a

common choice is to assign to the treated the probability of receiving treatment

Pr [ = 1] in the original population, and to the untreated the probability of

not receiving treatment Pr [ = 0] in the original population. Thus the IP

weights are Pr [ = 1]  (|) for the treated and Pr [ = 0]  (|) for the
untreated or, more compactly,  ()  (|).
Figure 12.1 shows the pseudo-population that is created by the IP weights

 ()  (|) when applied to the data in Figure 2.1, where Pr [ = 1] =
1320 = 065 and Pr [ = 0] = 720 = 035. Under the identifiability condi-

tions of Chapter 3, the pseudo-population resembles a hypothetical randomized

experiment in which 65% of the individuals in the study population have been

randomly assigned to  = 1, and 35% to  = 0. Note that, to preserve

the 6535 ratio, the number of individuals in each branch cannot be integers.

Fortunately, non-whole people are no big deal in mathematics.

The IP weights  ()  (|) range from 033 to 430, whereas the IP

weights 1 (|) range from 105 to 167. The stabilizing factor  () in the

numerator is responsible for the narrower range of the  ()  (|) weights.
The IP weights  = 1 (|) are referred to as nonstabilized weights, and
the IP weights  =  ()  (|) are referred to as stabilized weights.
The mean of the stabilized weights is expected to be 1 because the size of the

pseudo-population equals that of the study population.
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Figure 12.1

Let us now re-estimate the effect of quitting smoking on body weight by

using the stabilized IP weights . First, we need an estimate of the con-

ditional probability Pr [ = 1|] to construct the denominator of the weights.In data analyses one should always

check that the estimated weights

 have mean 1 (Hernán and

Robins 2004). Deviations from 1

indicate model misspecification or

possible violations, or near viola-

tions, of positivity. See Fine Point

12.2 for more on checking positiv-

ity.

We use the same logistic model we used in Section 12.2 to obtain a parametric

estimate cPr [ = 1|] for each of the 1566 individuals in the study population.
Second, we need to estimate Pr [ = 1] for the numerator of the weights. We

can obtain a nonparametric estimate by the ratio 4031566 or, equivalently,

by fitting a saturated logistic model for Pr [ = 1] with an intercept and no

covariates. Finally, we estimate the causal difference E[ =1] − E[ =0] by

fitting the mean model E[ |] = 0 + 1 with individuals weighted by their

estimated stabilized IP weights: cPr [ = 1] cPr [ = 1|] for the quitters, and³
1−cPr [ = 1]´ ³1−cPr [ = 1|]´ for the non-quitters. Under our assump-
tions, we estimated that quitting smoking increases weight by ̂1 = 34 kg (95%

confidence interval: 24, 45) on average. This is the same estimate we obtainedcode: Program 12.3
The estimated IP weights 

ranged from 0.33 to 4.30, and their

mean was 1.00.

earlier using the nonstabilized IP weights  rather than the stabilized IP

weights .

If nonstabilized and stabilized IP weights result in the same estimate, why

use stabilized IP weights then? Because stabilized weights typically result in

narrower 95% confidence intervals than nonstabilized weights. However, the

statistical superiority of the stabilized weights can only occur when the (IP

weighted) model is not saturated. In our above example, the two-parameter

model E[ |] = 0 + 1 was saturated because treatment  could only take

2 possible values. In many settings (e.g., time-varying or continuous treat-

ments), the weighted model cannot possibly be saturated and therefore stabi-

lized weights are used. The next section describes the use of stabilized weights

for a continuous treatment.



12.4 Marginal structural models 155

Fine Point 12.2

Checking positivity. In our study, there are 4 white women aged 66 years and none of them quit smoking. That is, the

probability of  = 1 conditional on (a subset of)  is 0. Positivity, a condition for IP weighting, is empirically violated.

There are two possible ways in which positivity can be violated:

• Structural violations: The type of violations described in Chapter 3. Individuals with certain values of  cannot
possibly be treated (or untreated). An example: when estimating the effect of exposure to certain chemicals on

mortality, being off work is an important confounder because people off work are more likely to be sick and to die,

and a determinant of chemical exposure–people can only be exposed to the chemical while at work. That is, the

structure of the problem guarantees that the probability of treatment conditional on being off work is exactly 0

(a structural zero). We’ll always find zero cells when conditioning on that confounder.

• Random violations: The type of violations described in the first paragraph of this Fine Point. Our sample is finite
so, if we stratify on several confounders, we will start finding zero cells at some places even if the probability

of treatment is not really zero in the target population. This is a random, not structural, violation of positivity

because the zeroes appear randomly at different places in different samples of the target population. An example:

our study happened to include 0 treated individuals in the strata “white women age 66” and “white women age

67”, but it included a positive number of treated individuals in the strata “white women age 65” and “white

women age 69.”

Each type of positivity violation has different consequences. In the presence of structural violations, causal inferences

cannot be made about the entire population using IP weighting or standardization. The inference needs to be restricted

to strata in which structural positivity holds. See Technical Point 12.1 for details. In the presence of random violations,

we used our parametric model to estimate the probability of treatment in the strata with random zeroes using data

from individuals in the other strata. In other words, we use parametric models to smooth over the zeroes. For example,

the logistic model used in Section 12.2 estimated the probability of quitting in white women aged 66 by interpolating

from all other individuals in the study. Every time we use parametric estimation of IP weights in the presence of zero

cells–like we did in estimating ̂1 = 34–, we are effectively assuming random nonpositivity.

12.4 Marginal structural models

Consider the following linear model for the mean outcome under treatment

level This is a (saturated) marginal

structural mean model for a di-

chotomous treatment .
E[ ] = 0 + 1

This model is different from all models we have considered so far: the out-

come variable of this model is counterfactual–and hence generally unobserved.

Therefore the model cannot be fit to the data of any real-world study. Models

for the marginal mean of a counterfactual outcome are referred to as marginal

structural mean models.

The parameters for treatment in structural mean models correspond to

average causal effects. In the above model, the parameter 1 is equal to

E[ =1] − E[ =0] because E[ ] = 0 under  = 0 and E[ ] = 0 + 1
under  = 1. In previous sections, we have estimated the average causal effect

of smoking cessation  on weight change  defined as E[ =1] − E[ =0].

In other words, we have estimated the parameter 1 of a marginal structural

model.

Specifically, we used IP weighting to construct a pseudo-population, and

then fit the model E[ |] = 0 + 1 to the pseudo-population data by using

IP weighted least squares. Under our assumptions, association is causation

in the pseudo-population. That is, the parameter 1 from the IP weighted
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associational model E[ |] = 0 + 1 can be endowed with the same causal

interpretation as the parameter 1 from the structural model E[ ] = 0 +

1. It follows that a consistent estimate ̂1 of the associational parameter

in the pseudo-population is also a consistent estimator of the causal effect

1 = E[
=1]− E[ =0] in the population.

The marginal structural model E[ ] = 0 + 1 is saturated because

smoking cessation  is a dichotomous treatment. That is, the model has 2

unknowns on both sides of the equation: E[ =1] and E[ =0] on the left-hand

side, and 0 and 1 on the right-hand side. Thus sample averages computed

in the pseudo-population were enough to estimate the causal effect of interest.A desirable property of marginal

structural models is null preserva-

tion (see Chapter 9): when the null

hypothesis of no average causal ef-

fect is true, a marginal structural

model is never misspecified. For

example, under marginal structural

model E[ ] = 0 + 1 + 2
2,

a Wald test on two degrees of free-

dom of the joint hypothesis 1 =

2 = 0 is a valid test of the null

hypothesis.

But treatments are often polytomous or continuous. For example, consider

the new treatment  “change in smoking intensity” defined as number of ciga-

rettes smoked per day in 1982 minus number of cigarettes smoked per day at

baseline. Treatment  can now take many values, e.g., −25 if an individual
decreased his number of daily cigarettes by 25, 40 if an individual increased

his number of daily cigarettes by 40. Let us say that we are interested in

estimating the difference in average weight change under different changes in

treatment intensity in the 1162 individuals who smoked 25 or fewer cigarettes

per day at baseline. That is, we want to estimate E[ ]−E[ 0 ] for any values

 and 0.
Because treatment  can take dozens of values, a saturated model with

as many parameters becomes impractical. We will have to consider a non-

saturated structural model to specify the dose-response curve for the effect of

treatment  on the mean outcome  . If we believe that a parabola appropri-

ately describes the dose-response curve, then we would propose the marginal

structural modelA (nonsaturated) marginal struc-

tural mean model for a continuous

treatment .
E[ ] = 0 + 1+ 2

2

where 2 =  ×  is -squared and E[ =0] = 0 is the average weight gain

under  = 0, i.e., under no change in smoking intensity between baseline and

1982.

Suppose we want to estimate the average causal effect of increasing smoking

intensity by 20 cigarettes per day compared with no change, i.e., E[ =20] −
E[ =0]. According to our structural model, E[ =20] = 0 + 201 + 4002,

and thus E[ =20] − E[ =0] = 201 + 4002. Now we need to estimate the

parameters 1 and 2. To do so, we need to estimate IP weights 
 to

create a pseudo-population in which there is no confounding by , and then

fit the associational model E[ |] = 0+1+2
2 to the pseudo-population

data.

To estimate the stabilized weights  =  ()  (|) we need to es-
timate  (|). For a dichotomous treatment ,  (|) is a probability so
we used a logistic model to estimate Pr [ = 1|]. For a continuous treat-
ment ,  (|) is a probability density function (pdf). Unfortunately, pdfscode: Program 12.4

The estimated  ranged from

019 to 510 with mean 100. We

assumed constant variance (ho-

moscedasticity), which seemed rea-

sonable after inspecting a residuals

plot. Other choices of distribution

(e.g., truncated normal with het-

eroscedasticity) resulted in similar

estimates.

are generally hard to estimate correctly, which is why using IP weighting for

continuous treatments will often be dangerous. In our example, we assumed

that the density  (|) was normal (Gaussian) with mean  = E[|] and
constant variance 2. We then used a linear regression model to estimate the

mean E[|] and variance of residuals 2 for all combinations of values of .
We also assumed that the density  () in the numerator was normal. One

should be careful when using IP weighting for continuous treatments because

the effect estimates may be exquisitely sensitive to the choice of the model for

the conditional density  (|).
Our IP weighted estimates of the parameters of the marginal structural
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model were ̂0 = 2005, ̂1 = −0109, and ̂2 = 0003. According to these

estimates, the mean weight gain (95% confidence interval) would have been 20

kg (14, 26) if all individuals had kept their smoking intensity constant, and

09 kg (−17, 35) if all individuals had increased smoking by 20 cigarettes/day
between baseline and 1982.

One can also consider a marginal structural model for a dichotomous out-

come. For example, if interested in the causal effect of quitting smoking  (1:

yes, 0: no) on the risk of death  (1: yes, 0: no) by 1992, one could consider

a marginal structural logistic model likeThis is a saturated marginal struc-

tural logistic model for a dichoto-

mous treatment. For a continuous

treatment, we would specify a non-

saturated logistic model.

logit Pr[ = 1] = 0 + 1

where exp (1) is the causal odds ratio of death for quitting versus not quitting

smoking. The parameters of this model are consistently estimated, under our

assumptions, by fitting the logistic model logit Pr[ = 1|] = 0 + 1 to

the pseudo-population created by IP weighting. We estimated the causal oddscode: Program 12.5

ratio to be exp
³
̂1

´
= 10 (95% confidence interval: 08, 14).

12.5 Effect modification and marginal structural models

Marginal structural models do not include covariates when the target parame-

ter is the average causal effect in the population. However, one may include

covariates–which may be non-confounders–in a marginal structural model to

assess effect modification. Suppose it is hypothesized that the effect of smoking

cessation varies by sex  (1: woman, 0: man). To examine this hypothesis,

we add the covariate  to our marginal structural mean model:

E [ | ] = 0 + 1+ 2 + 3

Additive effect modification is present if 2 6= 0. Technically, this is not a mar-
ginal model any more–because it is conditional on –but the term “marginal

structural model” is still applied.The parameter 3 does not gener-

ally have a causal interpretation as

the effect of  . Remember that we

are assuming exchangeability, pos-

itivity, and consistency for treat-

ment , not for sex  !

We can estimate the model parameters by fitting the linear regression model

E [ |  ] = 0+1+2 +3 via weighted least squares with IP weights

 or . The vector of covariates  needs to include –even if  is not a

confounder–and any other variables that are needed to ensure exchangeability

within levels of  .

Because we are considering a model for the effect of treatment within levels

of  , we now have the choice to use either  [] or  [| ] in the numera-
tor of the stabilized weights. IP weighting based on the stabilized weights

 ( ) =
 [| ]
 [|] generally results in narrower confidence intervals around

the effect estimates. Some intuition for the increased statistical efficiency of

 ( ): with  in the conditioning event of both the numerator and the

denominator, the numerical value of numerator and denominator gets closer,

which results in added stabilization for (less variability in) the IP weights and

therefore narrower 95% confidence intervals. We estimate  ( ) using the

same approach as for , except that we add the covariate  to the logistic

model for the numerator of the weights.

The particular subset  of  that an investigator chooses to include in the

marginal structural model should only reflect the investigator’s substantive in-

terest. For example, a variable  should be included in the marginal structural
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model only if the investigator both believes that  may be an effect modifier

and has greater substantive interest in the causal effect of treatment within

levels of the covariate  than in the entire population. In our example, we

found no strong evidence of effect modification by sex as the 95% confidence

interval around the parameter estimate ̂2 was (−22, 19). If the investigatorcode: Program 12.6
chooses to include all variables  in the marginal structural model, then the

stabilized weights  () equal 1 and no IP weighting is necessary because

the (unweighted) outcome regression model, if correctly specified, fully adjustsIf we were interested in the inter-

action between 2 treatments  and

 (as opposed to effect modifica-

tion of treatment  by variable  ;

see Chapter 5), we would include

parameters for both  and  in

the marginal structural model, and

would estimate IP weights with the

joint probability of both treatments

in the denominator. We would

assume exchangeability, positivity,

and consistency for  and .

for all confounding by  (see Chapter 15). For this reason, in a slightly hu-

morous vein, we refer to a marginal structural model that conditions on all

variables  needed for exchangeability as a faux marginal structural model.

In Part I we discussed that effect modification and confounding are two

logically distinct concepts. Nonetheless, many students have difficulty under-

standing the distinction because the same statistical methods–stratification

(Chapter 4) or regression (Chapter 15)–are often used both for confounder ad-

justment and detection of effect modification. Thus, there may be some advan-

tage to teaching these concepts using marginal structural models, because then

methods for confounder adjustment (IP weighting) are distinct from methods

for detection of effect modification (adding treatment-covariate product terms

to a marginal structural model).

12.6 Censoring and missing data

When estimating the causal effect of smoking cessation  on weight gain  ,

we restricted the analysis to the 1566 individuals with a body weight mea-

surement at the end of follow-up in 1982. There were, however, 63 additional

individuals who met our eligibility criteria but were excluded from the analysis

because their weight in 1982 was not known. Selecting only individuals with

nonmissing outcome values–that is, censoring from the analysis those with

missing values–may introduce selection bias, as discussed in Chapter 8.

Let censoring  be an indicator for measurement of body weight in 1982:

1 if body weight is unmeasured (i.e., the individual is censored), and 0 if

body weight is measured (i.e., the individual is uncensored). Our analysis

was necessarily restricted to uncensored individuals, i.e., those with  = 0,

because those were the only ones with known values of the outcome  . That

is, in sections 12.2 and 12.4 we did not fit the (weighted) outcome regression

model E[ |] = 0 + 1, but rather the model E[ | = 0] = 0 + 1

restricted to individuals with  = 0.

Unfortunately, even under the null, selecting only uncensored individuals

for the analysis is expected to induce bias when  is either a collider on a

pathway between treatment  and the outcome  , or the descendant of one

such collider. See the causal diagrams in Figures 8.3 to 8.6. Our data are

consistent with the structure depicted by those causal diagrams: treatment 

is associated with censoring –58% of quitters versus 32% nonquitters were

censored–and at least some predictors of  are associated with –the average

baseline weight was 766 kg in the censored versus 708 in the uncensored.

Because censoring due to loss to follow-up can introduce selection bias, we

are generally interested in the causal effect if nobody in the study population

had been censored. In our example, the goal becomes estimating the mean

weight gain if everybody had quit smoking and nobody’s outcome had been

censored, E[ =1=0], and the mean weight gain if nobody had quit smoking
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and nobody’s outcome had been censored E[ =0=0]. Then the causal effect

of interest is E[ =1=0] − E[ =0=0], a joint effect of  and  as we dis-

cussed in Chapter 8. The use of the superscript  = 0 makes it explicit the

causal contrast that many have in mind when they refer to the causal effect of

treatment , even if they choose not to use the superscript  = 0.

This causal effect can be estimated by using IP weights =×The IP weights for censoring

and treatment are  =

1 ( = 0|), where the joint
density of  and  is factored

as  ( = 0|) =  (|) ×
Pr [ = 0|].

in which  = 1Pr [ = 0|] for the uncensored individuals and  = 0

for the censored individuals. The IP weights adjust for both confounding

and selection bias under the identifiability conditions of exchangeability for the

joint treatment () conditional on –that is,  =0⊥⊥ () |–, joint
positivity for ( =  = 0), and consistency. If some of the variables in  are

affected by treatment , e.g., as in Figure 8.4, the conditional independence

 =0⊥⊥ () | will not generally hold. In Part III we show that there are
alternative exchangeability conditions that license us to use IP weighting to

estimate the joint effect of  and  when some components of  are affected

by treatment.Some variables in  may have

zero coefficients in the model for

 (|) but not in the model

for Pr [ = 0|], or vice versa.
Nonetheless, in large samples, it is

always more efficient to keep all

variables  that independenty pre-

dict the outcome in both models.

Remember that the weights  = 1Pr [ = 0|] create a pseudo-
population with the same size as that of the original study population be-

fore censoring, and in which there is no arrow from either  or  into .

In our example, the estimates of IP weights for censoring  will create a

pseudo-population with (approximately) 1566+63 = 1629 in which, under our

assumptions, there is no selection bias because there is no selection. That is,

we fit the weighted model E[ | = 0] = 0 + 1 with weights  to

estimate the parameters of the marginal structural model E[ =0] = 0+1

in the entire population.

Alternatively, one can use stabilized IP weights  =  ×  .

The censoring weights  = Pr [ = 0|] Pr [ = 0|] create a pseudo-The estimated IP weights 

have mean 1 when the model for

Pr [ = 0|] is correctly specified.
See Technical Point 12.2 for more

on stabilized IP weights.

population of the same size as the original study population after censoring,

and in which there is no arrow from  into . In our example, the estimates

of IP weights for censoring  will create a pseudo-population of (approx-

imately) 1566 uncensored individuals. That is, the stabilized weights do not

eliminate censoring in the pseudo-population, they make censoring occur at

random with respect to the measured covariates . Therefore, under our as-

sumption of conditional exchangeability of censored and uncensored individ-

uals given  (and ), the proportion of censored individuals in the pseudo-

population is identical to that in the study population: there is selection but

no selection bias.

To obtain parametric estimates of Pr [ = 0|] in our example, we fit a
logistic regression model for the probability of being uncensored to the 1629

individuals in the study population. The model included the same covariates

we used earlier to estimate the weights for treatment. Under these paramet-

ric restrictions, we obtained an estimate cPr [ = 0|] and an estimate of
 for each of the 1566 uncensored individuals. Using the stabilized weightscode: Program 12.7

The estimated IP weights 

ranged from 0.35 to 4.09, and their

mean was 1.00.

 =  ×  we estimated that quitting smoking increases weight

by ̂1 = 35 kg (95% confidence interval: 25, 45) on average. This is almost the

same estimate we obtained earlier using IP weights , which suggests that

either there is no selection bias by censoring or that our measured covariates

are unable to eliminate it.

We now describe an alternative to IP weighting to adjust for confounding

and selection bias: standardization.
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Technical Point 12.2

More on stabilized weights. The stabilized weights  =
 []

 [|] are part of the larger class of stabilized weights
 []

 [|] , where  [] is any function of  that is not a function of . When unsaturated structural models are used,

weights
 []

 [|] are preferable over weights
1

 [|] because there exist functions  [] (often  []) that can be used
to construct more efficient estimators of the causal effect in a nonsaturated marginal structural model. We now show

that the IP weighted mean with weights
 []

 [|] is equal to the counterfactual mean E [
].

First note that the IP weighted mean E

∙
 ( = )

 (|)
¸
using weights 1 [|], which is equal to E [ ], can also

be expressed as

E

∙
 ( = )

 (|)
¸

E

∙
 ( = )

 (|)
¸ because E

∙
 ( = )

 (|)
¸
= 1. Similarly, the IP weighted mean using weights

 []

 [|]

can be expressed as

E

∙
 ( = )

 (|) ()

¸
E

∙
 ( = )

 (|) ()

¸ , which is also equal to E [ ]. The proof proceeds as in Technical Point 2.2

to show that the numerator E

∙
 ( = )

 (|) ()

¸
= E [ ] (), and that the denominator E

∙
 ( = )

 (|) ()

¸
= ().



Chapter 13
STANDARDIZATION AND THE PARAMETRIC G-FORMULA

In this chapter we describe how to use standardization to estimate the average causal effect of smoking cessation

on body weight gain. We use the same observational data set as in the previous chapter. Though standardization

was introduced in Chapter 2, we only described it as a nonparametric method. We now describe the use of models

together with standardization, which will allow us to tackle high-dimensional problems with many covariates and

nondichotomous treatments. As in the previous chapter, we provide computer code to conduct the analyses.

In practice, investigators will often have a choice between IP weighting and standardization as the analytic

approach to obtain effect estimates from observational data. Both methods are based on the same identifiability

conditions, but on different modeling assumptions.

13.1 Standardization as an alternative to IP weighting

In the previous chapter we estimated the average causal effect of smoking ces-

sation  (1: yes, 0: no) on weight gain  (measured in kg) using IP weighting.

In this chapter we will estimate the same effect using standardization. Our

analyses will also be based on NHEFS data from 1629 cigarette smokers aged

25-74 years who had a baseline visit and a follow-up visit about 10 years later.

Of these, 1566 individuals had their weight measured at the follow-up visit and

are therefore uncensored ( = 0).

We define E[ =0] as the mean weight gain that would have been observed

if all individuals had received treatment level  and if no individuals had been

censored. The average causal effect of smoking cessation can be expressed as

the difference E[ =1=0]−E[ =0=0], that is, the difference in mean weight

that would have been observed if everybody had been treated and uncensored

compared with untreated and uncensored.

As shown in Table 12.1, quitters ( = 1) and non-quitters ( = 0) differ

with respect to the distribution of predictors of weight gain. The observed

associational difference E[ | = 1  = 0] − E[ | = 0  = 0] = 25 is

expected to differ from the causal difference E[ =1=0]−E[ =0=0]. Again

we assume that the vector of variables  is sufficient to adjust for confounding

and selection bias, and that  includes the baseline variables sex (0: male,

1: female), age (in years), race (0: white, 1: other), education (5 categories),

intensity and duration of smoking (number of cigarettes per day and years of

smoking), physical activity in daily life (3 categories), recreational exercise (3

categories), and weight (in kg).

One way to adjust for the variables  is IP weighting, which creates aAs in the previous chapter, we will

assume that the components of 

required to adjust for  are unaf-

fected by . Otherwise, we would

need to use the more general ap-

proach described in Part III.

pseudo-population in which the distribution of the variables in  is the same

in the treated and in the untreated. Then, under the assumptions of exchange-

ability and positivity given , we estimate E[ =0] by simply computingbE[ | =  = 0] as the average outcome in the pseudo-population. If 

were a continuous treatment (contrary to our example), we would also need a

structural model to estimate E[ | = 0] in the pseudo-population for all

possible values of . IP weighting requires estimating the joint distribution of
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Fine Point 13.1

Structural positivity. Lack of structural positivity precludes the identification of the average causal effect in the entire

population when using IP weighting. Positivity is also necessary for standardization because, when Pr [ = | = ] = 0

and Pr [ = ] 6= 0, then the conditional mean outcome E[ | =  = ] is undefined.

But the practical impact of deviations from positivity may vary greatly between IP weighted and standardized

estimates that rely on parametric models. When using standardization, one can ignore the lack of positivity if one

is willing to rely on parametric extrapolation. That is, one can fit a model for E[ |] that will smooth over the
strata with structural zeroes. This smoothing will introduce bias into the estimation, and therefore the nominal 95%

confidence intervals around the estimates will cover the true effect less than 95% of the time. Also, note the different

purpose of modeling in this setting with structural positivity: we model not because we lack enough data, but because

we want to estimate a quantity that cannot be identified even with an infinite amount of data.

In general, in the presence of violations or near-violations of positivity, the standard error of the treatment effect will

be smaller for standardization than for IP weighting. This does not necessarily means that standardization is preferred

over IP weighting; the difference in the biases may swamp the differences in standard errors.2 reasons why we model:

because we dont have enough data, because we want to identify a quantity that cannot be identified even with an

infinite amount of data (eg, because of structural positivity). important distinction.

treatment and censoring. For the dichotomous treatment smoking cessation,

we estimated Pr [ =  = 0|] and computed IP probability weights with
this joint probability in the denominator.

As discussed in Chapter 2, an alternative to IP weighting is standardiza-

tion. Under exchangeability and positivity conditional on the variables in ,

the standardized mean outcome in the uncensored treated is a consistent es-Technical Point 2.3 proves that,

under conditional exchangeability,

positivity, and consistency, the

standardized mean in the treated

equals the mean if everyone had

been treated. The extension to cen-

soring is trivial: just replace  = 

by ( =  = 0) in the proof and

definitions.

timator of the mean outcome if everyone had been treated and had remained

uncensored E[ =1=0]. Analogously, the standardized mean outcome in the

uncensored untreated is a consistent estimator of the mean outcome if everyone

had been untreated and had remained uncensored E[ =0=0]. See Fine Point

13.1 for a discussion of the relative impact of deviations from positivity in IP

weighting and in standardization.

To compute the standardized mean outcome in the uncensored treated, we

first need to compute the mean outcomes in the uncensored treated in each

stratum  of the confounders , i.e., the conditional means E[ | = 1  =

0  = ] in each of the strata . In our smoking cessation example, we would

need to compute the mean weight gain  among those who quit smoking and

remained uncensored in each of the (possibly millions of) strata defined by the

combination of values of the 9 variables in .

The standardized mean in the uncensored treated is then the weighted

average of these conditional means using as weights the prevalence of each

value  in the study population, i.e., Pr [ = ]. That is, the conditional mean

from the stratum with the greatest number of individuals has the greatest

weight in the computation of the standardized mean. The standardized mean

in the uncensored untreated is computed analogously except that the  = 1 in

the conditioning event is replaced by  = 0.

More compactly, the standardized mean in the uncensored who receivedThe average causal effect in the

treated can be estimated by stan-

dardization as described in Techni-

cal Point 4.1. One just needs to

replace Pr[ = ] by Pr[ = | =
1] in the expression to the right.

treatment level  isX


E[ | =  = 0  = ]× Pr [ = ]

When, as in our example, some of the variables in  are continuous, one needs

to replace Pr [ = ] by the probability density function (pdf)  [], and the
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above sum becomes an integral.

The next two sections describe how to estimate the conditional means of

the outcome  and the distribution of the confounders , the two types of

quantities required to estimate the standardized mean.

13.2 Estimating the mean outcome via modeling

Ideally, we would estimate the set of conditional means E[ | = 1  = 0  =
] nonparametrically. We would compute the average outcome among the un-

censored treated in each of the strata defined by different combination of values

of the variables . This is precisely what we did in Section 2.3, where all the

information required for this calculation was taken from Table 2.2.

But nonparametric estimation of E[ | = 1  = 0  = ] is out of the

question when, as in our current example, we have high-dimensional data with

many confounders, some of them with multiple levels. We cannot obtain mean-

ingful nonparametric stratum-specific estimates of the mean outcome in the

treated when there are only 403 treated individuals distributed across millions

of strata. We need to resort to modeling. The same rationale applies to the con-

ditional mean outcome in the uncensored untreated E[ | = 0  = 0  = ].

To obtain parametric estimates of E[ | =  = 0  = ] in each of the

millions of strata defined by , we fit a linear regression model for the mean

weight gain with treatment  and all 9 confounders in  included as covariates.

We used linear and quadratic terms for the (quasi-)continuous covariates age,

weight, intensity and duration of smoking. That is, our model restricts the

possible values of E[ | =  = 0  = ] such that the conditional relation

between the continuous covariates and the mean outcome can be represented

by a parabolic curve. We included a product term between smoking cessation

 and intensity of smoking. That is, our model imposes the restriction that

each covariate’s contribution to the mean is independent of that of the other

covariates, except that the contribution of smoking cessation  varies linearly

with intensity of prior smoking.code: Program 13.1

Under these parametric restrictions, we obtained an estimate bE[ | =

 = 0  = ] for each combination of values of  and , and therefore

for each of the 403 uncensored treated ( = 1  = 0) and each of the 1163

uncensored untreated ( = 0  = 0) individuals in the study population.

For example, we estimated that individuals with the combination of values

{non-quitter, male, white, age 26, college dropout, 15 cigarettes/day, 12 years

of smoking habit, moderate exercise, very active, weight 112 kg} had a mean

weight gain of 034 kg (the individual with unique identifier 24770 happened to

have these combination of values, you may take a look at his predicted value).

Overall, the mean of the estimated weight gain was 26 kg, same as the meanIn general, the standardized mean

of  is written asR
E [ | =  = 0  = ]  ()

where  (·) is the joint cumulative
distribution function (cdf) of the
random variables in . When, as in

this chapter,  is a vector of base-

line covariates unaffected by treat-

ment, we can average over the ob-

served values of  to nonparamet-

rically estimate this integral.

of the observed weight gain, and ranged from −413 to 485 kg across different
combinations of covariates.

Remember that our goal is to estimate the standardized mean
P

 E[ | =
 = 0  = ]×Pr [ = ] in the treated ( = 1) and in the untreated ( = 0).

More formally, the standardized mean should be written as an integral because

some of the variables in  are essentially continuous, and thus their distribution

cannot be represented by a probability function. Regardless of these notational

issues, we have already estimated the means E[ | =  = 0  = ] for all

values of treatment  and confounders .
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The next step is standardizing these means to the distribution of the con-

founders  for all values .

13.3 Standardizing the mean outcome to the confounder distribution

The standardized mean is a weighted average of the conditional means E[ | =
 = 0  = ]. When all variables in  are discrete, each mean receives aSecond block: All untreated

  

Rheia 0 0 

Kronos 0 0 

Demeter 0 0 

Hades 0 0 

Hestia 0 0 

Poseidon 0 0 

Hera 0 0 

Zeus 0 0 

Artemis 1 0 

Apollo 1 0 

Leto 1 0 

Ares 1 0 

Athena 1 0 

Hephaestus 1 0 

Aphrodite 1 0 

Cyclope 1 0 

Persephone 1 0 

Hermes 1 0 

Hebe 1 0 

Dionysus 1 0 

Third block: All treated
  

Rheia 0 1 

Kronos 0 1 

Demeter 0 1 

Hades 0 1 

Hestia 0 1 

Poseidon 0 1 

Hera 0 1 

Zeus 0 1 

Artemis 1 1 

Apollo 1 1 

Leto 1 1 

Ares 1 1 

Athena 1 1 

Hephaestus 1 1 

Aphrodite 1 1 

Cyclope 1 1 

Persephone 1 1 

Hermes 1 1 

Hebe 1 1 

Dionysus 1 1 

weight equal to the proportion of individuals with values  = , i.e., Pr [ = ].

In principle, these proportions Pr [ = ] could be calculated nonparametri-

cally from the data: we would divide the number of individuals in the strata

defined by  =  by the total number of individuals in the population. This is

precisely what we did in Section 2.3, where all the information required for this

calculation was taken from Table 2.2. However, this method becomes tedious

for high-dimensional data with many confounders, some of them with multiple

levels, as in our smoking cessation example.

Fortunately, we do not need to estimate Pr [ = ]. We only need to es-

timate E [ | =  = 0  = ] for the  value of each individual  in the

study, and then compute the average 1


P
=1

bE [ | =  = 0 ] where  is

the number of individuals in the study. This is so because the weighted meanP


E [ | =  = 0  = ] Pr [ = ] can also be written as the double ex-

pectation E [E [ | =  = 0 ]].

We now describe a simple computational method to estimate the standard-

ized means
P

 E[ | =  = 0  = ]×Pr [ = ] in the treated ( = 1) and

in the untreated ( = 0) with many confounders, without ever explicitly esti-

mating Pr [ = ]. We first apply the method to the data in Table 2.2, in which

there was no censoring, the confounder  is only one variable with two levels,

and  is a dichotomous outcome, i.e., the mean E[ | =  = 0  = ] is the

risk Pr[ = 1| =   = ] of developing the outcome. Then we apply it to

the real data with censoring and many confounders. The method has 4 steps:

expansion of dataset, outcome modeling, prediction, and standardization by

averaging.

Table 2.2 has 20 rows, one per individual in the study. We now create a

new dataset in which the data of Table 2.2 is copied three times. That is, the

analytic dataset has 60 rows in three blocks of 20 individuals each. We leave

the first block of 20 rows as is, i.e., the first block is identical to the data in

Table 2.2. We modify the data of the second and third blocks as shown in the

margin. In the second block, we set the value of  to 0 (untreated) for all

20 individuals; in the third block we set the value of  to 1 (treated) for all

individuals. In the second and third blocks, we delete the data on the outcome

for all individuals, i.e., the variable  is assigned a missing value. As described

below, we will use the second block to estimate the standardized mean in the

untreated and the third block for the standardized mean in the treated.

Next we use the 3-block dataset to fit a regression model for the mean

outcome given treatment  and the confounder . We add a product term

 ×  to make the model saturated. Note that only the rows in the first

block of the dataset (the actual data) will contribute to the estimation of the

parameters of the model because the outcome is missing for all rows in the

second and third blocks.

The next step is to use the parameter estimates from the first block to
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predict the outcome values for all rows in the second and third blocks. (That

is, we combine the values of the columns  and  with the regression estimates

to impute the missing value for the outcome  .) The predicted outcome values

for the second block are the mean estimates for each combination of values of 

and  = 0, and the predicted values for the third block are the mean estimates

for each combinations of values of  and  = 1.

Finally, we compute the average of all predicted values in the second block.

Because 60% of rows have value  = 1 and 40% have value  = 0, this average

gives more weight to rows with  = 1. That is, the average of all predicted

values in the second block is precisely the standardized mean outcome in the

untreated. We are done. To estimate the standardized mean outcome in the

treated, we compute the average of all predicted values in the third block.

The above procedure yields exactly the same estimates of the standardizedcode: Program 13.2
means (05 for both of them) as the direct calculation in Section 2.3. Both

approaches are completely nonparametric. In this chapter we did not directly

estimate the distribution of , but rather average over the observed values of

, i.e., its empirical distribution.

The use of the empirical distribution for standardizing is the way to go in

more realistic examples, like our smoking cessation study, with high-dimensional

. The procedure for our study is analogous to the one described above for

the data in Table 2.2. We add the second and third blocks to the dataset, fit

the regression model for E[ | =  = 0  = ] as described in the previous

section, and generate the predicted values. The average predicted value in thecode: Program 13.3
second block–the standardized mean in the untreated–was 166, and the aver-

age predicted value in the third block–the standardized mean in the treated–

was 518. Therefore, our estimate of the causal effect E[ =1=0]−E[ =0=0]

was 511−165 = 35 kg. To obtain a 95% confidence interval for this estimatecode: Program 13.4
we used a statistical technique known as bootstrapping (see Technical Point

13.1). In summary, we estimated that quitting smoking increases body weight

by 35 kg (95% confidence interval: 26, 45).

13.4 IP weighting or standardization?

We have now described two ways in which modeling can be used to estimate

the average causal effect of a treatment: IP weighting (previous chapter) and

standardization (this chapter). In our smoking cessation example, both yielded

almost exactly the same effect estimate. Indeed Technical Point 2.3 proved that

the standardized mean equals the IP weighted mean.

Why are we then bothering to estimate the standardized mean in this chap-

ter if we had already estimated the IP weighted mean in the previous chapter?

It turns out that the IP weighted and the standardized mean are only ex-

actly equal when no models are used to estimate them. Otherwise they are

expected to differ. To see this, consider the quantities that need to be mod-

eled to implement either IP weighting or standardization. IP weighting mod-

els Pr [ =  = 0|], which we estimated in the previous chapter by fitting
parametric logistic regression models for Pr [ = |] and Pr [ = 0| =  ].

Standardization models the conditional means E[ | =  = 0  = ], which

we estimated in this chapter using a parametric linear regression model.

In practice some degree of misspecification is inescapable in all models, and

model misspecification will introduce some bias. But the misspecification of

the treatment model (IP weighting) and the outcome model (standardization)
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Technical Point 13.1

Bootstrapping. Effect estimates are presented with measures of random variability, such as the standard error or the

95% confidence interval, which is a function of the standard error. (We discussed the foundations of variability in Chapter

10.) Because of the computational difficulty to obtain exact estimates, in practice standard error estimates are often

based on large-sample approximations, which rely on asymptotic considerations. However, sometimes even large-sample

approximations are too complicated to be calculated. The bootstrap is an alternative method for estimating standard

errors and computing 95% confidence intervals. The simplest version of the bootstrap, which we used to compute the

95% confidence interval around the effect estimate of smoking cessation, is sketched below.

Take the study population of 1629 individuals. Sample with replacement 1629 individuals from the study population,

so that some of the original individuals may appear more than once while others may not be included at all. This new

sample of size 1629 is referred to as a “bootstrap sample.” Compute the effect of interest in the bootstrap sample (e.g.,

by using standardization as described in the main text). Now create a second bootstrap sample by again sampling with

replacement 1629 individuals. Compute the effect of interest in the second bootstrap sample using the same method

as for the first bootstrap sample. By chance, the first and second bootstrap sample will generally include a different

number of copies of each individual, and therefore will result in different effect estimates. Repeat the procedure in a

large number (say, 1000) of bootstrap samples. It turns out that the standard deviation of the 1000 effect estimates in

the bootstrap samples consistently estimates the standard error of the effect estimate in the study population. The 95%

confidence interval is then computed by using the usual normal approximation: ±1.96 times the estimate of the standard
error. See, for example, Wasserman (2004) for an introduction to the statistical theory underlying the bootstrap.

We used this bootstrap method with 1000 bootstrap samples to obtain the 95% confidence interval described in

the main text for the standardized mean difference. Though the bootstrap is a simple method, it can be computationally

intensive for very large datasets. It is therefore common to see published estimates that are based on only 200-500

bootstrap samples (which would have resulted in an almost identical confidence interval in our example). Finally, note

that the bootstrap is a general method for large samples. We could have also used it to compute a 95% confidence

interval for the IP weighted estimates from marginal structural models in the previous chapter.

will not generally result in the same magnitude and direction of bias in the ef-

fect estimate. Therefore the IP weighted estimate will generally differ from the

standardized estimate because unavoidable model misspecification will affect

the point estimates differently. Large differences between the IP weighted and

standardized estimate will alert us to the presence of serious model misspec-

ification in at least one of the estimates. Small differences do not guarantee

absence of serious model misspecification, but will be reassuring–though logi-

cally possible, it is unlikely that badly misspecified models resulting in bias of

similar magnitude and direction for both methods.

In our smoking cessation example, both the IP weighted and the standard-

ized estimates are similar. After rounding to one decimal place, the estimated

weight gain due to smoking cessation was 35 kg regardless of whether we fit a

model for treatment  (IP weighting) or for the outcome  (standardization).

In neither case we fit a model for the confounders , as we did not need the

distribution of the confounders to obtain the IP weighted estimate, and we just

used the empirical distribution of  (a nonparametric method) to compute the

standardized estimate.

Both IP weighting and standardization are estimators of the g-formula, a

general method for causal inference first described in 1986. (Part III provides

a definition of the g-formula in settings with time-varying treatments.) We

say that standardization is a plug-in g-formula estimator because it simply re-

places the conditional mean outcome in the g-formula by its estimates. When,

like in this chapter, those estimates come from parametric models, we refer to
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Fine Point 13.2

A doubly robust estimator. The previous chapter describes IP weighting, a method that requires a correct model for

treatment  conditional on the confounders . This chapter describes standardization, a method that requires a correct

model for the outcome  conditional on treatment  and the confounders . How about a method that requires a

correct model for either treatment  or outcome  ? That is precisely what doubly robust estimation does. Under the

usual identifiability assumptions, a doubly robust estimator consistently estimates the causal effect if at least one of the

two models is correct (and one need not know which of the two models is correct). That is, doubly robust estimators

give us two chances to get it right.

There are many types of doubly robust estimators. Here we describe a doubly robust estimator proposed by Bang

and Robins (2005) for the average causal effect of a dichotomous treatment  on an outcome  . For simplicity, we

consider a setting without censoring.

To obtain a doubly robust estimate of the average causal effect, first estimate the IP weight  = 1 (|)
as described in the previous chapter. Then fit an outcome regression model like the one described in this chapter–a

generalized linear model with a canonical link–for E[ | =  =  ] that adds the covariate , where  = if

 = 1 and  = − if  = 0. Finally, use the predicted values from the outcome model to obtain the standardized

mean outcomes under  = 1 and  = 0. The difference of the standardized mean outcomes is now doubly robust.

That is, under exchangeability and positivity given , this estimator consistently estimates the average causal effect if

either the model for the treatment or the model for the outcome is correct, without knowing which of the two models

is the correct one.

the method as the parametric g-formula. Because here we were only interestedRobins (1986) described the gen-

eralization of standardization to

time-varying treatments and con-

founders, and named it the g-

computation algorithm formula.

Because this name is very long,

some authors have abbreviated

to g-formula and others to g-

computation. Even though g-

formula and g-computation are syn-

onyms, this book uses only the

former term because the latter

term is frequently confused with g-

estimation, a different method de-

scribed in Chapter 14.

in the average causal effect, we only had to estimate the conditional mean

outcome. More generally, the parametric g-formula uses estimates of any func-

tions of the distribution of the outcome (e.g., functionals like the probability

density function or pdf) within levels of  and  to compute its standardized

value. In the absence of time-varying confounders (see Part III), the paramet-

ric g-formula does not require parametric modeling of the distribution of the

confounders.

Often there is no need to choose between IP weighting and the parametric

g-formula. When both methods can be used to estimate a causal effect, just

use both methods. Also, whenever possible, use doubly robust methods (see

Fine Point 13.2 and Technical Point 13.2) that combine models for treatment

and for outcome in the same approach.

Finally, note that we used the parametric g-formula to estimate the average

causal effect in the entire population of interest. Had we been interested in

the average causal effect in a particular subset of the population, we could

have restricted our calculations to that subset. For example, if we had been

interested in potential effect modification by sex, we would have estimated the

standardized means in men and women separately. Both IP weighting and the

parametric g-formula can be used to estimate average causal effects in either

the entire population or a subset of it.

13.5 How seriously do we take our estimates?

We spent Part I of this book reviewing the definition of average causal ef-

fect, the assumptions required to estimate it, and many potential biases. The

discussion was purely conceptual, the data examples hypersimplistic. A key
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message was that a causal analysis of observational data is sharper when ex-

plicitly emulating a (hypothetical) randomized experiment–the target trial.

The analyses in this and the previous chapter are our first attempts at

estimating causal effects from real data. Using both IP weighting and the

parametric g-formula we estimated that the mean weight gain would have

been 52 kg if everybody had quit smoking compared with 17 kg if nobody

had quit smoking. Both methods estimated that quitting smoking increases

weight by 35 kg (95% confidence interval: 25, 45) on average in this particular

population. In the next chapters we will see that similar estimates are obtained

when using g-estimation, outcome regression, and propensity scores.

The compatibility of estimates across methods is reassuring because each

method’s estimate is based on different modeling assumptions. However, ob-

servational effect estimates are always open to serious criticism. Even if we

do not wish to transport our effect estimate to other populations (Chapter 4)

and even if there is no interference between individuals, the validity of our es-

timates for the target population requires many conditions. We classify these

conditions in three groups.

First, the identifiability conditions of exchangeability, positivity, and con-

sistency (Chapter 3) need to hold for the observational study to resemble the

target trial. The quitters and the non-quitters need to be exchangeable con-

ditional on the 9 measured covariates  (see Fine Point 14.2). Unmeasured

confounding (Chapter 7) or selection bias (Chapter 8, Fine Point 12.2) would

prevent conditional exchangeability. Positivity requires that the distributionMethods based on outcome regres-

sion (including douby robust meth-

ods) can be used in the absence

of positivity, under the assumption

that the outcome model is correctly

specified to extrapolate beyond the

data. See Fine Point 13.1.

of the covariates  in the quitters fully overlaps with that in the non-quitters.

Fine Point 13.1 discussed the different impact of deviations from positivity

for nonparametric IP weighting and standadization. Regarding consistency,

note that there are multiple versions of both quitting smoking (e.g., quitting

progressively, quitting abruptly) and not quitting smoking (e.g., increasing in-

tensity of smoking by 2 cigarettes per day, reducing intensity but not to zero).

Our effect estimate corresponds to a somewhat vague hypothetical interven-

tion in the target population that randomly assigns these versions of treatment

with the same frequency as they actually have in the study population. OtherThis dependence of the numerical

estimate on the exact interventions

is important when the estimates are

used to guide decision making, e.g.,

in public policy or clinical medicine

(Hernán 2016).

hypothetical interventions might result in a different effect estimate.

Second, all variables used in the analysis need to be correctly measured.

Measurement error in the treatment , the outcome  , or the confounders 

will generally result in bias (Chapter 9).

Third, all models used in the analysis need to be correctly specified (Chap-

ter 11). Suppose that the correct functional form for the continuous covariate

age in the treatment model is not the parabolic curve we used but rather aThe validity of our causal inferences

requires the following conditions

• exchangeability
• positivity
• consistency
• no measurement error
• no model misspecification

curve represented by a complex polynomial. Then, even if all the confounders

had been correctly measured and included in , IP weighting would not fully

adjust for confounding. Model misspecification has a similar effect as measure-

ment error in the confounders.

Ensuring that each of these conditions hold, at least approximately, is the

investigator’s most important task. If these conditions could be guaranteed

to hold, then the data analysis would be trivial. The problem is, of course,

that one cannot ever expect that any of these conditions will hold perfectly.

Unmeasured confounders, nonoverlapping confounder distributions, ill-defined

interventions, mismeasured variables, and misspecified models will typically

lurk behind our estimates. Some of these problems may be addressed em-

pirically, but others will remain a matter of subject-matter judgement, and

therefore open to criticism that cannot be refuted by our data. For example,

we can propose different model specifications but we cannot adjust for variables
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that were not measured.

Causal inferences rely on the above conditions, which are heroic and not

empirically testable. We replace the lack of data on the distribution of the

counterfactual outcomes by the assumption that the above conditions are ap-

proximately met. The more our study deviates from those conditions, the

more biased our effect estimate may be. Therefore a healthy skepticism of

causal inferences drawn from observational data is necessary. In fact, a key

step towards less casual causal inferences is the realization that the discussion

should primarily revolve around each of the above assumptions. We only take

our effect estimates as seriously as we take the conditions that are needed to

endow them with a causal interpretation.
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Technical Point 13.2

The bias of doubly robust estimators. Suppose we have a dichotomous treatment , an outcome  , and a vector

of measured variables  that satisfy positivity and exchangeability (consistency is assumed). For simplicity we consider

estimation of the counterfactual mean outcome under treatment E[ =1] rather than the average causal effect. Then

E[ =1] can be written as either E[()], where () = E[ | = 1 ], or E[ 
()

], where () = Pr [ = 1|]. In
this chapter, we described a plug-in g-formula estimator 1



P
=1

̂() that replaces the conditional mean outcome by its

estimate from a (say, linear) regression model for () and averages it over all  individuals in the study. In the previous

chapter, we described a Horvitz-Thompson IP weighted estimator 1


P
=1


̂()

that replaces the probability of treatment

by its estimate from a (say, logistic) regression model for () and averages it over the  individuals. The bias of the

plug-in g-formula estimator will be large if the estimate ̂() is far from (), and the bias of the IP weighted estimator

will be large if ̂() is far from ().

A doubly robust estimator of E[ =1] appropriately combines the estimate ̂() from the outcome model and the

estimate ̂() from the treatment model. There are many forms of doubly robust estimators, like the one described in

Fine Point 13.2 for the average causal effect. All doubly robust estimators involve a correction of the outcome regression

model by a function that involves the treatment model (the first-order influence function), which can also be viewed as

a correction of the Horvitz-Thompson estimator by a function that involves the outcome regression model. For example,

consider the following doubly robust estimator of E[ =1]:

bE[ =1] =
1



X
=1

∙
̂() +



̂()

³
 − ̂()

´¸
,

which can also be written as 1


P
=1

h

̂()

−
³

̂()

− 1
´
̂()

i
.

Under exchangeability and positivity, the bias of this doubly robust estimator of E[ =1] is small if either the

estimate ̂() is close to () or the estimate ̂() is close to (). Specifically, the bias E
hbE[ =1] − E[ =1]

i
of bE[ =1] in large samples is

E

∙
()

µ
1

()
− 1

∗()

¶
(()− ∗())

¸
,

where ∗() and ∗() are the probability limits of ̂() and ̂() and ∗() = () when the treatment model is correct

and ∗() = () when the outcome model is correct. Thus the large sample (i.e., asymptotic) bias is zero when either

the outcome model or the treatment model is correct (and we do not need to know which one). Of course, one does

not expect any parametric model to be correctly specified if the vector  is very high-dimensional and thus even the

bias of our doubly robust estimator may be large.

However, all doubly robust estimators have the property that the bias depends on the product of the error 1
()
− 1

̂()

in the estimation of 1
()

with the error ()− ̂() in the estimation of (). As we discuss in Chapter 18, this property–
which is known as second-order bias–allows us to construct doubly-robust estimators of E[ =1] that may have small

bias by estimating () and () with machine learning estimators rather than with standard parametric models. This is

because, in high-dimensional settings in which large amounts of data are available, machine learning estimators based

on complex algorithms, produce more accurate estimators of () and () than standard parametric models which have

a small number of parameters compared to the sample size.



Chapter 14
G-ESTIMATION OF STRUCTURAL NESTED MODELS

In the previous two chapters, we described IP weighting and standardization to estimate the average causal effect

of smoking cessation on body weight gain. In this chapter we describe a third method to estimate the average

causal effect: g-estimation. We use the same observational NHEFS data and provide simple computer code to

conduct the analyses.

IP weighting, standardization, and g-estimation are often collectively referred to as g-methods because they

are designed for application to generalized treatment contrasts involving treatments that vary over time. The

application of g-methods to treatments that do not vary over time in Part II of this book may then be overkill

since there are alternative, simpler approaches. However, by presenting g-methods in a relatively simple setting,

we can focus on their main features while avoiding the more complex issues described in Part III.

IP weighting and standardization were introduced in Part I (Chapter 2) and then described with models in

Part II (Chapters 12 and 13, respectively). In contrast, we have waited until Part II to describe g-estimation.

There is a reason for that: describing g-estimation is facilitated by the specification of a structural model, even if

the model is saturated. Models whose parameters are estimated via g-estimation are known as structural nested

models. The three g-methods are based on different modeling assumptions.

14.1 The causal question revisited

In the last two chapters we have applied IP weighting and standardization to

estimate the average causal effect of smoking cessation (the treatment)  on

weight gain (the outcome)  . To do so, we used data from 1566 cigaretteAs in previous chapters, we re-

stricted the analysis to NHEFS indi-

viduals with known sex, age, race,

weight, height, education, alcohol

use and intensity of smoking at

the baseline (1971-75) and follow-

up (1982) visits, and who answered

the medical history questionnaire at

baseline.

smokers aged 25-74 years who were classified as treated  = 1 if they quit

smoking, and as untreated  = 0 otherwise. We assumed that exchangeability

of the treated and the untreated was achieved conditional on the  variables:

sex, age, race, education, intensity and duration of smoking, physical activity

in daily life, recreational exercise, and weight. We defined the average causal

effect on the difference scale as E[ =1=0]−E[ =0=0], that is, the difference

in mean weight that would have been observed if everybody had been treated

and uncensored compared with untreated and uncensored.

The quantity E[ =1=0] − E[ =0=0] measures the average causal ef-

fect in the entire population. But sometimes one can be interested in the

average causal effect in a subset of the population. For example, one may

want to estimate the average causal effect in women–E[ =1=0|] −
E[ =0=0|]–, in individuals aged 45, in those with low educational

level, etc. To estimate the effect in a subset of the population one can use

marginal structural models with product terms (see Chapter 12) or apply stan-

dardization to that subset only (Chapter 13).

Suppose that the investigator is interested in estimating the causal effect

of smoking cessation  on weight gain  in each of the strata defined by

combinations of values of the variables . In our example, there are many such

strata. One of them is the stratum {non-quitter, male, white, age 26, college

dropout, 15 cigarettes/day, 12 years of smoking habit, moderate exercise, very

active, weight 112 kg}. As described in Chapter 4, investigators could partition
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the study population into mutually exclusive subsets or non-overlapping strata,

each of them defined by a particular combination of values  of the variables

in , and then estimate the average causal effect in each of the strata. In

Section 12.5 we explain that an alternative approach is to add all variables

, together with product terms between each component of  and treatment

, to the marginal structural model. Then the stabilized weights  ()

equal 1 and no IP weighting is necessary because the (unweighted) outcome

regression model, if correctly specified, fully adjusts for all confounding by 

(see Chapter 15).

In this chapter we will use g-estimation to estimate the average causal effect

of smoking cessation  on weight gain  in each strata defined by the covari-

ates . This conditional effect is represented by E[ =0|]− E[ =0=0|].
Before describing g-estimation, we will present structural nested models and

rank preservation, and, in the next section, articulate the condition of ex-

changeability given  in a new way.

14.2 Exchangeability revisited

As a reminder (see Chapter 2), in our example, conditional exchangeability im-

plies that, in any subset of the study population in which all individuals haveYou may find the first paragraph

of this section repetitious and un-

necessary given our previous discus-

sions of conditional exchangeability.

If that is the case, we could not be

happier.

the same values of , those who did not quit smoking ( = 0) would have had

the same mean weight gain as those who did quit smoking ( = 1) if they had

not quit, and vice versa. In other words, conditional exchangeability means

that the outcome distribution in the treated and the untreated would be the

same if both groups had received the same treatment level. When the distrib-

ution of the outcomes   under treatment level  is the same for the treated

and the untreated, each of the counterfactual outcomes   is independent of

the actual treatment level , within levels of the covariates, or  ⊥⊥| for
both  = 1 and  = 0.

Take the counterfactual outcome under no treatment  =0. When condi-

tional exchangeability holds, knowing the value of  =0 does not help differ-

entiate between quitters and nonquitters with a particular value of . That is,

the conditional (on ) probability of being a quitter is the same for all values

of the counterfactual outcome  =0. Mathematically, we write

Pr[ = 1| =0 ] = Pr[ = 1|]

which is an equivalent definition of conditional exchangeability for a dichoto-

mous treatment .

Expressing conditional exchangeability in terms of the conditional proba-

bility of treatment will be helpful when we describe g-estimation later in this

chapter. Specifically, suppose we propose the following parametric logistic

model for the probability of treatment

logit Pr[ = 1| =0 ] = 0 + 1
=0 + 2

where 2 is a vector of parameters, one for each component of . If  has For simplicity, in this book we do

not distinguish between vector and

scalar parameters. This is an abuse

of notation, but we believe it does

not create any confusion.

components 1  then 2 =
P

=1 2 . This model is the same one we

used to estimate the denominator of the IP weights in Chapter 12, except that

this model also includes the counterfactual outcome  =0 as a covariate.

Of course, we can never fit this model to a real data set because we do

not know the value of the variable  =0 for all individuals. But suppose for



14.3 Structural nested mean models 173

a second that we had data on  =0 for all individuals, and that we fit the

above logistic model. If there is conditional exchangeability and the model

is correctly specified, what estimate would you expect for the parameter 1?

Pause and think about it before going on (the response can be found near the

end of this paragraph) because we will be estimating the parameter 1 when

implementing g-estimation. If you have already guessed what its value should

be, you have already understood half of g-estimation. Yes, the expected value

of the estimate of 1 is zero because 
=0 does not predict  conditional on

. We now introduce the other half of g-estimation: the structural model.

14.3 Structural nested mean models

We are interested in estimating the average causal effect of treatment  within

levels of , that is, E[ =1|] − E[ =0|]. (For simplicity, suppose there is
no censoring until later in this section.) Note that we can also represent this

effect by E[ =1− =0|] because the difference of the means is equal to the
mean of the differences. If there were no effect-measure modification by ,

these differences would be constant across strata, i.e., E[ =1 −  =0|] = 1
where 1 would be the average causal effect in each stratum and also in the

entire population. Our structural model for the conditional causal effect would

be E[  −  =0|] = 1.

More generally, there may be effect modification by . For example, the

causal effect of smoking cessation may be greater among heavy smokers than

among light smokers. To allow for the causal effect to depend on  we can add a

product term to the structural model, i.e., E[ − =0|] = 1+2, where

2 is a vector of parameters. Under conditional exchangeability 
⊥⊥|, the

conditional effect will be the same in the treated and in the untreated because

the treated and the untreated are, on average, the same type of people within

levels of . Thus, under exchangeability, the structural model can also be

written as

E[  −  =0| = ] = 1+ 2

which is referred to as a structural nested mean model. The parameters 1 andRobins (1991) first described the

class of structural nested models.

These models are “nested” when

the treatment is time-varying. See

Part III for an explanation.

2 (again, a vector), which are estimated by g-estimation, quantify the average

causal effect of smoking cessation  on  within levels of  and .

In Chapter 13 we considered parametric models for the mean outcome 

that, like structural nested models, were also conditional on treatment  and

covariates . Those outcome models were the basis for standardization when

estimating the parametric g-formula. In contrast with those parametric mod-

els, structural nested models are semiparametric because they are agnostic

about both the intercept and the main effect of –that is, there is no para-

meter 0 and no parameter 3 for a term 3. As a result of leaving these

parameters unspecified, structural nested models make fewer assumptions and

can be more robust to model misspecification than the parametric g-formula.

See Fine Point 14.1 for a description of the relation between structural nested

models and the marginal structural models of Chapter 12.

In the presence of censoring, our causal effect of interest is not E[ =1 −
 =0|] but E[ =1=0 −  =0=0|], that is, the average causal effect
if everybody had remained uncensored. Estimating this difference requires

adjustment for both confounding and selection bias (due to censoring  = 1)

for the effect of treatment . As described in the previous two chapters, IP
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Fine Point 14.1

Relation between marginal structural models and structural nested models. Consider a marginal structural mean

model for the average outcome under treatment level  within levels of the dichotomous covariate  , a component of

,

E[ | ] = 0 + 1+ 2 + 3

The sum 1+2 is the average causal effect E[
=1− =0| = ] in the stratum  = , and the sum 0+3 is the

mean counterfactual outcome under no treatment E[ =0| = ] in the stratum  = . Suppose the only inferential

goal is the average causal effect 1 + 2, i.e., we are not interested in estimating 0 + 3 = E[
=0| = ]. Then

we would write the model as E[ | ] = E[ =0| ] + 1+ 2 or, equivalently, as

E[  −  =0| ] = 1+ 2

which is referred to as a semiparametric marginal structural mean model because, unlike the marginal structural models

in Chapter 12, leaves the mean counterfactual outcomes under no treatment E[ =0| ] completely unspecified.
To estimate the parameters of this semiparametric marginal structural model in the absence of censoring, we first

create a pseudo-population with IP weights ( ) =  (| )  (|). In this pseudo-population there is only
confounding by  and therefore the semiparametric marginal structural model is a structural nested model whose para-

meters are estimated by g-estimation with  substituted by  and each individual’s contribution weighted by ( ).

Therefore, in settings without time-varying treatments, structural nested models are identical to semiparametric mar-

ginal structural models that leave the mean counterfactual outcomes under no treatment unspecified. Because marginal

structural mean models include more parameters than structural nested mean models, the latter may be more robust to

model misspecification.

Consider the special case of a semiparametric marginal structural mean model within levels of all variables in ,

rather than only a subset  so that ( ) are equal to 1 for all individuals. That is, let us consider the model

E[ − =0|] = 1+2, which we refer to as a faux semiparametric marginal structural model. Under conditional

exchangeability, this model is the structural nested mean model we use in this chapter.

weighting and standardization can be used to adjust for these two biases. G-

estimation, on the other hand, can only be used to adjust for confounding, not

selection bias.

Thus, when using g-estimation, one first needs to adjust for selection biasTechnically, IP weighting is not nec-

essary to adjust for selection bias

when using g-estimation with a

time-fixed treatment that does not

affect any variable in , and an

outcome measured at a single time

point. That is, if as we have been

assuming  ⊥⊥ () |, we can
apply g-estimation to the uncen-

sored subjects without having to IP

weight.

due to censoring by IP weighting. In practice, this means that we first estimate

nonstabilized IP weights for censoring to create a pseudo-population in which

nobody is censored, and then apply g-estimation to the pseudo-population.

In our smoking cessation example, we will use the nonstabilized IP weights

 = 1Pr [ = 0|] that we estimated in Chapter 12. Again we assume
that the vector of variables  is sufficient to adjust for both confounding and

selection bias.

All the g-estimation analyses described in this chapter incorporate IP weights

to adjust for the potential selection bias due to censoring. Under the assump-

tion that the censored and the uncensored are exchangeable conditional on the

measured covariates , the structural nested mean model E[  −  =0| =

 ] = 1+ 2, when applied to the pseudo-population created by the IP

weights  , is really a structural model in the absence of censoring:

E[ =0 −  =0=0| =  ] = 1+ 2

For simplicity, we will omit the superscript  = 0 hereafter in this chapter.
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Technical Point 14.1

Multiplicative structural nested mean models. In the text we only consider additive structural nested mean models.

When the outcome variable  can only take positive values, a multiplicative structural nested mean model is preferred.

An example of a multiplicative structural nested mean model is

log

µ
E[ | =  ]

E[ =0| =  ]

¶
= 1+ 2

which can be fit by g-estimation with (†) defined to be  exp
h
−†1− 

†
2

i
.

The above multiplicative model can also be used for binary (0, 1) outcome variables as long as the probability of

 = 1 is small in all strata of . Otherwise, the model might predict probabilities greater than 1. If the probability is

not small, one can consider a structural nested logistic model for a dichotomous outcome  such as

logit Pr[  = 1| =  ]− logit Pr[ =0 = 1| =  ] = 1+ 2

Unfortunately, structural nested logistic models do not generalize easily to time-varying treatments and their parameters

cannot be estimated using the g-estimation algorithm described in the text. For details, see Robins (1999) and Tchetgen

Tchetgen and Rotnitzky (2011).

In this chapter we will use g-estimation of a structural nested mean model

to estimate the effect of the dichotomous treatment “smoking cessation”, butUnlike IP weighting, g-estimation

cannot be easily extended to es-

timate the parameters of struc-

tural logistic models for dichoto-

mous outcomes. See Technical

Point 14.1.

structural nested models can also be used for continuous treatment variables–

like “change in smoking intensity” (see Chapter 12). For continuous variables,

the model needs to specify the dose-response function for the effect of treatment

 on the mean outcome  . For example, E[  −  =0| =  ] = 1 +

2
2 + 3+ 4

2, or E[  −  =0| =  ] could be a smooth function,

e.g., splines, of  and .

We now turn our attention to the concept of rank preservation, which will

help us describe g-estimation of structural nested models.

14.4 Rank preservation

In our smoking cessation example, all individuals can be ranked according to

the value of their observed outcome  . Subject 23522 is ranked first withcode: Program 14.1
weight gain of 485 kg, individual 6928 is ranked second with weight gain 475

kg... and individual 23321 is ranked last with weight gain of −413 kg. Simi-
larly we could think of ranking all individuals according to the value of their

counterfactual outcome under treatment  =1 if the value of  =1 were known

for all individuals rather than only for those who were actually treated. Sup-

pose for a second that we could actually rank everybody according to  =1 and

also according to  =0. We would then have two lists of individuals ordered

from larger to smaller value of the corresponding counterfactual outcome. If

both lists are in identical order we say that there is rank preservation.

When the effect of treatment  on the outcome  is exactly the same,

on the additive scale, for all individuals in the study population, we say that

additive rank preservation holds. For example, if smoking cessation increases

everybody’s body weight by exactly 3 kg, then the ranking of individuals ac-

cording to  =0 would be equal to the ranking according to  =1, except
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that in the latter list all individuals will be 3 kg heavier. A particular case of

additive rank preservation occurs when the sharp null hypothesis is true (see

Chapter 1), i.e., if treatment has no effect on the outcomes of any individual in

the study population. For the purposes of structural nested mean models we

will care about additive rank preservation within levels of . This conditional

additive rank preservation holds if the effect of treatment  on the outcome 

Figure 14.1

is exactly the same for all individuals with the same values of .

An example of an (additive conditional) rank-preserving structural model

is

 
 −  =0

 = 1+ 2 for all individuals 

where 1 + 2 is the constant causal effect for all individuals with covariate

values  = . That is, for every individual  with  = , the value of  =1
 is

equal to  =0
 + 1 + 2. An individual’s counterfactual outcome under no

treatment  =0
 is shifted by 1+2 to obtain the value of her counterfactual

outcome under treatment.

Figure 14.1 shows an example of additive rank preservation within the

stratum  = . The bell-shaped curves represent the distribution of the coun-

terfactual outcomes  =0 (left curve) and  =1 (right curve). The two dots in

the upper part of the figure represent the values of the two counterfactual out-

comes for individual , and the two dots in the lower part represent the values

of the two counterfactual outcomes for individual . The arrows represent the

Figure 14.2

shifts from  =0 to  =1, which are equal to 1+2 for all individuals in this

stratum. Figure 14.2 shows an example of rank preservation within another

stratum  = 0. The distribution of the counterfactual outcomes is different
from that in stratum  = . For example, the mean of  =0 in Figure 14.1 is

to the left of the mean of  =0 in Figure 14.2, which means that, on average,

individuals in stratum  =  have a smaller weight gain under no smoking

cessation than individuals in stratum  = 0. The shift from  =0 to  =1 is

1 + 2
0 for all individuals with  = 0, as shown for individuals  and .

For most treatments and outcomes, the individual causal effect is not ex-

pected to be constant–not even approximately constant–across individuals

with the same covariate values, and thus (additive conditional) rank preserva-

tion is scientifically implausible. In our example we do not expect that smoking

cessation affects equally the body weight of all individuals with the same val-

ues of . Some people are–genetically or otherwise–more susceptible to the

effects of smoking cessation than others, even within levels of the covariates

. The individual causal effect of smoking cessation will vary across people:

Figure 14.3

after quitting smoking some individuals will gain a lot of weight, some will

gain little, and others may even lose some weight. Reality may look more like

the situation depicted in Figure 14.3, in which the shift from  =0 to  =1

varies across individuals with the same covariate values, and even ranks are

not preserved since the outcome for individual  is less than that for individual

 when  = 0 but not when  = 1.

Because of the implausibility of rank preservation, one should not generally

use methods for causal inference that rely on it. In fact none of the methods

we consider in this book require rank preservation. For example, the marginal

structural mean models from Chapter 12 are models for average causal effects,

not for individual causal effects, and thus they do not assume rank preservation.

The estimated average causal effect of smoking cessation on weight gain was

35 kg (95% confidence interval: 25, 45). This average effect is agnostic as

to whether rank preservation of individual causal effects holds. Similarly, the

structural nested mean model in the previous section made no assumptions

about rank preservation.
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The additive rank-preserving model in this section makes a much strongerA structural nested mean model

is well defined in the absence of

rank preservation. For example,

one could propose a model for the

setting depicted in Figure 14.3 to

estimate the average causal effect

within strata of . Such aver-

age causal effect will generally differ

from the individual causal effects.

assumption than non-rank-preserving models: the assumption of constant treat-

ment effect for all individuals with the same value of . There is no reason

why we would want to use such an unrealistic rank-preserving model in prac-

tice. And yet we use it in the next section to introduce g-estimation because

g-estimation is easier to understand for rank-preserving models, and because

the g-estimation procedure is actually the same for rank-preserving and non-

rank-preserving models. Note that the (conditional additive) rank-preserving

structural model is a structural mean model–the mean of the individual shifts

from  =0 to  =1 is equal to each of the individual shifts within levels of .

14.5 G-estimation

This section links the material in the previous three sections. Suppose the

goal is estimating the parameters of the structural nested mean model E[ −
 =0| = ] = 1. For simplicity, we first consider a model with a single

parameter 1. Because the model lacks product terms 2, we are effectively

assuming that the average causal effect of smoking cessation is constant across

strata of , i.e., no additive effect modification by .

We also assume that the additive rank-preserving model  
 − =0

 = 1

is correctly specified for all individuals . Then the individual causal effect 1
is equal to the average causal effect 1 in which we are interested. We write

the rank-preserving model as  − =0 = 1, without a subscript  to index

individuals because the model is the same for all individuals. For reasons that

will soon be obvious, we write the model in the equivalent form

 =0 =   − 1

The first step in g-estimation is linking the model to the observed data. To

do so, remember that an individual’s observed outcome  is, by consistency,

the counterfactual outcome  =1 if the person received treatment  = 1 or

the counterfactual outcome  =0 if the person received no treatment  = 0.

Therefore, if we replace the fixed value  in the structural model by each

individual’s value –which will be 1 for some and 0 for others–then we can

replace the counterfactual outcome   by the individual’s observed outcome

  =  . The rank-preserving structural model then implies an equation

in which each individual’s counterfactual outcome  =0 is a function of his

observed data on treatment and outcome and the unknown parameter 1:

 =0 =  − 1

If this model were correct and we knew the value of 1 then we could calcu-

late the counterfactual outcome under no treatment  =0 for each individual

in the study population. But we don’t know 1. Estimating it is precisely the

goal of our analysis.

Let us play a game. Suppose a friend of yours knows the value of 1 but he

only tells you that 1 is one of the following: 
† = −20, † = 0, or † = 10.

He challenges you: “Can you identify the true value 1 among the 3 possible

values †?” You accept the challenge. For each individual, you compute

(†) =  − †
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for each of the three possible values †. The newly created variables (−20),
(0), and (10) are candidate counterfactuals. Only one of them is the coun-

terfactual outcome  =0. More specifically, (†) =  =0 if † = 1. In

this game, choosing the correct value of 1 is equivalent to choosing which

one of the three candidate counterfactuals (†) is the true counterfactual
 =0 = (1). Can you think of a way to choose the right (

†)?
Remember from Section 14.2 that the assumption of conditional exchange-

ability can be expressed as a logistic model for treatment given the counterfac-

tual outcome and the covariates . When conditional exchangeability holds,

the parameter 1 for the counterfactual outcome should be zero. So we haveRosenbaum (1987) proposed a ver-

sion of this procedure for non-time-

varying treatments.

a simple method to choose the true counterfactual out of the three variables

(†). We fit three separate logistic models

logit Pr[ = 1|(†) ] = 0 + 1(
†) + 2,

one per each of the three candidates (†). The candidate (†) with 1 = 0
is the counterfactual  =0, and the corresponding † is the true value 1. ForImportant: G-estimation does not

test whether conditional exchange-

ability holds; it assumes that condi-

tional exchangeability holds.

example, suppose that († = 10) is unassociated with treatment  given

the covariates . Then our estimate ̂1 of 1 is 10. We are done. That was

g-estimation.

In practice, however, we need to g-estimate the parameter 1 in the absence

of a friend who knows the right answer and likes to play games. Therefore we

will need to search over all possible values † until we find the one that results
in an (†) with 1 = 0. Because not all possible values can be tested–there
is an infinite number of values † in any given interval–we can conduct a fine
search over the possible range of † values (e.g., from −20 to 20 by increments
of 001). The finer the search, the closer to the true estimate ̂1 we will get,

but also the greater the computational demands.code: Program 14.2

In our smoking cessation example, we first computed each individual’s value

of the 31 candidates (20), (21), (22), ...(49), and (50) for values

† between 20 and 50 by increments of 01. We then fit 31 separate logistic
models for the probability of smoking cessation. These models were exactly

like the one used to estimate the denominator of the IP weights in Chapter

12, except that we added to each model one of the 31 candidates (†).
The parameter estimate ̂1 for (

†) was closest to zero for values (34)
and (35). A finer search found that the minimum value of ̂1 (which was

essentially zero) was for (3446). Thus, our g-estimate ̂1 of the average

causal effect 1 = 1 of smoking cessation on weight gain is 34 kg.

To compute a 95% confidence interval around our g-estimate of 34, we usedWe calculated the P-value from

a Wald test. Any other valid

test may be used. For exam-

ple, we could have used a Score

test, which simplifies the calcula-

tions (it doesn’t require fitting mul-

tiple models) and, in large samples,

is essentially equivalent to a Wald

test.

the P-value for a test of 1 = 0 in the logistic models fit above. As expected,

the P-value was 1–it was actually 0998–for † = 3446, which is the value
† that results in a candidate (†) with a parameter estimate ̂1 = 0. Of

the 31 logistic models that we fit for † values between 20 and 50, the P-value
was greater than 005 in all models with (†) based on † values between
approximately 25 and 45. That is, the test did not reject the null hypothesis

at the 5% level for the subset of † values between 25 and 45. By inverting
the test results, we concluded that the limits of the 95% confidence interval

around 34 are 25 and 45. Another option to compute the 95% confidence

interval is bootstrapping of the g-estimation procedure.

More generally, the 95% confidence interval for a g-estimate is determined

by finding the set of values of † that result in a P-value 005 when testing for
1 = 0. The 95% confidence interval is obtained by inversion of the statistical

test for 1 = 0, with the limits of the 95% confidence interval being the limits
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Fine Point 14.2

Sensitivity analysis for unmeasured confounding. G-estimation relies on the fact that 1 = 0 if conditional

exchangeability given  holds. Now consider a setting in which conditional exchangeability does not hold. For example,

suppose that the probability of quitting smoking  is lower for individuals whose spouse is a smoker, and that the

spouse’s smoking status is associated with important determinants of weight gain  not included in . That is,

there is unmeasured confounding by spouse’s smoking status. Because now the variables in  are insufficient to achieve

exchangeability of the treated and the untreated, the treatment  and the counterfactual  =0 are associated conditional

on . That is, 1 6= 0 and we cannot apply g-estimation as described in the main text.
But g-estimation does not require that 1 = 0. Suppose that, because of unmeasured confounding by the spouse’s

smoking status, 1 is expected to be 01 rather than 0. Then we can apply g-estimation as described in the text

except that we will test whether 1 = 01 rather than whether 1 = 0. G-estimation does not require that conditional

exchangeability given  holds, but that the magnitude of nonexchangeability–the value of 1–is known. This property

of g-estimation can be used to conduct sensitivity analyses for unmeasured confounding.

If we believe that  may not sufficiently adjust for confounding, then we can repeat our g-estimation analysis under

different scenarios of unmeasured confounding, represented by a range of values of 1, and plot the effect estimates

under each of them. Such plot shows how sensitive our effect estimate is to unmeasured confounding of different

direction and magnitude. One practical problem for this approach is how to quantify the unmeasured confounding on

the 1 scale, e.g., is 01 a lot of unmeasured confounding? Robins, Rotnitzky, and Scharfstein (1999) provide technical

details on sensitivity analysis for unmeasured confounding using g-estimation.

of the set of values † with P-value 005. In our example, the statistical test
was based on a robust variance estimator because of the use of IP weighting toIn the presence of censoring, the fit

of the logistic models is necessar-

ily restricted to uncensored individ-

uals ( = 0), and the contribution

of each individual is weighted by

the estimate of his/her IP weight

 . See Technical Point 14.2.

adjust for censoring. Therefore our 95% confidence interval is conservative in

large samples, i.e., it will trap the true value at least 95% of the time. In large

samples, bootstrapping would result in a non-conservative, and thus possibly

narrower, 95% confidence interval for the g-estimate.

Back to non-rank-preserving models. The g-estimation algorithm (i.e., the

computer code implementing the procedure) for 1 produces a consistent es-

timate of the parameter 1 of the mean model, assuming the mean model is

correctly specified (that is, if the average treatment effect is equal in all levels

of ). This is true regardless of whether the individual treatment effect is

constant, that is, regardless of whether the conditional additive rank preser-

vation holds. In other words, the validity of the g-estimation algorithm does

not actually require that (1) =  =0 for all individuals, where 1 is the

parameter value in the mean model. Rather, the algorithm only requires that

(1) and  =0 have the same conditional mean given .

Interestingly, the above g-estimation procedure can be readily modified to

incorporate a sensitivity analysis for unmeasured confounding, as described in

Fine Point 14.2.

14.6 Structural nested models with two or more parameters

We have so far considered a structural nested mean model with a single pa-

rameter 1. The lack of product terms 2 implies that we believe that the

average causal effect of smoking cessation does not vary across strata of . The

structural nested model will be misspecified–and thus our causal inferences

will be wrong–if there is indeed effect modification by some components  of
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 but we failed to add a product term 2 . This is in contrast with the sat-

urated marginal structural model E[ ] = 0 + 1, which is not misspecified

if we fail to add terms 2 and 3 even if there is effect modification by  .

Marginal structural models that do not condition on  estimate the average

causal effect in the population, whereas those that condition on  estimate theAs discussed in Chapter 12, a de-

sirable property of marginal struc-

tural models is null preservation:

when the null hypothesis of no aver-

age causal effect is true, the model

is never misspecified. Structural

nested models preserve the null too.

In contrast, although the paramet-

ric g-formula preserves the null for

time-fixed treatments, it loses this

property in the time-varying setting

(see Part III).

average causal effect within levels of  . Structural nested models estimate, by

definition, the average causal effect within levels of the confounders , not the

average causal effect in the population. Omitting product terms in structural

nested models when there is effect modification will generally lead to bias due

to model misspecification.

Fortunately, the g-estimation procedure described in the previous section

can be generalized to models with product terms. For example, suppose we be-

lieve that the average causal effect of smoking cessation depends on the baseline

level of smoking intensity  . We may then consider the structural nested mean

model E[  −  =0| =  ] = 1 + 2 and, for g-estimation purposes,

the corresponding rank-preserving model  
 −  =0

 = 1+ 2 . Because

the structural model has two parameters, 1 and 2, we also need to include

two parameters in the IP weighted logistic model for Pr[ = 1|(†) ] with
† =

³

†
1 

†
2

´
. For example, we could fit the logistic model

logit Pr[ = 1|(†) ] = 0 + 1(
†) + 2(

†) + 3

and find the combination of values of 
†
1 and 

†
2 that result in a (

†) that is
independent of treatment  conditional on the covariates . That is, we need

to search the combination of values 
†
1 and 

†
2 that make both 1 and 2 equal

to zero.

Because the model has two parameters, the search must be conducted over

a two-dimensional space. Thus a systematic, brute force search will be more

involved than that described in the previous section. Less computationally in-

tensive approaches, known as directed search methods, for approximate search-The Nelder-Mead Simplex method

is an example of a directed search

method.

ing are available in statistical software. For linear mean models like the one

discussed here–but not, for example, for certain survival analysis models–

the estimate can be directly calculated using a formula, i.e., the estimator has

closed form and a search over the possible values of the parameters is not

necessary (see Technical Point 14.2 for details). In our smoking cessation ex-code: Program 14.3

ample, the g-estimates were ̂1 = 286 and ̂2 = 003. The corresponding 95%

confidence intervals can be calculated by using the P-value of a joint test for

1 = 2 = 0 or, more simply, by bootstrapping.

In the more general case, we would consider a model that allows the averageYou may argue that structural

nested models with multiple para-

meters may not be necessary. If

all variables  are discrete and the

study population is large, one could

fit separate 1-parameter models to

each subset of the population de-

fined by joint levels of the covari-

ates contained in the vector .

causal effect of smoking cessation to vary across all strata of the variables

in . For dichotomous variables, the corresponding rank-preserving model

 
 −  =0

 = 1 + 
P

=1 2 has  + 1 parameters 1 212, where

2 is the parameter corresponding to the product term  and  represents

one of the  components of . The average causal effect in the entire study

population can then be calculated as 1+
1


P
=1 2 , where  is the number

of individuals in the study. In practice, structural nested models with multiple

parameters have rarely been used.

In fact, structural nested models of any type have rarely been used, partly

because of the lack of user-friendly software and partly because the extension

of these models to survival analysis requires some additional considerations

(see Chapter 17). We now review two methods that are arguably the most

commonly used approaches to adjust for confounding: outcome regression and

propensity scores.
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Technical Point 14.2

G-estimation of structural nested mean models. Consider the structural nested model E[  −  =0| =  ] =

1. A consistent estimate of 1 can be obtained by g-estimation under the assumptions described in the text.

Specifically, our estimate of 1 is the value of (
†) that minimizes the association between (†) and . When we

base our g-estimate on the score test (see, for example, Casella and Berger 2002), this procedure is equivalent to finding

the parameter value † that solves the estimating equation

X
=1

I [ = 0]

 (

†) ( − E [|]) = 0

where the indicator I [ = 0] takes value 1 for individual  if  = 0 and takes value 0 otherwise, and the IP weight


 and the expectation E [|] = Pr [ = 1|] are replaced by their estimates. E [|] can be estimated from a

logistic model for treatment conditional on the covariates  in which individual  contribution is weighted by 
 if

 = 0 and it is zero otherwise. [Because  and  are observed on all individuals, we could also estimate E [|] by
an unweighted logistic regression of  on  using all individuals.]

The solution to the equation has a closed form and can therefore be calculated directly, i.e., no search over the

parameter space is required. Specifically, using the fact that (
†) =  − † we obtain that ̂1 equals

X
=1

I [ = 0]

  ( − E [|]) 

X
=1

I [ = 0]

  ( − E [|])

If  is D-dimensional, we multiply the left-hand side of the estimating equation by a D-dimensional vector function of .

The choice of the function affects the statistical efficiency of the estimator, but not its consistency. That is, although

all choices of the function will result in valid confidence intervals, the length of the confidence interval will depend on

the function. Robins (1994) provided a formal description of structural nested mean models, and derived the function

that minimizes confidence interval length.

A natural question is whether we can further increase efficiency by replacing (
†) by a nonlinear function, such

as
£
(

†)
¤3
, in the above estimating equation and still preserve consistency of the estimate. Nonlinear functions of

(
†) cannot be used in our estimating equation for models that, like the structural nested mean models described in

this chapter, impose only mean independence conditional on , i.e., E [(1)|] = E [(1)|], for identification.
Nonlinear functions of (

†) can be used for models that impose distributional independence, i.e., (1)⊥⊥|, like
structural nested distribution models (not described in this chapter) that map percentiles of the distribution of   given

( =  ) into percentiles of the distribution of  0 given ( =  ).

The estimator of  is consistent only if the models used to estimate E [|] and Pr [ = 1|] are both correct.
We can construct a more robust estimator by replacing (†) by (†)−E £(†)|¤ in the estimating equation, and
then estimating the latter conditional expectation by fitting an unweighted linear model for E

£
(†)|¤ = E £ =0|¤

among the uncensored individuals. If this model is correct then the estimate of  solving the modified estimating

equation remains consistent even if both the above models for E [|] and Pr [ = 1|] are incorrect. Thus we obtain
a consistent estimator of  if either (i) the model for E

£
(†)|¤ or (ii) both models for E [|] and Pr [ = 1|]

are correct, without knowing which of (i) or (ii) is correct. We refer to such an estimator as being doubly robust. Robins

(2000) described a closed-form of the doubly robust estimator for the linear structural nested mean model.
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Chapter 15
OUTCOME REGRESSION AND PROPENSITY SCORES

Outcome regression and various versions of propensity score analyses are the most commonly used parametric

methods for causal inference. You may rightly wonder why it took us so long to include a chapter that discusses

these methods. So far we have described IP weighting, standardization, and g-estimation–the g-methods. Pre-

senting the most commonly used methods after the least commonly used ones seems an odd choice on our part.

Why didn’t we start with the simpler and widely used methods based on outcome regression and propensity scores?

Because these methods do not work in general.

More precisely, the simpler outcome regression and propensity score methods–as described in a zillion pub-

lications that this chapter cannot possibly summarize–work fine in simpler settings, but these methods are not

designed to handle the complexities associated with causal inference with time-varying treatments. In Part III

we will again discuss g-methods but will say less about conventional outcome regression and propensity score

methods. This chapter is devoted to causal methods that are commonly used but have limited applicability for

complex longitudinal data.

15.1 Outcome regression

In the last three chapters we have described IP weighting, standardization,

and g-estimation to estimate the average causal effect of smoking cessation

(the treatment)  on weight gain (the outcome)  . We also described how toReminder: We defined the aver-

age causal effect as E[ =1=0]−
E[ =0=0]. We assumed that

exchangeability of the treated and

the untreated was achieved condi-

tional on the  variables sex, age,

race, education, intensity and dura-

tion of smoking, physical activity in

daily life, recreational exercise, and

weight.

estimate the average causal effect within subsets of the population, either by

restricting the analysis to the subset of interest or by adding product terms in

marginal structural models (Chapter 12) and structural nested models (Chap-

ter 14). Take structural nested models. These models include parameters for

the product terms between treatment  and the variables , but no parame-

ters for the variables  themselves. This is an attractive property of structural

nested models because we are interested in the causal effect of  on  within

levels of  but not in the (noncausal) relation between  and  . A method–

g-estimation of structural nested models–that is agnostic about the functional

form of the - relation is protected from bias due to misspecifying this rela-

tion.

On the other hand, if we were willing to specify the - association within

levels of , we would consider the structural modelIn Chapter 12, we referred to this

model as a faux marginal structural

model because it has the form of

a marginal structural model but IP

weighting is not required to esti-

mate its parameters. The stabilized

IP weights () are all equal to

1 because the model is conditional

on the entire vector  rather than

on a subset  of .

E[ =0|] = 0 + 1+ 2+ 3

where 2 and 3 are vector parameters. The average causal effects of smoking

cessation  on weight gain  in each stratum of  are a function of 1 and 2,

the mean counterfactual outcomes under no treatment in each stratum of 

are a function of 0 and 3. The parameter 3 is usually referred as the main

effect of , but the use of the word effect is misleading because 3 may not

have an interpretation as the causal effect of  (there may be confounding for

). The parameter 3 simply quantifies how the mean of the counterfactual

 =0=0 varies as a function of , as we can see in our structural model. See
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Fine Point 15.1

Nuisance parameters. Suppose our goal is to estimate the causal parameters 1and 2. If we do so by fitting the

outcome regression model E[ =0|] = 0+1+2+3, our estimates of 1and 2 will in general be consistent

only if 0+3 correctly models the dependence of the mean E[
=0=0|] on . We refer to the parameters 0 and

3 as nuisance parameters because they are not our parameters of primary interest.

On the other hand, if we estimate 1and 2 by g-estimation of the structural nested model E[
=0− =0=0|] =

1+2, then our estimates of 1and 2 will in general be consistent only if the conditional probability of treatment

given  Pr[ = 1|] is correct. That is, the parameters of the treatment model such as logit Pr[ = 1|] = 0 +1

are now the nuisance parameters.

For example, bias would arise in the outcome regression model if a covariate  is modeled with a linear term 3

when it should actually be linear and quadratic 3+4
2. Structural nested models are not subject to misspecification

of an outcome regression model because the - relation is not specified in the structural model. However, bias would

arise when using g-estimation of structural nested models if the - relation is misspecified in the treatment model.

Symmetrically, outcome regression models are not subject to misspecification of a treatment model. For fixed treatments

that do not vary over time, deciding what method to use boils down to deciding which nuisance parameters–those in

the outcome model or in the treatment model–we believe can be more accurately estimated. When possible, a better

alternative is to use doubly robust methods (see Fine Point 13.2).

Fine Point 15.1 for a discussion of parameters that, like 0 and 3, do not have

a causal interpretation.

The counterfactual mean outcomes if everybody in stratum  of  had been

treated and remained uncensored, E[ =1=0| = ], are equal to the corre-

sponding mean outcomes in the uncensored treated, E[ | = 1  = 0  = ],

under exchangeability, positivity, and well-defined interventions. And analo-

gously for the untreated. Therefore the parameters of the above structural

model can be estimated via ordinary least squares by fitting the outcome re-

gression model

E[ | = 0 ] = 0 + 1+ 2+ 3

as described in Section 13.2. Like stratification in Chapter 3, outcome regres-

sion adjusts for confounding by estimating the causal effect of treatment in

each stratum of . If the variables  are sufficient to adjust for confounding

(and selection bias) and the outcome model is correctly specified, no further

adjustment is needed. That is, the parameters  of the regression model equal

the parameters  of the structural model.0 and 3 specify the dependence

of  =0=0 on , which is required

when the model is used to esti-

mate (i) the mean counterfactual

outcomes and (ii) the conditional

(within levels of ) effect on the

multiplicative rather than additive

scale.

In Section 13.2, outcome regression was an intermediate step towards the

estimation of a standardized outcome mean. Here, outcome regression is the

end of the procedure. Rather than standardizing the estimates of the condi-

tional means to estimate a marginal mean, we just compare the conditional

mean estimates. In Section 13.2, we fit a regression model with only one prod-

uct term in 2 (between  and smoking intensity). That is, a model in which

we a priori set most product terms equal to zero. Using the same model as in

Section 13.2, here we obtained the parameter estimates ̂1 = 26 and ̂2 = 005.

As an example, the effect estimate bE[ | = 1  = 0 ]−bE[ | = 0  = 0 ]
was 28 (95% confidence interval: 15, 41) for those smoking 5 cigarettes/day,code: Program 15.1
and 44 (95% confidence interval: 28, 61) for 40 cigarettes/day. A common

approach to outcome regression is to assume that there is no effect modification

by any variable in . Then the model is fit without any product terms and

̂1 is an estimate of both the conditional and marginal average causal effects
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of treatment. In our example, a model without any product terms yielded the

estimate 35 (95% confidence interval: 26, 43) kg.

In this chapter we did not need to explain how to fit an outcome regression

model because we had already done it in Chapter 13 when estimating the

components of the parametric g-formula. It is equally straightforward to use

outcome regression for discrete outcomes, e.g., for a dichotomous outcome 

one could fit a logistic model for Pr [ = 1| =  = 0 ].

15.2 Propensity scores

When using IP weighting (Chapter 12) and g-estimation (Chapter 14), we

estimated the probability of treatment given the covariates , Pr [ = 1|],
for each individual. Let us refer to this conditional probability as (). The

value of () is close to 0 for individuals who have a low probability of receiving

treatment and is close to 1 for those who have a high probability of receiving

treatment. That is, () measures the propensity of individuals to receive

treatment given the information available in the covariates . No wonder that

() is referred to as the propensity score.

In an ideal randomized trial in which half of the individuals are assigned

to treatment  = 1, the propensity score () = 05 for all individuals. Alsocode: Program 15.2
Here we only consider propensity

scores for dichotomous treatments.

Propensity score methods, other

than IP weighting and g-estimation

and other related doubly-robust es-

timators, are difficult to generalize

to non-dichotomous treatments.

note that () = 05 for any choice of . In contrast, in observational studies

some individuals may be more likely to receive treatment than others. Be-

cause treatment assignment is beyond the control of the investigators, the true

propensity score () is unknown, and therefore needs to be estimated from

the data.

In our example, we can estimate the propensity score () by fitting a

logistic model for the probability of quitting smoking  conditional on the

covariates . This is the same model that we used for IP weighting and g-

estimation. Under this model, individual 22941 was estimated to have the

lowest estimated propensity score (0053), and individual 24949 the highest

Figure 15.1

(0793). Figure 15.1 shows the distribution of the estimated propensity score

in quitters  = 1 (bottom) and nonquitters  = 0 (top). As expected, those

who quit smoking had, on average, a greater estimated probability of quitting

(0312) than those who did not quit (0245). If the distribution of () were

the same for the treated  = 1 and the untreated  = 0, then there would be

no confounding due to , i.e., there would be no open path from  to  on a

causal diagram.

Individuals with same propensity score () will generally have different

values of some covariates . For example, two individuals with () = 02

may differ with respect to smoking intensity and exercise, and yet they may

be equally likely to quit smoking given all the variables in . That is, both

individuals have the same conditional probability of ending up in the treated

group  = 1. If we consider all individuals with a given value of () in the

super-population, this group will include individuals with different values of In the study population, due

to sampling variability, the true

propensity score only approximately

“balances” the covariates . The

estimated propensity score based

on a correct model gives better bal-

ance in general.

(e.g., different values of smoking intensity and exercise), but the distribution

of  will be the same in the treated and the untreated, that is, ⊥⊥|().
We say the propensity score balances the covariates between the treated and

the untreated.

Of course, the propensity score only balances the measured covariates ,

which does not prevent residual confounding by unmeasured factors. Random-

ization balances both the measured and the unmeasured covariates, and thus
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Technical Point 15.1

Balancing scores and prognostic scores. As discussed in the text, the propensity score () balances the covariates

between the treated and the untreated. In fact, the propensity score () is the simplest example of a balancing score.

More generally, a balancing score () is any function of the covariates  such that ⊥⊥|(). That is, for each value
of the balancing score, the distribution of the covariates  is the same in the treated and the untreated. Rosenbaum and

Rubin (1983) proved that exchangeability and positivity based on the variables  implies exchangeability and positivity

based on a balancing score (). If it is sufficient to adjust for , then it is sufficient to adjust for a balancing score

(), including the propensity score (). The causal diagram in Figure 15.2 depicts the propensity score for the setting

represented in Figure 7.1: the () can be viewed as an intermediate node between  and  with a deterministic arrow

from  to (). By noting that () blocks all backdoor paths from  to  we have given a proof of the sufficiency

of adjusting for ().

An alternative to a balancing score () is a prognostic score (), i.e., a function of the covariates  such that

 =0⊥⊥|(). Adjustment methods can be developed for both balancing scores and prognostic scores, but methods for
prognostic scores require stronger assumptions and cannot be readily extended to time-varying treatments. See Hansen

(2008) and Abadie et al (2013) for a discussion of prognostic scores.

it is the preferred method to eliminate confounding. See Technical Point 15.1

for a formal definition of a balancing score.

Like all methods for causal inference that we have discussed, the use of

propensity score methods requires the identifying conditions of exchangeability,If  is sufficient to adjust for con-

founding and selection bias, then

() is sufficient too. This result

was derived by Rosenbaum and Ru-

bin in a seminal paper published in

1983.

positivity, and consistency. The use of propensity score methods is justifed by

the following key result: Exchangeability of the treated and the untreated

within levels of the covariates  implies exchangeability within levels of the

propensity score (). That is, conditional exchangeability  ⊥⊥| implies
 ⊥⊥|(). Further, positivity within levels of the propensity score ()–
which means that no individual has a propensity score equal to either 1 or

0–holds if and only if positivity within levels of the covariates , as defined

in Chapter 2, holds.In a randomized experiment, the es-

timated () adjusts for both sys-

tematic and random imbalances in

covariates, and thus does better

than adjustment for the true ()

which ignores random imbalances.

Under exchangeability and positivity within levels of the propensity score

(), the propensity score can be used to estimate causal effects using strat-

ification (including outcome regression), standardization, and matching. The

next two sections describe how to implement each of these methods. As a first

step, we must start by estimating the propensity score () from the observa-

tional data and then proceeding to use the estimated propensity score in lieu

of the covariates  for stratification, standardization, or matching.

15.3 Propensity stratification and standardization

The average causal effect among individuals with a particular value  of the

propensity score (), i.e., E[ =1=0|() = ] − E[ =0=0|() = ] is

equal to E[ | = 1  = 0 () = ]−E[ | = 0  = 0 () = ] under the

identifying conditions. This conditional effect might be estimated by restrict-

Figure 15.2

ing the analysis to individuals with the value  of the true propensity score.

However, the propensity score () is a continuous variable that can take any

value between 0 and 1. It is therefore unlikely that two individuals will have

exactly the same value . For example, only individual 22005 had an estimated

() of 06563, which means that we cannot estimate the causal effect among
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individuals with () = 06563 by comparing the treated and the untreated

with that particular value.

One approach to deal with the continuous propensity score is to create

strata that contain individuals with similar, but not identical, values of ().

The deciles of the estimated () is a popular choice: individuals in the pop-

ulation are classified in 10 strata of approximately equal size, then the causal

effect is estimated in each of the strata. In our example, each decile containedcode: Program 15.3
approximately 162 individuals. The effect of smoking cessation on weight gain

ranged across deciles from 00 to 66 kg, but the 95% confidence intervals

around these point estimates were wide.

We could have also obtained these effect estimates by fitting an outcome

regression model for E[ | = 0 ()] that included as covariates treatment
, 9 indicators for the deciles of the estimated () (one of the deciles is the

reference level and is already incorporated in the intercept of the model), and

9 product terms between  and the indicators. Most applications of outcome

regression with deciles of the estimated () do not include the product terms,

i.e., they assume no effect modification by (). In our example, a model

without product terms yields an effect estimate of 35 kg (95% confidence

interval: 26, 44). See Fine Point 15.2 for more on effect modification by the

propensity score.

Stratification on deciles or other functions of the propensity score raises a

potential problem: in general the distribution of the continuous () will differ

between the treated and the untreated within some strata (e.g., deciles). If, for

example, the average () were greater in the treated than in the untreated

in some strata, then the treated and the untreated might not be exchangeable

in those strata. This problem did not arise in previous chapters, when we

used functions of the propensity score to estimate the parameters of structural

models via IP weighting and g-estimation, because those methods used theCaution: the denominator of the

IP weights for a dichotomous treat-

ment  is not the propensity score

(), but a function of (). The

denominator is () for the treated

( = 1) and 1 − () for the un-

treated ( = 0).

numerical value of the estimated probability rather than a categorical transfor-

mation like deciles. Similarly, the problem does not arise when using outcome

regression for E[ | = 0 ()] with the estimated propensity score () as
a continuous covariate rather than as a set of indicators. When we used this

latter approach in our example the effect estimate was 36 (95% confidence

interval: 27, 45) kg.

The validity of our inference depends on the correct specification of the

relationship between () and the mean outcome  (which we assumed to be

linear). However, because the propensity score is a one-dimensional summary

of the multi-dimensional , it is easy to guard against misspecification of thisThough the propensity score is one-

dimensional, we still need to esti-

mate it from a model that regresses

treatment on a high-dimensional .

The same applies to IP weighting

and g-estimation.

relationship by fitting flexible models, e.g., cubic splines rather than a single

linear term for the propensity score. Note that IP weighting and g-estimation

were agnostic about the relationship between propensity score and outcome.

When our parametric assumptions for E[ | = 0 ()] are correct,

plus exchangeability and positivity hold, the model estimates the average

causal effects within all levels  of the propensity score E[ =1=0|() =
]−E[ =0=0|() = ]. If we were interested in the average causal effect in

the entire study population E[ =1=0]− E[ =0=0], we would standardize

the conditional means E[ | = 0 ()] by using the distribution of the

propensity score. The procedure is the same one described in Chapter 13 forcode: Program 15.4
continuous variables, except that we replace the variables  by the estimated

(). Note that the procedure can naturally incorporate a product term be-

tween treatment  and the estimated () in the outcome model. In our

example, the standardized effect estimate was 36 (95% confidence interval:

27, 46) kg.
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15.4 Propensity matching

The process of matching on the propensity score () is analogous to match-

ing on a single continuous variable , a procedure described in Chapter 4.

There are many forms of propensity matching. All of them attempt to formAfter propensity matching, the

matched population has the ()

distribution of the treated, of the

untreated, or any other arbitrary

distribution.

a matched population in which the treated and the untreated are exchange-

able because they have the same distribution of (). For example, one can

match the untreated to the treated: each treated individual is paired with one

(or more) untreated individuals with the same propensity score value. The

subset of the original population comprised by the treated-untreated pairs (or

sets) is the matched population. Under exchangeability and positivity given

(), association measures in the matched population are consistent estimates

of effect measures, e.g., the associational risk ratio in the matched populationA drawback of matching used to be

that nobody knew how to compute

the variance of the effect estimate.

That is no longer the case thanks

to the work of Abadie and Imbens

(2006).

consistently estimates the causal risk ratio in the matched population.

Again, it is unlikely that two individuals will have exactly the same val-

ues of the propensity score (). In our example, propensity score matching

will be carried out by identifying, for each treated individual, one (or more)

untreated individuals with a close value of (). A common approach is to

match treated individuals with a value  of the estimated () with untreated

individuals who have a value ± 005, or some other small difference. For ex-
ample, treated individual 1089 (estimated () of 06563) might be matched

with untreated individual 1088 (estimated () of 06579). There are numer-

ous ways of defining closeness, and a detailed description of these definitions

is beyond the scope of this book.

Defining closeness in propensity matching entails a bias-variance trade-

off. If the closeness criteria are too loose, individuals with relatively different

values of () will be matched to each other, the distribution of () will

differ between the treated and the untreated in the matched population, and

exchangeability will not hold. On the other hand, if the closeness criteria are

too tight and many individuals are excluded by the matching procedure, there

will be approximate exchangeability but the effect estimate may have wider

95% confidence intervals.

The definition of closeness is also related to that of positivity. In our smok-

ing cessation example, the distributions of the estimated () in the treatedRemember: positivity is now de-

fined within levels of the propensity

score, i.e., Pr [ = |() = ] 

0 for all  such that Pr [() = ]

is nonzero.

and the untreated overlapped throughout most of the range (see Figure 15.1).

Only 2 treated individuals (001% of the study population) had values greater

than those of any untreated individual. When using outcome regression on the

estimated () in the previous section, we effectively assumed that the lack

of untreated individuals with high () estimates was due to chance–random

nonpositivity–and thus included all individuals in the analysis. In contrast,

most propensity matched analyses would not consider those two treated indi-

viduals close enough to any of the untreated individuals, and would exclude

them. Matching does not distinguish between random and structural nonpos-

itivity.

The above discussion illustrates how the matched population may be very

different from the target (super)population. In theory, propensity matching

can be used to estimate the causal effect in a well characterized target pop-

ulation. For example, when matching each treated individual with one or

more untreated individuals and excluding the unmatched untreated, one is es-

timating the effect in the treated (see Fine Point 15.2). In practice, however,

propensity matching may yield an effect estimate in a hard-to-describe subset

of the study population. For example, under a given definition of closeness,

some treated individuals cannot be matched with any untreated individuals
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and thus they are excluded from the analysis. As a result, the effect estimate

corresponds to a subset of the population that is defined by the values of the

estimated propensity score that have successful matches.

That propensity matching forces investigators to restrict the analysis to

treatment groups with overlapping distributions of the estimated propensity

score is often presented as a strength of the method. One surely would not want

to have biased estimates because of violations of positivity, right? However,

leaving aside issues related to random variability (see above), there is a price

to be paid for restrictions based on the propensity score. Suppose that, after

inspecting Figure 15.1, we conclude that we can only estimate the effect of

smoking cessation for individuals with an estimated propensity score less than

067. Who are these people? It is unclear because individuals do not come with

a propensity score tattooed on their forehead. Because the matched population

is not well characterized, it is hard to assess the transportability of the effect

estimate to other populations.

When positivity concerns arise, restriction based on real-world variablesEven if every subject came with

her propensity score tattooed on

her forehead, the population could

still be ill-characterized because the

same propensity score value may

mean different things in different

settings.

(e.g., age, number of cigarettes) leads to a more natural characterization of the

causal effect. In our smoking cessation example, the two treated individuals

with estimated ()  067 were the only ones in the study who were over

age 50 and had smoked for less than 10 years. We could exclude them and

explain that our effect estimate only applies to smokers under age 50 and to

smokers 50 and over who had smoked for at least 10 years. This way of defining

the target population is more natural than defining it as those with estimated

()  067.

Using propensity scores to detect the overlapping range of the treated and

the untreated may be useful, but simply restricting the study population to

that range is a lazy way to ensure positivity. The automatic positivity ensured

by propensity matching needs to be weighed against the difficulty of assessing

transportability when restriction is solely based on the value of the estimated

propensity scores.

15.5 Propensity models, structural models, predictive models

In Part II of this book we have described two different types of models for causal

inference: propensity models and structural models. Let us now compare them.

Propensity models are models for the probability of treatment  given

the variables  used to try to achieve conditional exchangeability. We have

used propensity models for matching and stratification in this chapter, for IP

weighting in Chapter 12, and for g-estimation in Chapter 14. The parameters

of propensity models are nuisance parameters (see Fine Point 15.1) without a

causal interpretation because a variable  and treatment  may be associated

for many reasons–not only because the variable  causes . For example,

the association between  and  can be interpreted as the effect of  on 

under Figure 7.1, but not under Figure 7.2. Yet propensity models are useful

for causal inference, often as the basis of the estimation of the parameters of

structural models, as we have described in this and previous chapters.

Structural models describe the relation between the treatment  and some

component of the distribution (e.g., the mean) of the counterfactual outcome

 , either marginally or within levels of the variables . For continuous treat-

ments, a structural model is often referred to as a dose-response model. The

parameters for treatment in structural models are not nuisance parameters:
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Fine Point 15.2

Effect modification and the propensity score. A reason why matched and unmatched estimates may differ is effect

modification. As an example, consider the common setting in which the number of untreated individuals is much

larger than the number of treated individuals. Propensity matching often results in almost all treated individuals being

matched and many untreated individuals being unmatched and therefore excluded from the analysis. When this occurs,

the distribution of causal effect modifiers in the matched population will resemble that in the treated. Therefore, the

effect in the matched population will be closer to the effect in the treated than to the effect that would have been

estimated by methods that use data from the entire population. See Technical Point 4.1 for alternative ways to estimate

the effect of treatment in the treated via IP weighting and standardization.

Effect modification across propensity strata may be interpreted as evidence that decision makers know what they

are doing, e.g. that doctors tend to treat patients who are more likely to benefit from treatment (Kurth et al 2006).

However, the presence of effect modification by () may complicate the interpretation of the estimates. Consider a

situation with qualitative effect modification: “Doctor, according to our study, this drug is beneficial for patients who

have a propensity score between 011 and 093 when they arrive at your office, but it may kill those with propensity

scores below 011,” or “Ms. Minister, let’s apply this educational intervention to children with propensity scores below

057 only.” The above statements are of little policy relevance because, as discussed in the main text, they are not

expressed in terms of the measured variables .

Finally, besides effect modification, there are other reasons why matched estimates may differ from the overall effect

estimate: violations of positivity in the non-matched, an unmeasured confounder that is more/less prevalent (or that is

better/worse measured) in the matched population than in the unmatched population, etc. As discussed for individual

variables  in Chapter 4, remember that effect modification might be explained by differences in residual confounding

across propensity strata.

they have a direct causal interpretation as outcome differences under differ-

ent treatment values . We have described two classes of structural models:

marginal structural models and structural nested models. Marginal structural

models include parameters for treatment, for the variables  that may be ef-

fect modifiers, and for product terms between treatment and variables  . The

choice of  reflects only the investigator’s substantive interest in effect mod-

ification (see Section 12.5). If no covariates  are included, then the model

is truly marginal. If all variables  are included as possible effect modifiers,

then the marginal structural model becomes a faux marginal structural model.See Fine Point 14.1 for a discussion

of the relation between structural

nested models and faux semipara-

metric marginal structural models,

and other subtleties.

Structural nested models include parameters for treatment and for product

terms between treatment  and all variables in  that are effect modifiers.

We have presented outcome regression as a method to estimate the para-

meters of faux marginal structural models for causal inference. However, out-

come regression is also widely used for purely predictive, as opposed to causal,

purposes. For example, online retailers use sophisticated outcome regression

models to predict which customers are more likely to purchase their products.

The goal is not to determine whether your age, sex, income, geographic origin,

and previous purchases have a causal effect on your current purchase. Rather,A study found that Facebook Likes

predict sexual orientation, politi-

cal views, and personality traits

(Kosinski et al, 2013). Low in-

telligence was predicted by, among

other things, a “Harley Davidson”

Like. This is purely predictive, not

necessarily causal.

the goal is to identify those customers who are more likely to make a purchase

so that specific marketing programs can be targeted to them. It is all about

association, not causation. Similarly, doctors use algorithms based on outcome

regression to identify patients at high risk of developing a serious disease or

dying. The parameters of these predictive models do not necessarily have any

causal interpretation and all covariates in the model have the same status, i.e.,

there are no treatment variable  and variables .

The dual use of outcome regression in both causal inference method and
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in prediction has led to many misunderstandings. One of the most important

misunderstandings has to do with variable selection procedures. When the in-

terest lies exclusively on outcome prediction, investigators may want to select

any variables that, when included as covariates in the model, improve its pre-

dictive ability. Many well-known variable selection procedures–e.g., forward

selection, backward elimination, stepwise selection–and more recent develop-

ments in machine learning are used to enhance prediction. These are powerful

tools for investigators who are interested in prediction, especially when dealing

with very high-dimensional data.

Unfortunately, statistics courses and textbooks have not always made a

sharp difference between causal inference and prediction. As a result, these

variable selection procedures for predictive models have often been applied to

causal inference models. A possible result of this mismatch is the inclusion of

superfluous–or even harmful–covariates in propensity models and structural

models. Specifically, the application of predictive algorithms to causal inference

models may result in inflated variances.

The problem arises because of the widespread, but mistaken, belief that

propensity models should predict treatment  as well as possible. PropensityIt is not uncommon for propen-

sity analyses to report measures of

predictive power like Mallows’s Cp.

The relevance of these measures for

causal inference is questionable.

models do not need to predict treatment very well. They just need to include

the variables  that guarantee exchangeability. Covariates that are strongly

associated with treatment, but are not necessary to guarantee exchangeability,

do not help reduce bias. If these covariates were included in , adjustment can

actually result in estimates with very large variances.

Consider the following example. Suppose all individuals in certain study

attend either hospital Aceso or hospital Panacea. Doctors in hospital Aceso

give treatment  = 1 to 99% of the individuals, and those in hospital Panacea

give  = 0 to 99% of the individuals. Suppose the variable Hospital has

no effect on the outcome (except through its effect on treatment ) and is

therefore not necessary to achieve conditional exchangeability. Say we decide

to add Hospital as a covariate in our propensity model anyway. The propensity

score () in the target population is at least 099 for everybody in the study,

but by chance we may end up with a study population in which everybody

in hospital Aceso has  = 1 or everybody in hospital Panacea has  = 0 forIf we perfectly predicted treatment,

then all treated individuals would

have () = 1 and all untreated

individuals would have () = 0.

There would be no overlap and the

analysis would be impossible.

some strata defined by . That is, our effect estimate may have a near-infinite

variance without any reduction in confounding. That treatment is now very

well predicted is irrelevant for causal inference purposes.

Besides variance inflation, a predictive attitude towards variable selection

for causal inference models–both propensity models and outcome regression

models–may also result in self-inflicted bias. For example, the inclusion of

colliders as covariates may result in systematic bias even if colliders may be

effective covariates for purely predictive purposes. We will return to these

issues in Chapter 18.

All causal inference methods based on models–propensity models and

structural models–require no misspecification of the functional form of the

covariates. To reduce the possibility of model misspecification, we use flexible

specifications, e.g., cubic splines rather than linear terms. In addition, these

causal inference methods require the conditions of exchangeability, positivity,

and well-defined interventions for unbiased causal inferences. In the next chap-

ter we describe a very different type of causal inference method that does not

require exchangeability as we know it.
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Chapter 16
INSTRUMENTAL VARIABLE ESTIMATION

The causal inference methods described so far in this book rely on a key untestable assumption: all variables needed

to adjust for confounding and selection bias have been identified and correctly measured. If this assumption is

incorrect–and it will always be to a certain extent–there will be residual bias in our causal estimates.

It turns out that there exist other methods that can validly estimate causal effects under an alternative set

of assumptions that do not require measuring all adjustment factors. Instrumental variable estimation is one of

those methods. Economists and other social scientists reading this book can breathe now. We are finally going to

describe a very common method in their fields, a method that is unlike any other we have discussed so far.

16.1 The three instrumental conditions

The causal diagram in Figure 16.1 depicts the structure of a double-blind

randomized trial with noncompliance:  is the randomization assignment in-

dicator (1: treatment, 0: placebo),  is an indicator for receiving treatment (1:

yes, 0: no),  the outcome, and  all factors (some unmeasured) that affect

both the outcome and the adherence to the assigned treatment.

Suppose we want to consistently estimate the average causal effect of  on

 . Whether we use IP weighting, standardization, g-estimation, stratification,

or matching, we need to correctly measure, and adjust for, variables that block

the backdoor path ←  →  , i.e., we need to ensure conditional exchange-

Z YA

U

Figure 16.1

UZ YA

U

Z

Figure 16.2

ability of the treated and the untreated. Unfortunately, all these methods will

result in biased effect estimates if some of the necessary variables are unmea-

sured, imperfectly measured, or misspecified in the model.

Instrumental variable (IV) methods are different: they may be used to

identify the average causal effect of  on  in this randomized trial, even if we

did not measure the variables normally required to adjust for the confound-

ing caused by  . To perform their magic, IV methods need an instrumental

variable , or an instrument. A variable  is an instrument because it meets

three instrumental conditions:

(i)  is associated with 

(ii)  does not affect  except through its potential effect on 

(iii)  and  do not share causes

See Technical Point 16.1 for a more rigorous definition of these conditions.

In the double-blind randomized trial described above, the randomization

indicator  is an instrument. Condition (i) is met because trial participants are

more likely to receive treatment if they were assigned to treatment, conditionCondition (ii) would not be guar-

anteed if, for example, partici-

pants were inadvertently unblinded

by side effects of treatment.

(ii) is expected by the double-blind design, and condition (iii) is expected by

the random assignment of .

Figure 16.1 depicts a special case in which the instrument  has a causal

effect on the treatment . We then refer to  as a causal instrument. Other

instruments do not have a causal effect on treatment . The variable  in

Figure 16.2 also meets the instrumental conditions with the - association

(i) now resulting from the cause  shared by  and . We then refer to
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Technical Point 16.1

The instrumental conditions, formally. Instrumental condition (i), sometimes referred to as the relevance condition,

is non-null association between  and , or ⊥⊥ does not hold.
Instrumental condition (ii), commonly known as the exclusion restriction, is the condition of “no direct effect of

 on  .” At the individual level, condition (ii) is 

 = 

0
 =  

 for all  0, all , all individuals . However,

for some results presented in this chapter, only the population level condition (ii) is needed, i.e., E [ ] = E
h
 0

i
.

Both versions of condition (ii) are trivially true for proxy instruments.

Instrumental condition (iii) can be written as marginal exchangeability  ⊥⊥ for all  , which holds in the

SWIGs corresponding to Figures 16.1, 16.2, and 16.3. Together with condition (ii) at the individual level, it implies

 ⊥⊥. A stronger condition (iii) is joint exchangeability, or { ;  ∈ [0 1]  ∈ [0 1]}⊥⊥ for dichotomous treatment
and instrument. See Technical Point 2.1 for a discussion on different types of exchangeability and Technical Point 16.2

for a description of results that require each version of exchangeability. Both versions of condition (iii) are expected to

hold in randomized experiments in which the instrument  is the randomized assignment.

 as the unmeasured causal instrument and to  as the measured surrogate

or proxy instrument. (That  and  have  as a common cause does not

violate condition (iii) because  is a causal instrument; see Technical Point

16.1.) Figure 16.3 depicts another case of proxy instrument  in a selected

UZ YA
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Z

Figure 16.3

population: the - association arises from conditioning on a common effect

 of the unmeasured causal instrument  and the proxy instrument . Both

causal and proxy instruments can be used for IV estimation, with some caveats

described in Section 16.4.

In previous chapters we have estimated the effect of smoking cessation on

weight change using various causal inference methods applied to observational

data. To estimate this effect using IV methods, we need an instrument .

Since there is no randomization indicator in an observational study, consider

the following candidate for an instrument: the price of cigarettes. It can

be argued that this variable meets the three instrumental conditions if (i)

cigarette price affects the decision to quit smoking, (ii) cigarette price affects

weight change only through its effect on smoking cessation, and (iii) no common

causes of cigarette price and weight change exist. Fine Point 16.1 reviews some

proposed instruments in observational studies.

To fix ideas, let us propose an instrument  that takes value 1 when the

average price of a pack of cigarettes in the U.S. state where the individual wasCondition (i) is met if the candi-

date instrument  “price in state

of birth” is associated with smok-

ing cessation  through the unmea-

sured variable  “price in place of

residence”.

born was greater than $150, and takes value 0 otherwise. Unfortunately, we

cannot determine whether our variable  is actually an instrument. Of the

three instrumental conditions, only condition (i) is empirically verifiable. To

verify this condition we need to confirm that the proposed instrument  and the

treatment  are associated, i.e., that Pr [ = 1| = 1] − Pr [ = 1| = 0] 
0. The probability of quitting smoking is 258% among those with  = 1

and 195% among those with  = 0; the risk difference Pr [ = 1| = 1] −
Pr [ = 1| = 0] is therefore 6%. When, as in this case,  and  are weakly

associated,  is often referred as a weak instrument (more on weak instruments

in Section 16.5).

On the other hand, conditions (ii) and (iii) cannot be empirically verified.

To verify condition (ii), we would need to prove that  can only cause the

outcome  through the treatment . We cannot prove it by conditioning on

, which is a collider on the pathway  ←−  →  ←−  →  , because

that would induce an association between  and  even if condition (ii) held
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Fine Point 16.1

Candidate instruments in observational studies. Many variables have been proposed as instruments in observational

studies and it is not possible to review all of them here. Three commonly used categories of candidate instruments are

• Genetic factors: The proposed instrument is a genetic variant  that is associated with treatment  and that,

supposedly, is only related with the outcome  through . For example, when estimating the effects of alcohol

intake on the risk of coronary heart disease,  can be a polymorphism associated with alcohol metabolism (say,

ALDH2 in Asian populations). Causal inference from observational data via IV estimation using genetic variants is

part of the framework known as Mendelian randomization (Katan 1986, Davey Smith and Ebrahim 2004, Didelez

and Sheehan 2007, VanderWeele et al. 2014).

• Preference: The proposed instrument  is a measure of the physician’s (or a care provider’s) preference for one

treatment over the other. The idea is that a physician’s preference influences the prescribed treatment  without

having a direct effect on the outcome  . For example, when estimating the effect of prescribing COX-2 selective

versus non-selective nonsteroidal anti-inflammatory drugs on gastrointestinal bleeding,  can be the physician’s

prescribing preference for drug class (COX-2 selective or non-selective). Because  is unmeasured, investigators

replace it in the analysis by a (measured) surrogate instrument , such as “last prescription issued by the physician

before current prescription” (Korn and Baumrind 1998, Earle et al. 2001, Brookhart and Schneeweiss 2007).

• Access: The proposed instrument  is a measure of access to the treatment. The idea is that access impacts the
use of treatment  but does not directly affect the outcome  . For example, physical distance or travel time to

a facility has been proposed as an instrument for treatments available at such facilities (McClellan et al. 1994,

Card 1995, Baiocchi et al. 2010). Another example: calendar period has been proposed as an instrument for a

treatment whose accessibility varies over time (Hoover et al. 1994, Detels et al. 1998). In the main text we use

“price of the treatment”, another measure of access, as a candidate instrument.

true. And we cannot, of course, prove that condition (iii) holds because we

can never rule out confounding for the effect of any variable. We can only

assume that conditions (ii) and (iii) hold. IV estimation, like all methods weConditions (ii) and (iii) can some-

times be empirically falsified by us-

ing data on instrument, treatment,

and outcome. However, falsifica-

tion tests only reject the conditions

for a small subset of violations. For

most violations, the test has no sta-

tistical power, even for an arbitrar-

ily large sample size (Bonet 2001,

Glymour et al. 2012).

have studied so far, is based on untestable assumptions.

In observational studies we cannot prove that our proposed instrument 

is truly an instrument. We refer to  as a proposed or candidate instrument

because we can never guarantee that the structures represented in Figures 16.1

and 16.2 are the ones that actually occur. The best we can do is to use subject-

matter knowledge to build a case for why the proposed instrument  may be

reasonably assumed to meet conditions (ii) and (iii); this is similar to how

we use subject-matter knowledge to justify the identifying assumptions of the

methods described in previous chapters.

But let us provisionally assume that  is an instrument. Now what? Can

we now see the magic of IV estimation in action? Can we consistently estimate

the average causal effect of  on  without having to identify and measure

the confounders? Sadly, the answer is no without further assumptions. An

instrument by itself does not allow us to identify the average causal effect of

smoking cessation  on weight change  , but only identifies certain upper and

lower bounds. Typically, the bounds are very wide and often include the null

value (see Technical Point 16.2).

In our example, these bounds are not very helpful. They would only confirm

what we already knew: smoking cessation can result in weight gain, weight loss,

or no weight change. Unfortunately, that is all an instrument can offer unless
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Technical Point 16.2

Bounds: Partial identification of causal effects. For a dichotomous outcome  , the average causal effect

Pr
£
 =1 = 1

¤ − Pr £ =0 = 1
¤
can take values between −1 (if all individuals develop the outcome unless they were

treated) and 1 (if no individuals develop the outcome unless treated). The bounds of the average causal effect are

(−1 1). The distance between these bounds can be cut in half by using the data: because for each individual we know
the value of either her counterfactual outcome  =1 (if the individual was actually treated) or  =0 (if the individual

was actually untreated), we can compute the causal effect after assigning the most extreme values possible to each

individual’s unknown counterfactual outcome. This will result in bounds of the average causal effect that are narrower

but still include the null value 0. For a continuous outcome  , deriving bounds requires the specification of the minimum

and maximum values for the outcome; the width of the bounds will vary depending on the chosen values.

The bounds for Pr
£
 =1 = 1

¤ − Pr £ =0 = 1
¤
can be further narrowed when there exists a variable  that

meets instrumental condition (ii) at the population level and marginal exchangeability (iii) (Robins 1989; Manski 1990).

The width of these so-called natural bounds, Pr[ = 1| = 0] + Pr[ = 0| = 1], is narrower than that of the

bounds identified from the data alone. Sometimes narrower bounds–the so-called sharp bounds–can be achieved

when marginal exchangeability is replaced by joint exchangeability (Balke and Pearl 1997; Richardson and Robins 2014).

The conditions necessary to achieve the sharp bounds can also be derived from the SWIGs under joint interventions

on  and  corresponding to any of the causal diagrams depicted in Figures 16.1, 16.2, and 16.3. Richardson and

Robins (2010, 2014) showed that the conditions  ⊥⊥ () | and ⊥⊥ , together with a population level condition
(ii) within levels of  , i.e., E [ | ] = E

h
 0|

i
, are sufficient to obtain the sharp bounds. Specifically, these

conditions imply ⊥⊥ , ⊥⊥|, and that E [ ] is given by the g-formula
R
E [ | =   = ]  () ignoring

, which reflects that  has no direct effect on  within levels of  . Dawid (2003) proved that these latter conditions

lead to the sharp bounds. Under further assumptions, Richardson and Robins derived yet narrower bounds. See also

Richardson, Evans, and Robins (2011).

Unfortunately, all these partial identification methods (i.e., methods for bounding the effect) are often relatively

uninformative because the bounds are wide. Swanson et al (2018) review partial identification methods for binary

instruments, treatments, and outcomes. Swanson et al. (2015c) describe a real-world application of several partial

identification methods and discuss their relative advantages and disadvantages.

There is a way to decrease the width of the bounds: making parametric assumptions about the form of the effect

of  on  . Under sufficiently strong assumptions described in Section 16.2, the upper and lower bounds converge into

a single number and the average causal effect is point identified.

one is willing to make additional unverifiable assumptions. Sections 16.3 and

16.4 review additional conditions under which the IV estimand is the average

causal effect. Before that, we review the methods to do so.

16.2 The usual IV estimand

When a dichotomous variable  is an instrument, i.e., meets the three instru-

mental conditions (i)-(iii), and an additional condition (iv) described in theWe will focus on dichotomous in-

struments, which are the common-

est ones. For a continuous instru-

ment , the usual IV estimand is
()

()
, where  means covari-

ance.

next section holds, then the average causal effect of treatment on the additive

scale E
£
 =1

¤− E £ =0
¤
is identified and equals

E [ | = 1]− E [ | = 0]
E [| = 1]− E [| = 0] 

which is the usual IV estimand for a dichotomous instrument. (Note E [| = 1] =
Pr [ = 1| = 1] for a dichotomous treatment). Technical Point 16.3 provides
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a proof of this result in terms of an additive structural mean model, but you

might want to wait until the next section before reading it.

To intuitively understand the usual IV estimand, consider again the ran-

domized trial from the previous section. The numerator of the IV estimand–In randomized experiments, the IV

estimator is the ratio of two effects

of : the effect of  on  and the

effect of  on . Each of these ef-

fects can be consistently estimated

without adjustment because  is

randomly assigned.

the average causal effect of  on –is the intention-to-treat effect, and the

denominator–the average causal effect of  on –is a measure of adherence

to, or compliance with, the assigned treatment. When there is perfect compli-

ance, the denominator is equal to 1, and the effect of  on  equals the effect

of  on  . As compliance worsens, the denominator starts to get closer to

0, and the effect of  on  becomes greater than the effect of  on  . The

greater the rate of noncompliance, the greater the difference between the effect

of  on –the IV estimand–and the effect of  on  .

The IV estimand bypasses the need to adjust for the confounders by in-

flating the intention-to-treat effect in the numerator. The magnitude of the

inflation increases as compliance decreases, i.e., as the - risk difference gets

closer to zero. The same rationale applies to the instruments used in observa-

tional studies, where the denominator of the IV estimator may equal either the

causal effect of the causal instrument  on  (Figure 16.1), or the noncausal

association between the proxy instrument  and the treatment  (Figures 16.2

and 16.3).

The standard IV estimator is the ratio of the estimates of the numeratorAlso known as the Wald estimator

(Wald 1940). and the denominator of the usual IV estimand. In our smoking cessation

example with a dichotomous instrument  (1: state with high cigarette price,

0: otherwise), the numerator estimate bE [ | = 1]−bE [ | = 0] equals 2686−
2536 = 01503 and the denominator bE [| = 1]− bE [| = 0] equals 02578−
01951 = 00627. Therefore, the usual IV estimate is the ratio 0150300627 =Code: Program 16.1

For simplicity, we exclude individu-

als with missing outcome or instru-

ment. In practice, we could use IP

weighting to adjust for possible se-

lection bias before using IV estima-

tion.

24 kg. Under the three instrumental conditions (i)-(iii) plus condition (iv)

from next section, this is an estimate of the average causal effect of smoking

cessation on weight gain in the population.

We estimated the numerator and denominator of the IV estimand by simply

calculating the four sample averages bE [| = 1], bE [| = 0], bE [ | = 1], andbE [ | = 0]. Equivalently, we could have fit two (saturated) linear models to
estimate the differences in the denominator and the numerator. The model

for the denominator would be E [|] = 0 + 1, and the model for the

numerator E [ |] = 0 + 1.

Linear models are used as an alternative method to calculate the stan-

dard IV estimator: the two-stage-least-squares estimator. The procedure is

as follows. First, fit the first-stage treatment model E [|] = 0 + 1,

and generate the predicted values bE [|] for each individual. Second, fit the
second-stage outcome model E [ |] = 0 + 1bE [|]. The parameter esti-
mate b1 will always be numerically equivalent to the standard IV estimate.

Thus, in our example, the two-stage-least-squares estimate was again 24 kg.Code: Program 16.2

The 24 point estimate has a very large 95% confidence interval: −365 to
413. This is expected for our proposed instrument because the - association

is weak and there is much uncertainty in the first-stage model. A commonly

used rule of thumb is to declare an instrument as weak if the F-statistic from

the first-stage model is less than 10 (it was a meager 08 in our example). We

will revisit the problems raised by weak instruments in Section 16.5.

The two-stage-least-squares estimator and its variations forces investiga-

tors to make strong parametric assumptions. Some of these assumptions can

be avoided by using additive or multiplicative structural mean models, like

the ones described in Technical Points 16.3 and 16.4, for IV estimation. The
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parameters of structural mean models can be estimated via g-estimation. TheCode: Program 16.3
trade-offs involved in the choice between two-stage-least-squares linear models

and structural mean models are similar to those involved in the choice be-

tween outcome regression and structural nested models for non-IV estimation

(see Chapters 14 and 15).

Anyway, the above estimators are only valid when the usual IV estimand

can be interpreted as the average causal effect of treatment  on the outcome

 . For that to be true, a fourth identifying condition needs to hold in addition

to the three instrumental conditions.

16.3 A fourth identifying condition: homogeneity

The three instrumental conditions (i)-(iii) are insufficient to ensure that the IV

estimand is the average causal effect of treatment  on  . A fourth condition,

effect homogeneity (iv), is needed. Here we describe four possible homogeneity

conditions (iv) in order of (historical) appearance.

The most extreme, and oldest, version of homogeneity condition (iv) is con-

stant effect of treatment  on outcome  across individuals. In our example,

this constant effect condition would hold if smoking cessation made every in-

dividual in the population gain (or lose) the same amount of body weight, say,

exactly 24 kg. A constant effect is equivalent to additive rank preservation

which, as we discussed in Section 14.4, is scientifically implausible for most

treatments and outcomes–and impossible for dichotomous outcomes, exceptYet additive rank preservation was

implicitly assumed in many early IV

analyses using the two-stage-least-

squares estimator.

under the sharp null or universal harm (or benefit). In our example, we expect

that, after quitting smoking, some individuals will gain a lot of weight, some

will gain little, and others may even lose some weight. Therefore, we are not

generally willing to accept the homogeneity assumption of constant effect as a

reasonable condition (iv).

A second, less extreme homogeneity condition (iv) for dichotomous  and

 is equality of the average causal effect of  on  across levels of  in

both the treated and in the untreated, i.e., E
£
 =1 −  =0| = 1  = 

¤
=

E
£
 =1 −  =0| = 0  = 

¤
for  = 0 1. This additive homogeneity condi-Even when instrumental condi-

tion (iii)  ⊥⊥ holds–as in the

SWIGs corresponding to Figures

16.1, 16.2, and 16.3–  ⊥⊥|
does not generally hold. Therefore

the treatment effect may depend

on instrument , i.e., the less ex-

treme homogeneity condition may

not hold.

tion (iv) was the one used in the mathematical proof of Technical Point 16.3.

An alternative homogeneity condition on the multiplicative scale is discussed

in Technical Point 16.4. (This multiplicative homogeneity condition leads to

an IV estimand that is different from the usual IV estimand.)

The above homogeneity condition is expressed in terms that are not natu-

rally intuitive. How can subject-matter experts provide arguments in support

of a constant average causal effect within levels of the proposed instrument

 and the treatment  in any particular study? More natural–even if still

untestable–homogeneity conditions (iv) would be stated in terms of effect

modification by possibly known (even if unmeasured) confounders  . One

such condition is that  is not an additive effect modifier, i.e., that the av-

erage causal effect of  on  is the same at every level of the unmeasured

confounder  or E
£
 =1|¤−E £ =0|¤ = E £ =1

¤−E £ =0
¤
. This thirdAlso, Hernán and Robins (2006b)

showed that, if  is an additive ef-

fect modifier), then it would not be

reasonable for us to believe that the

previous additive homogeneity con-

dition (iv) holds.

homogeneity condition (iv) is often implausible because some unmeasured con-

founders may also be effect modifiers. For example, the magnitude of weight

gain after smoking cessation may vary with prior intensity of smoking, which

may itself be an unmeasured confounder for the effect of smoking cessation on

weight gain.

Another type of homogeneity condition (iv) is that the - association on
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Technical Point 16.3

Additive structural mean models and IV estimation. Consider the following saturated, additive structural mean

model for a dichotomous treatment  and an instrument  as depicted in Figures 16.1, 16.2, or 16.3:

E
£
 =1 −  =0| = 1 ¤ = 0 + 1

This model can also be written as E
£
 −  =0|¤ =  (0 + 1). The parameter 0 is the average causal effect

of treatment among the treated individuals with  = 0, and 0 + 1 is the average causal effect of treatment among

the treated individuals with  = 1. Thus 1 quantifies additive effect modification by .

If we a priori assume that there is no additive effect modification by , then 1 = 0 and 0 is exactly the usual IV

estimand (Robins 1994). That is, the usual IV estimand is the parameter of an additive structural mean model for the

effect of treatment on the treated under no effect modification by .

The proof is simple. When  is an instrument, condition (ii) holds, which implies E
£
 =0| = 1¤ =

E
£
 =0| = 0¤. Using the structural model notation, this conditional mean independence can be rewritten as

E [ − (0 + 1) | = 1] = E [ −0| = 0]. Solving the above equation with 1 = 0 we have

0 =
E [ | = 1]− E [ | = 0]
E [| = 1]− E [| = 0]

You may wonder why we a priori set 1 = 0. The reason is that we have an equation with two unknowns (0 and

1) and that equation exhausts the constraints on the data distribution implied by the three instrumental conditions.

Since we need an additional constraint, which by definition will be untestable, we arbitrarily choose 1 = 0 (rather than,

say, 1 = 2). This is what we mean when we say that an instrument is insufficient to identify the average causal effect.

Therefore, to conclude that the average causal effect of treatment in the treated 0 =

E
£
 =1 −  =0| = 1  = 

¤
= E

£
 =1 −  =0| = 1¤ equals the average causal effect in the study popu-

lation E
£
 =1

¤−E £ =0
¤
–and thus that the usual IV estimand is E

£
 =1

¤−E £ =0
¤
–we must assume that the

effects of treatment in the treated and in the untreated are identical, which is an additional untestable assumption.

Hence, under the additional assumption 1 = 0, 0 = E
£
 =1 −  =0| = 1  = 

¤
= E

£
 =1 −  =0| = 1¤ for

any  is the average causal effect of treatment in the treated. To conclude that 0 is the average causal effect in

the study population E
£
 =1

¤ − E £ =0
¤
–and thus that E

£
 =1

¤ − E £ =0
¤
is the usual IV estimand–we must

assume that the effects of treatment are identical in the treated and in the untreated, i.e., the parameter for  is also

0 in the structural model for  = 0. This is an additional untestable assumption.

the additive scale is constant across levels of the confounders  , i.e., E [| = 1  ]−
E [| = 0  ] = E [| = 1]−E [| = 0]. Unlike the previous three versions
of homogeneity conditions, this one is not guaranteed to hold under the sharp

causal null. On the other hand, this version has some testable implications:

For dichotomous , if some of the confounders are measured, then it mustWang and Tchetgen-Tchetgen

(2018) proposed these last two

homogeneity conditions.

be the case that the difference is the same across levels of the measured con-

founders; for a continuous , if we are willing to make additional assumptions

about linearity, then the variance of the treatment  must be constant across

levels of the instrument . Otherwise, the condition would not hold.

Because of the perceived implausibility of the homogeneity conditions in

many settings, the possibility that IV methods can validly estimate the average

causal effect of treatment seems questionable. There are two approaches that

bypass the homogeneity conditions.

One approach is the introduction of baseline covariates in the models for IV

estimation. To do so, it is safer to use structural mean models, which impose

fewer parametric assumptions than two-stage-linear-squares estimators. The

inclusion of covariates in a structural mean model allows the treatment effect
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Technical Point 16.4

Multiplicative structural mean models and IV estimation. Consider the following saturated, multiplicative (log-

linear) structural mean model for a dichotomous treatment 

E
£
 =1| = 1 ¤

E [ =0| = 1 ] = exp (0 + 1) ,

which can also be written as E [ |] = E
£
 =0|¤ exp [ (0 + 1)]. For a dichotomous  , exp (0) is the

causal risk ratio in the treated individuals with  = 0 and exp (0 + 1) is the causal risk ratio in the treated with

 = 1. Thus 1 quantifies multiplicative effect modification by . If we a priori assume that 1 = 0–and additionally

assume no multiplicative effect modification by  in the untreated–then the causal effect on the multiplicative (risk

ratio) scale is E
£
 =1

¤
E

£
 =0

¤
= exp (0), and the causal effect on the additive (risk difference) scale is

E
£
 =1

¤− E £ =0
¤
= E [ | = 0] (1− E []) [exp (0)− 1] + E [ | = 1]E [] [1− exp (−0)]

The proof, which relies on the instrumental conditions, can be found in Robins (1989) and Hernán and Robins (2006b).

That is, if we assume a multiplicative structural mean model with no multiplicative effect modification by  in the

treated and in the untreated, then the average causal effect E
£
 =1

¤ − E £ =0
¤
remains identified, but no longer

equals the usual IV estimator. As a consequence, our estimate of E
£
 =1

¤ − E £ =0
¤
will depend on whether we

assume no additive or multiplicative effect modification by . Unfortunately, it is not possible to determine which, if

either, assumption is true even if we had an infinite sample size (Robins 1994) because, when considering saturated

additive or multiplicative structural mean models, we have more unknown parameters to estimate than equations to

estimate them with. That is precisely why we need to make modelling assumptions such as homogeneity.

in the treated to vary with  by imposing constraints on how the treatmentAlso, models can be used to in-

corporate multiple proposed in-

struments simultaneously, to han-

dle continuous treatments, and to

estimate causal risk ratios when

the outcome is dichotomous (see

Palmer et al. 2011 for a review).

effect varies within levels of the covariates. See Section 16.5. and Technical

Point 16.5 for more details on structural mean models with covariates.

Another approach is to use an alternative condition (iv) that does not

require effect homogeneity. When combined with the three instrumental con-

ditions (i)-(iii), this alternative condition allows us to endow the usual IV

estimand with a causal interpretation, even though it does not suffice to iden-

tify the average causal effect in the population. We review this alternative

condition (iv) in the next section.

16.4 An alternative fourth condition: monotonicity

Consider again the double-blind randomized trial with randomization indicator

, treatment , and outcome  . For each individual in the trial, the coun-

terfactual variable =1 is the value of treatment–1 or 0–that an individual

would have taken if he had been assigned to receive treatment ( = 1). The

counterfactual variable =0 is analogously defined as the treatment value if

the individual had been assigned to receive no treatment ( = 0).

If we knew the values of the two counterfactual treatment variables =1

and =0 for each individual, we could classify all individuals in the study

population into four disjoint subpopulations:

Az

0

1

z=0 z=1

Always takers

Figure 16.4
1. Always-takers: Individuals who will always take treatment, regardless of

the treatment group they were assigned to. That is, individuals with
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Technical Point 16.5

More general structural mean models. Consider an additive structural mean model that allows for continuous and/or

multivariate treatments , instruments , and pre-instrument covariates  . Such model assumes

E
£
 −  =0|  ¤ =  (  ;)

where  (  ;) is a known function,  is an unknown (possibly vector-valued) parameter, and  ( = 0  ;) =

0. That is, an additive structural mean model is a model for the average causal effect of treatment level  compared

with treatment level 0 among the subset of individuals at level  of the instrument and level  of the confounders

whose observed treatment is precisely . The parameters of this model can be identified via g-estimation under the

conditional counterfactual mean independence assumption E
£
 =0| = 1  ¤ = E £ =0| = 0  ¤.

Analogously, a general multiplicative structural mean model assumes

E [ |  ] = E £ =0|  ¤ exp [ (  ;)]
where  (  ;) is a known function,  is an unknown parameter vector, and  ( = 0  ;) = 0. The

parameters of this model can also be identified via g-estimation under analogous conditions. Identification conditions

and efficient estimators for structural mean models were discussed by Robins (1994) and reviewed by Vansteelandt and

Goetghebeur (2003). More generally, g-estimation of nested additive and multiplicative structural mean models can

extend IV methods for time-fixed treatments and confounders to settings with time-varying treatments and confounders.

both =1 = 1 and =0 = 1.

Az

0

1

z=0 z=1

Never takers

Figure 16.5

Az

0

1

z=0 z=1

Compliers

Figure 16.6

2. Never-takers: Individuals who will never take treatment, regardless of

the treatment group they were assigned to. That is, individuals with

both =1 = 0 and =0 = 0.

3. Compliers or cooperative: Individuals who will take treatment when

assigned to treatment, and no treatment when assigned to no treatment.

That is, individuals with =1 = 1 and =0 = 0.

4. Defiers or contrarians: Individuals who will take no treatment when

assigned to treatment, and treatment when assigned to no treatment.

That is, individuals with =1 = 0 and =0 = 1.

Note that these subpopulations–often referred as compliance types or prin-

cipal strata–are not generally identified. If we observe that an individual was

assigned to  = 1 and took treatment  = 1, we do not know whether she is

a complier or an always-taker. If we observe that an individual was assigned

to  = 1 and took treatment  = 0, we do not know whether he is a defier or

a never-taker.

Az

0

1

z=0 z=1

Defiers

Figure 16.7

When no defiers exist, we say that there is monotonicity because the in-

strument  either does not change treatment –as shown in Figure 16.4 for

always-takers and Figure 16.5 for never-takers–or increases the value of treat-

ment –as shown in Figure 16.6 for compliers. For defiers, the instrument

 would decrease the value of treatment –as shown in Figure 16.7. More

generally, monotonicity holds when =1 ≥ =0 for all individuals.

Now let us replace any of the homogeneity conditions from the last section

by the monotonicity condition, which will become our new condition (iv). Then

the usual IV estimand does not equal the average causal effect of treatment

E
£
 =1

¤−E £ =0
¤
any more. Rather, under monotonicity (iv), the usual IV
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estimand equals the average causal effect of treatment in the compliers, that

is

E
£
 =1 −  =0|=1 = 1 =0 = 0

¤


Technical Point 16.6 shows a proof for this equality under the assumption that

 was effectively randomly assigned. As a sketch of the proof, the equality

between the usual IV estimand and the effect in the compliers holds because

the effect of assignment  on –the numerator of the IV estimand–is a

weighted average of the effect of  in each of the four principal strata. However,

the effect of  on  is exactly zero in always-takers and never-takers because

the effect of  is entirely mediated through  and the value of  in those

subpopulations is fixed, regardless of the value of  they are assigned to. Also,

no defiers exist under monotonicity (iv). Therefore the numerator of the IV

estimand is the effect of  on  in the compliers–which is the same as the

effect of  on  in the compliers–times the proportion of compliers in the

population, which is precisely the denominator of the usual IV estimand.The “compliers average causal ef-

fect” (CACE) is an example of

a local average treatment effect

(LATE) in a subpopulation, as op-

posed to the global average causal

effect in the entire population.

Greenland (2000) refers to compli-

ers as cooperative, and to defiers as

non-cooperative, to prevent confu-

sion with the common concept of

(observed) compliance in random-

ized trials.

In observational studies, the usual IV estimand can also be used to estimate

the effect in the compliers in the absence of defiers. Technically, there are no

compliers or defiers in observational studies because the proposed instrument 

is not treatment assignment, but the term compliers refers to individuals with

(=1 = 1 =0 = 0) and the term defiers to those with (=1 = 0 =0 = 1).

In our smoking cessation example, the compliers are the individuals who would

quit smoking in a state with high cigarette price and who would not quit

smoking in a state with low price. Conversely, the defiers are the individuals

who would not quit smoking in a state with high cigarette price and who

would quit smoking in a state with low price. If no defiers exist and the causal

instrument is dichotomous (see below and Technical Point 16.6), then 24 kg

is the IV effect estimate in the compliers.

The replacement of homogeneity by monotonicity was welcomed in the

mid-1990s as the salvation of IV methods. While homogeneity is often an

implausible condition (iv), monotonicity appeared credible in many settings.

IV methods under monotonicity (iv) cannot identify the average causal effect in

the population, only in the subpopulation of compliers, but that seemed a price

worth paying in order to keep powerful IV methods in our toolbox. However,

the estimation of the average causal effect of treatment in the compliers under

monotonicity (iv) has been criticized on several grounds.Deaton (2010) on the effect in the

compliers: "This goes beyond the

old story of looking for an object

where the light is strong enough to

see; rather, we have control over

the light, but choose to let it fall

where it may and then proclaim

that whatever it illuminates is what

we were looking for all along."

First, the relevance of the effect in the compliers is questionable. The

subpopulation of compliers is not identified and, even though the proportion of

compliers in the population can be calculated (it is the denominator of the usual

IV estimand, see Technical Point 16.6), it varies from instrument to instrument

and from study to study. Therefore, causal inferences about the effect in the

compliers are difficult to use by decision makers. Should they prioritize the

administration of treatment  = 1 to the entire population because treatment

has been estimated to be beneficial among the compliers, which happen to be

6% of the population in our example but could be a smaller or larger group

in the real world? What if treatment is not as beneficial in always-takersA mitigating factor is that, un-

der strong assumptions, investiga-

tors can characterize the compliers

in terms of their distribution of the

observed variables (Angrist and Pis-

chke 2009, Baiocchi et al 2014).

and never-takers, the majority of the population? Unfortunately, the decision

maker cannot know who is included in the 6%. Rather than arguing that the

effect of the compliers is of primary interest, it may be more honest to accept

that interest in this estimand is not the result of its practical relevance, but

rather of the (often erroneous) perception that it is easy to identify.

Second, monotonicity is not always a reasonable assumption in observa-

tional studies. The absence of defiers seems a safe assumption in randomized
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trials: we do not expect that some individuals will provide consent for partici-

pation in a trial with the perverse intention to do exactly the opposite of what

they are asked to do. Further, monotonicity is ensured by design in trials in

which those assigned to no treatment are prevented from receiving treatment,

i.e., there are no always-takers or defiers. However, monotonicity is harder to

justify for some instruments proposed in observational studies. Consider the

proposed instrument “physician preference” to estimate the treatment effect

in patients attending a clinic where two physicians with different preferences

work. The first physician usually prefers to prescribe the treatment, but she

makes exceptions for her patients with diabetes (because of some known con-

traindications). The second usually prefers to not prescribe the treatment, butThe example to the right was pro-

posed by Swanson and Hernán

(2014). Also Swanson et al (2015a)

showed empirically the existence in

defiers in an observational setting.

he makes exceptions for his more physically active patients (because of some

perceived benefits). Any patient who was both physically active and diabetic

would have been treated contrary to both of these physicians’ preferences, and

therefore would be labeled as a defier. That is, monotonicity is unlikely to

hold when the decision to treat is the result of weighing multiple criteria or

dimensions of encouragement that include both risks and benefits. In these

settings, the proportion of defiers may not be negligible.

The situation is even more complicated for the proxy instruments  rep-

resented by Figures 16.2 and 16.3. If the causal instrument  is continuous

(e.g., the true, unmeasured physician’s preference), then the standard IV es-

timand using a dichotomous proxy instrument  (e.g., some measured surro-

gate of preference) is not the effect in a particular subpopulation of compliers.

Rather, the standard IV estimand identifies a particular weighted average of

the effect in all individuals in the population, which makes it difficult to in-

terpret. Therefore the interpretation of the IV estimand as the effect in the

compliers is questionable when the proposed dichotomous instrument is not

causal, even if monotonicity held for the continuous causal instrument  (seeDefinition of monotonicity for a

continuous causal instrument  :

 is a non-decreasing function

of  on the support of  (An-

grist and Imbens 1995, Heckman

and Vytlacil 1999).

Technical Point 16.6 for details).

Last, but definitely not least important, the partitioning of the popula-

tion into four subpopulations or principal strata may not be justifiable. In

many realistic settings, the subpopulation of compliers is an ill-defined sub-

set of the population. For example, using the proposed instrument “physician

preference” in settings with multiple physicians, all physicians with the same

preference level who could have seen a patient would have to treat the patient

in the exact same way. This is not only an unrealistic assumption, but alsoSwanson et al (2015) discuss the

difficulties to define monotonicity,

and introduce the concept of global

and local monotonicity in observa-

tional studies.

essentially impossible to define in many observational studies in which it is un-

known which physicians could have seen a patient. A stable partitioning into

compliers, defiers, always takers and never takers also requires deterministic

counterfactuals (not generally required to estimate average causal effects), no

interference (e.g., I may be an always-taker, but decide not to take treatment

when my friend doesn’t), absence of multiple versions of treatment and other

forms of heterogeneity (a complier in one setting, or for a particular instrument,

may not be a complier in another setting).

In summary, if the effect in the compliers is considered to be of interest,

relying on monotonicity (iv) seems a promising approach in double-blind ran-Sommer and Zeger (1991), Imbens

and Rubin (1997), and Greenland

(2000) describe examples of full

compliance in the control group.

domized trials with two arms and all-or-nothing compliance, especially when

one of the arms will exhibit full adherence by design. However, caution is

needed when using this approach in more complex settings and observational

studies, even if the proposed instrument were really an instrument.
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Fine Point 16.2

Defining weak instruments. There are two related, but different, definitions of weak instrument in the literature:

1. An instrument is weak if the true value of the - association–the denominator of the IV estimand–is “small.”

2. An instrument is weak if the F-statistic associated to the observed - association is “small,” typically meaning

less than 10.

In our smoking cessation example, the proposed instrument met both definitions: the risk difference was only 6% and

the F-statistic was a meager 08.

The first definition, based on the true value of the - association, reminds us that, even if we had an infinite

sample, the IV estimator greatly amplifies any biases in the numerator when using a proposed weak instrument (the

second problem of weak instruments in the main text). The second definition, based on the statistical properties of

the - association, reminds us that, even if we had a perfect instrument , the IV estimator can be biased in finite

samples (the third problem of weak instruments in the main text).

16.5 The three instrumental conditions revisited

The previous sections have discussed the relative advantages and disadvantages

of choosing monotonicity or homogeneity as the condition (iv). Our discussion

implicitly assumed that the proposed instrument  was in fact an instrument.

However, in observational studies, the proposed instrument  will fail to be a

valid instrument if it violates either of the instrumental conditions (ii) or (iii),

and will be a weak instrument if it only barely meets condition (i). In all these

cases, the use of IV estimation may result in substantial bias even if condition

(iv) held perfectly. We now discuss each of the three instrumental conditions.

Condition (i), a - association, is empirically verifiable. Before declaring

 as their proposed instrument, investigators will check that  is associated

with treatment . However, when the - association is weak as in our

smoking cessation example, the instrument is said to be weak (see Fine Point

16.2). Three serious problems arise when the proposed instrument is weak.

First, weak instruments yield effect estimates with wide 95% confidenceIn the context of linear models,

Martens et al (2006) showed that

instruments are guaranteed to be

weak in the presence of strong con-

founding, because a strong - as-

sociation leaves little residual vari-

ation for a strong - , or -,

association.

intervals, as in our smoking cessation example in Section 16.2. Second, weak

instruments amplify bias due to violations of conditions (ii) and (iii). A pro-

posed instrument  which is weakly associated with treatment  yields a

small denominator of the IV estimator. Therefore, violations of conditions (ii)

and (iii) that affect the numerator of the IV estimator (e.g., unmeasured con-

founding for the instrument, a direct effect of the instrument) will be greatly

exaggerated. In our example, any bias affecting the numerator of the IV esti-

mator would be multiplied by approximately 159 (100627). Third, even in

large samples, weak instruments introduce bias in the standard IV estimator

and result in underestimation of its variance. That is, the effect estimate is

in the wrong place and the width of the confidence interval around it is too

narrow.Bound, Jaeger and Baker (1995)

documented this bias. Their pa-

per was followed by many others

that investigated the shortcomings

of weak instruments.

To understand the nature of this third problem, consider a randomly gen-

erated dichotomous variable . In an infinite population, the denominator

of the IV estimand will be exactly zero–there is a zero association between

treatment  and a completely random variable–and the IV estimate will be

undefined. However, in a study with a finite sample, chance will lead to an as-

sociation between the randomly generated  and the unmeasured confounders
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–and therefore between  and treatment –that is weak but not exactly

zero. If we propose this random  as an instrument, the denominator of the

IV estimator will be very small rather than zero. As a result the numerator

will be incorrectly inflated, which will yield potentially very large bias. In fact,Code: Program 16.4
our proposed instrument “Price higher than $150” behaves like a randomly

generated variable. Had we decided to define  as price higher than $160,

$170, $180, or $190, the IV estimate would have been 413, −409, −211, or
−128 kg, respectively. In each case, the 95% confidence interval around the es-
timate was huge, though still an underestimate of the true uncertainty. Given

how much bias and variability weak instruments may create, a strong proposed

instrument that slightly violates conditions (ii) and (iii) may be preferable to

a less invalid, but weaker, proposed instrument.

Condition (ii), the absence of a direct effect of the instrument on the out-

come, cannot be verified from the data. A deviation from condition (ii) can

Z YA

U

Figure 16.8 be represented by a direct arrow from the instrument  to the outcome  , as

shown in Figure 16.8. This direct effect of the instrument that is not mediated

Z YA

U

A*

Figure 16.9

through treatment  will contribute to the numerator of the IV estimator, and

it will be incorrectly inflated by the denominator as if it were part of the effect

of treatment . Condition (ii) may be violated when a continuous or multi-

valued treatment  is replaced in the analysis by a coarser (e.g., dichotomized)

version ∗. Figure 16.9 shows that, even if condition (ii) holds for the original
treatment , it does not have to hold for its dichotomized version ∗, because
the path  →  →  represents a direct effect of the instrument  that is

not mediated through the treatment ∗ whose effect is being estimated in the
IV analysis. In practice, many treatments are replaced by coarser versions

for simplicity of interpretation. Coarsening of treatment is problematic for IV

estimation, but not necessarily for the methods discussed in previous chapters.

Condition (iii), no confounding for the effect of the instrument on the out-

come, is also unverifiable. Figure 16.10 shows confounding due to common

Z YA

U1

U2

Figure 16.10

causes of the proposed instrument  and outcome  that are (1) and are

not (2) shared with treatment . In observational studies, the possibility of

confounding for the proposed instrument always exists (same as for any other

variable not under the investigator’s control). Confounding contributes to the

numerator of the IV estimator and is incorrectly inflated by the denominator

as if it were part of the effect of treatment  on the outcome  .

Sometimes condition (iii), and the other conditions too, can appear more

plausible within levels of the measured covariates. Rather than making the

unverifiable assumption that there is absolutely no confounding for the effect

of  on  , we might feel more comfortable making the unverifiable assumption

that there is no unmeasured confounding for the effect of  on  within levels of

the measured pre-instrument covariates  . We could then apply IV estimation

repeatedly in each stratum of  , and pool the IV effect estimates under the

assumption that the effect in the population (under homogeneity) or in the

compliers (under monotonicity) is constant within levels of  . Alternatively

we could include the variables  as covariates in the two-stage modeling. In

our example, this reduced the size of the effect estimate and increased its 95%Code: Program 16.5
confidence interval.

Another frequent strategy to support condition (iii) is to check for bal-

anced distributions of the measured confounders across levels of the proposed

instrument . The idea is that, if the measured confounders are balanced, it

may be more likely that the unmeasured ones are balanced too. However, this

practice may offer a false sense of security: even small imbalances can lead

to counterintuitively large biases because of the bias amplification discussed
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above.

A violation of condition (iii) may occur even in the absence of confound-

ing for the effect of  on  . The formal version of condition (iii) requires

exchangeability between individuals with different levels of the proposed in-

strument. Such exchangeability may be violated because of either confounding

(see above) or selection bias. A surprisingly common way in which selection

bias may be introduced in IV analyses is the exclusion of individuals with cer-

tain values of treatment . For example, if individuals in the population may

receive treatment levels  = 0,  = 1, or  = 2, an IV analysis restricted to

individuals with  = 1 or  = 2 may yield a non-null effect estimate even ifSwanson et al (2015b) describe this

selection bias in detail. the true causal effect is null. This exclusion does not introduce bias in non-IV

analyses whose goal is to estimate the effect of treatment  = 1 versus  = 2.

All the above problems related to conditions (i)-(iii) are exacerbated in IV

analyses that use simultaneously multiple proposed instruments in an attempt

to alleviate the weakness of a single proposed instrument. Unfortunately, the

larger the number of proposed instruments, the more likely that some of them

will violate one of the instrumental conditions.

16.6 Instrumental variable estimation versus other methods

IV estimation differs from all previously discussed methods in at least three

aspects.

First, IV estimation requires modeling assumptions even if infinite data

were available. This is not the case for previous methods like IP weighting

or standardization: If we had treatment, outcome, and confounder data from

all individuals in the super-population, we would simply calculate the average

treatment effect as we did in Part I of this book, nonparametrically. In contrast,

even if we had data on instrument, treatment, and outcome from all individuals

in the super-population, IV estimation effectively requires the use of modeling

assumptions in order to identify the average causal effect in the population.

The homogeneity condition (iv) is mathematically equivalent to setting to zero

the parameter corresponding to a product term in a structural mean model

(see Technical Point 16.1). That is, IV estimation cannot be nonparametric–IV estimation is not the only

method that requires modeling

for identification of causal ef-

fects. Other econometric ap-

proaches like regression disconti-

nuity analysis (Thistlewaite and

Campbell 1960) do too.

models are required for identification–which explains why the method was not

discussed in Part I of this book.

Second, relatively minor violations of conditions (i)-(iv) for IV estimation

may result in large biases of unpredictable or counterintuitive direction. The

foundation of IV estimation is that the denominator blows up the numerator.

Therefore, when the conditions do not hold perfectly or the instrument is weak,

there is potential for explosive bias in either direction. As a result, an IV es-

timate may often be more biased than an unadjusted estimate. In contrast,

previous methods tend to result in slightly biased estimates when their iden-

tifiability conditions are only slightly violated, and adjustment is less likely to

introduce a large bias. The exquisite sensitivity of IV estimates to departures

from its identifiability conditions makes the method especially dangerous for

novice users, and highlights the importance of sensitivity analyses. In addition,Baiocchi and Small (2014) review

some approaches to quantify how

sensitive IV estimates are to viola-

tions of key assumptions.

it is often easier to use subject-matter knowledge to think about unmeasured

confounders of the effect of  on  and how they may bias our estimates than

to think about unmeasured confounders of the effect of  on  and how they

and the existence of defiers or effect heterogeneity may bias our estimates.

Third, the ideal setting for the applicability of standard IV estimation is
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more restrictive than that for other methods. As discussed in this chapter,

standard IV estimation is better reserved for settings with lots of unmeasured

confounding, a truly dichotomous and time-fixed treatment , a strong and

causal proposed instrument , and in which either effect homogeneity is ex-

pected to hold, or one is genuinely interested in the effect in the compliers and

monotonicity is expected to hold. A consequence of these restrictions is that

IV estimation is generally used to answer relatively simple causal questions,

such as the contrast  = 1 versus  = 0. For this reason, IV estimation will

not be a prominent method in Part III of this book, which is devoted to time-

varying treatments and the contrast of complex treatment strategies that are

sustained over time.

Causal inference relies on transparency of assumptions and on triangulationTransparency requires proper re-

porting of IV analyses. See some

suggested guidelines by Brookhart

et al (2010), Swanson and Hernán

(2013), and Baiocchi and Small

(2014).

of results from methods that depend on different sets of assumptions. IV

estimation is therefore an attractive approach because it depends on a different

set of assumptions than other methods. However, because of the wide 95%

confidence intervals typical of IV estimates, the value added by using this

approach will often be small. Also, users of IV estimation need to be critically

aware of the limitations of the method. While this statement obviously applies

to any causal inference method, the potentially counterintuitive direction and

magnitude of bias in IV estimation requires especial attention.
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Technical Point 16.6

Monotonicity and the effect in the compliers. Consider a dichotomous causal instrument , like the randomization

indicator described in the text, and treatment . Imbens and Angrist (1994) proved that the usual IV estimand equals

the average causal effect in the compliers E
£
 =1 −  =0|=1 −=0 = 1

¤
under monotonicity (iv), i.e., when no

defiers exist. Baker and Lindeman (1994) had a related proof for a binary outcome. See also Angrist, Imbens, and

Rubin (1996), and the associated discussion, and Baker, Kramer, and Lindeman (2016). A proof follows.

The intention-to-treat effect can be written as the weighted average of the intention-to-treat effects in the four

principal strata:

E
£
 =1 −  =0

¤
= E

£
 =1 −  =0|=1 = 1 =0 = 1

¤
Pr
£
=1 = 1 =0 = 1

¤
(always-takers)

+E
£
 =1 −  =0|=1 = 0 =0 = 0

¤
Pr
£
=1 = 0 =0 = 0

¤
(never-takers)

+E
£
 =1 −  =0|=1 = 1 =0 = 0

¤
Pr
£
=1 = 1 =0 = 0

¤
(compliers)

+E
£
 =1 −  =0|=1 = 0 =0 = 1

¤
Pr
£
=1 = 0 =0 = 1

¤
(defiers)

However, the intention-to-treat effect in both the always-takers and the never-takers is zero, because  does not

affect  in these two strata and, by individual-level condition (ii) of Technical Point 16.1,  has no independent effect

on  . If we assume that no defiers exist, then the above sum is simplified to

E
£
 =1 −  =0

¤
= E

£
 =1 −  =0|=1 = 1 =0 = 0

¤
Pr
£
=1 = 1 =0 = 0

¤
(compliers).

But, in the compliers, the effect of  on  equals the effect of  on  (because  = ), that is

E
£
 =1 −  =0|=1 = 1 =0 = 0

¤
= E

£
 =1 −  =0|=1 = 1 =0 = 0

¤
. Therefore, the effect in the com-

pliers is

E
£
 =1 −  =0|=1 = 1 =0 = 0

¤
=

E
£
 =1 −  =0

¤
Pr [=1 = 1 =0 = 0]

which is the usual IV estimand if we assume that  is randomly assigned, as random assignment implies

⊥⊥ {  ;  = 0 1;  = 0 1}. Under this joint independence and consistency, the intention-to-treat ef-

fect E
£
 =1 −  =0

¤
in the numerator equals E [ | = 1] − E [ | = 0], and the proportion of compliers

Pr
£
=1 = 1 =0 = 0

¤
in the denominator equals Pr [ = 1| = 1] − Pr [ = 1| = 0]. To see why the latter

equality holds, note that the proportion of always-takers Pr
£
=0 = 1

¤
= Pr [ = 1| = 0] and the proportion of

never-takers Pr
£
=1 = 0

¤
= Pr [ = 0| = 1]. Since, under monotonicity (iv), there are no defiers, the proportion of

compliers Pr
£
=1 −=0 = 1

¤
is the remainder 1− Pr [ = 1| = 0]− Pr [ = 0| = 1] =

1− Pr [ = 1| = 0]− (1− Pr [ = 1| = 1]) = Pr [ = 1| = 1]− Pr [ = 1| = 0], which completes the proof.
The above proof only considers the setting depicted in Figure 16.1 in which the instrument  is causal. When,

as depicted in Figures 16.2 and 16.3, data on a surrogate instrument –but not on the causal instrument –are

available, Hernán and Robins (2006b) proved that the average causal effect in the compliers (defined according to )

is also identified by the usual IV estimator. Their proof depends critically on two assumptions: that  is independent

of  and  given the causal instrument  , and that  is binary. However, this independence assumption has often

little substantive plausibility unless  is continuous. A corollary is that the interpretation of the IV estimand as the

effect in the compliers is questionable in many applications of IV methods to observational data in which  is at best a

surrogate for  .



Chapter 17
CAUSAL SURVIVAL ANALYSIS

In previous chapters we have been concerned with causal questions about the treatment effects on outcomes

occurring at a particular time point. For example, we have estimated the effect of smoking cessation on weight

gain measured in the year 1982. Many causal questions, however, are concerned with treatment effects on the time

until the occurrence of an event of interest. For example, we may want to estimate the causal effect of smoking

cessation on the time until death, whenever death occurs. This is an example of a survival analysis.

The use of the word “survival” does not imply that the event of interest must be death. The term “survival

analysis”, or the equivalent term “failure time analysis”, is applied to any analyses about time to an event, where

the event may be death, marriage, incarceration, cancer, flu infection, etc. Survival analyses require some special

considerations and techniques because the failure time of many individuals may occur after the study has ended

and is therefore unknown. This chapter outlines basic techniques for survival analysis in the simplified setting of

time-fixed treatments.

17.1 Hazards and risks

Suppose we want to estimate the average causal effect of smoking cessation

 (1: yes, 0: no) on the time to death  with time measured from the start

of follow-up. This is an example of a survival analysis: the outcome is time

to an event of interest that can occur at any time after the start of follow-

up. In most follow-up studies, the event of interest is not observed to happen

for all, or even the majority of, individuals in the study. This is so because

most follow-up studies have a date after which there is no information on any

individuals: the administrative end of follow-up.

After the administrative end of follow-up, no additional data can be used.

Individuals who do not develop the event of interest before the administrative

end of follow-up have their survival time administratively censored, that is, we

know that they survived beyond the administrative end of follow-up, but we

do not know for how much longer. For example, let us say that we conduct

the above survival analysis among the 1629 cigarette smokers from the NHEFS

who were aged 25-74 years at baseline and who were alive through 1982. For

all individuals, the start of follow-up is January 1, 1983 and the administrative

end of follow-up is December 31, 1992. We define the administrative censoring

time to be the difference between the date of administrative end of follow-up

and date at which follow-up begins. In our example, this time the same–120

months–for all individuals because the start of follow-up and the adminis-In a study with staggered entry

(i.e., with a variable start of follow-

up date) different individuals will

have different administrative cen-

soring times, even when the admin-

istrative end of follow-up date is

common to all.

trative end of follow-up are the same for everybody. Of the 1629 individuals,

only 318 individuals died before the end of 1992, so the survival time of the

remaining 1311 individuals is administratively censored.

Administrative censoring is a problem intrinsic to survival analyses–studies

of smoking cessation and death will rarely, if ever, follow a cohort of individuals

until extinction–but administrative censoring is not the only type of censoring

that may occur in survival analyses. Like any other causal analyses, survival

analysis may also need to handle non-administrative types of censoring, such
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Fine Point 17.1

Competing events. As described in Section 8.5, a competing event is an event (typically, death) that prevents the

event of interest (e.g., stroke) from happening: individual who die from other causes (say, cancer) cannot ever develop

stroke. In survival analyses, the key decision is whether to consider competing events a form of non-administrative

censoring.

• If the competing event is considered a censoring event, then the analysis is effectively an attempt to simulate
a population in which death from other causes is somehow either abolished or rendered independent of the risk

factors for stroke. The resulting effect estimate is hard to interpret and may not correspond to a meaningful

estimand (see Chapter 8). In addition, the censoring may introduce selection bias under the null, which would

require adjustment (by, say, IP weighting) using data on the measured risk factors for the event of interest.

• If the competing event is not considered a censoring event, then the analysis effectively sets the time to event
to be infinite. That is, dead individuals are considered to have probability zero of developing stroke between

their death and the administrative end of follow-up. The estimate of the effect of treatment on stroke is hard to

interpret because a non-null estimate may arise from a direct effect of treatment on death, which would prevent

the occurrence of stroke.

An alternative to the handling of competing events is to create a composite event that includes both the competing

event and the event of interest (e.g., death and stroke) and conduct a survival analysis for the composite event.

This approach effectively eliminates the competing events, but fundamentally changes the causal question. Again, the

resulting effect estimate is hard to interpret because a non-null estimate may arise from either an effect of treatment

on stroke or on death. Another alternative is to restrict the inference to the principal stratum of individuals who would

not die regardless of the treatment level they received. This approach targets a sort of local average effect, as defined

in Chapter 16, which makes both interpretation and valid estimation especially challenging.

None of the above strategies provides a satisfactory solution to the problem of competing events. Indeed the

presence of competing events raises logical questions about the meaning of the causal estimand that cannot be bypassed

by statistical techniques. For a detailed description of approaches to handle competing events and their challenges, see

the discussion by Young et al. (2019).

as loss to follow-up (e.g., dropout from the study) and competing events (see

Fine Point 17.1). In previous chapters we have discussed how to adjust for the

selection bias introduced by non-administrative censoring via standardization

or IP weighting. The same approaches can be applied to survival analyses.

Therefore, in this chapter, we will focus on administrative censoring. We defer

a more detailed consideration of non-administrative censoring to Part III of the

book because non-administrative censoring is generally a time-varying process,

whereas the time of administrative censoring is fixed at baseline.For simplicity, we assume that any-

one without confirmed death sur-

vived the follow-up period. In real-

ity, some individuals may have died

but confirmation (by, say, a death

certificate or a proxy interview) was

not feasible. Also for simplicity, we

will ignore the problem described in

Fine Point 12.1.

In our example, the month of death  can take values subsequent from 1

(January 1983) to 120 (December 1992).  is known for 102 treated ( = 1)

and 216 untreated ( = 0) individuals who died during the follow-up, and is

administratively censored (that is, all we know is that it is greater than 120

months) for the remaining 1311 individuals. Therefore we cannot compute the

mean survival bE[ ] as we did in previous chapters with the outcome of interest.
Rather, in survival analysis we need to use other measures that can accom-

modate administrative censoring. Some common measures are the survival

probability, the risk, and the hazard. Let us define these quantities, which are

functions of the survival time  .

The survival probability Pr [  ], or simply the survival at month , is

the proportion of individuals who survived through time . If we calculate the
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survivals at each month until the administrative end of follow-up  = 120

and plot them along a horizontal time axis, we obtain the survival curve.

The survival curve starts at Pr [  0] = 1 for  = 0 and then decreases

monotonically–that is, it does not increase–with subsequent values of  =

1 2 . Alternatively, we can define risk, or cumulative incidence, at time

 as one minus the survival 1 − Pr [  ] = Pr [ ≤ ]. The cumulative

incidence curve starts at Pr [ ≤ 0] = 0 and increases monotonically during

the follow-up.

In survival analyses, a natural approach to quantify the treatment effect isOther effect measures that can be

derived from survival curves are

years of life lost and the restricted

mean survival time.

to compare the survival or risk under each treatment level at some or all times

. Of course, in our smoking cessation example, a contrast of these curves

may not have a causal interpretation because the treated and the untreated

are probably not exchangeable. However, suppose for a second (actually, until

Figure 17.1

Section 17.4) that quitters ( = 1) and non-quitters ( = 0) are marginally

exchangeable. Then we can construct the survival curves shown in Figure 17.1

and compare Pr [  | = 1] versus Pr [  | = 0] for all times . For

example, the survival at 120 months was 762% among quitters and 820%

among non-quitters. Alternatively, we could contrast the risks rather than the

survivals. For example, the 120-month risk was 238% among quitters and

180% among non-quitters.

Code: Program 17.1
A common statistical test to com-

pare survival curves (the log-rank

test) yielded a P-value= 0005.

At any time , we can also calculate the proportion of individuals who

develop the event among those who had not developed it before . This is

the hazard Pr [ = |   − 1]. Technically, this is the discrete time hazard,
that is, the hazard in a study in which time is measured in discrete intervals–

as opposed to measured continuously. Because in real-world studies, time is

indeed measured in discrete intervals (years, months, weeks, days...) rather

than in a truly continuous fashion, here we will refer to the discrete time

hazard as, simply, the hazard.

The risk and the hazard are different measures. The denominator of the

risk–the number of individuals at baseline–is constant across times  and its

numerator–all events between baseline and –is cumulative. That is, the risk

will stay flat or increase as  increases. On the other hand, the denominator

of the hazard–the number of individuals alive at –varies over time  and

its numerator includes only recent events–those during interval . That is,

the hazard may increase or decrease over time. In our example, the hazard at

120 months was 0% among quitters (because the last death happened at 113

months in this group) and 1986 = 010% among non-quitters, and the hazard

curves between 0 and 120 months had roughly the shape of a letter  .

A frequent approach to quantify the treatment effect in survival analyses

is to estimate the ratio of the hazards in the treated and the untreated, known

as the hazard ratio. However, the hazard ratio is problematic for the reasons

described in Fine Point 17.2. Therefore, the survival analyses in this book

privilege survival/risk over hazard. However, that does not mean that we

should completely ignore hazards. The estimation of hazards is often a useful

intermediate step for the estimation of survivals and risks.

17.2 From hazards to risks

In survival analyses, there are two main ways to arrange the analytic dataset.

In the first data arrangement each row of the database corresponds to one

person. This data format–often referred to as the long or wide format when
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there are time-varying treatments and confounders–is the one we have used

so far in this book. In the analyses of the previous section, the dataset had

1629 rows, one per individual.

In the second data arrangement each row of the database corresponds to

a person-time. That is, the first row contains the information for person 1 at

 = 0, the second row the information for person one at  = 1, the third row

the information for person 1 at  = 2, and so on until the follow-up of person

one ends. The next row contains the information of person 2 at  = 0, etc.

This person-time data format is the one we will use in most survival analyses

in this chapter and in all analysis with time-varying treatments in Part III. In

our smoking cessation example, the person-time dataset has 176 764 rows, one

per person-month.

To encode survival information through  in the person-time data format,

it is helpful to define a time-varying indicator of event . For each person

at each month , the indicator  takes value 1 if  ≤  and value 0 if

  . The causal diagram in Figure 17.2 shows the treatment  and the

Figure 17.2 event indicators 1 and 2 at times 1 and 2, respectively. The variable 

represents the (generally unmeasured) factors that increase susceptibility to

the event of interest. Note that sometimes these susceptibility factors are

time-varying too. In that case, they can be depicted in the causal diagram as

0, 1, and so on. Part III deals with the case in which the treatment itself

is time-varying.

In the person-time data format, the row for a particular individual at time

 includes the indicator +1. In our example, the first row of the person-time

dataset, for individual one at  = 0, includes the indicator 1, which is 1 if theBy definition, everybody had to sur-

vive month 0 in order to be included

in the dataset, i.e., 0 = 0 for all

individuals.

individual died during month 1 and 0 otherwise; the second row, for individual

one at  = 1, includes the indicator 2, which is 1 if the individual died during

month 2 and 0 otherwise; and so on. The last row in the dataset for each

individual is either her first row with +1 = 1 or the row corresponding to

month 119.

Using the time-varying outcome variable , we can define survival at  as

Pr [ = 0], which is equal to Pr [  ], and risk at  as Pr [ = 1], which is

equal to Pr [ ≤ ]. The hazard at  is defined as Pr [ = 1|−1 = 0]. For
 = 1 the hazard is equal to the risk because everybody is, by definition, alive

at  = 0.

The survival probability at  is the product of the conditional probabilities

of having survived each interval between 0 and . For example, the survival

at  = 2, Pr [2 = 0], is equal to survival probability at  = 1, Pr [1 = 0],

times the survival probability at  = 2 conditional on having survived through

 = 1, Pr [2 = 0|1 = 0]. More generally, the survival at  is

Pr [ = 0] =

Y
=1

Pr [ = 0|−1 = 0]

That is, the survival at  equals the product of one minus the hazard at all

previous times. If we know the hazards through  we can easily compute the

survival at  (or the risk at , which is just one minus the survival).

The hazard at , Pr [ = 1|−1 = 0], can be estimated nonparametri-
cally by dividing the number of cases during the interval  by the number of

individuals alive at the end of interval  − 1. If we substitute this estimate
into the above formula the resulting nonparametric estimate of the survival

Pr [ = 0] at  is referred to as the Kaplan-Meier, or product-limit, estima-

tor. Figure 17.1 was constructed using the Kaplan-Meier estimator, which is
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Fine Point 17.2

The hazards of hazard ratios. When using the hazard ratio as a measure of causal effect, two important properties

of the hazard ratio need to be taken into account.

First, because the hazards vary over time, the hazard ratio generally does too. That is, the ratio at time  may differ

from that at time  + 1. However, many published survival analyses report a single hazard ratio, which is usually the

consequence of fitting a Cox proportional hazards model that assumes a constant hazard ratio by ignoring interactions

with time. The reported hazard ratio is a weighted average of the -specific hazard ratios, which makes it hard to

interpret. If the risk is rare and censoring only occurs at a common administrative censoring time , then the weight

of the hazard ratio at time  is proportional to the total number of events among untreated individuals that occur at

. (Technically, the weights are equal to the conditional density at  of  given  = 0 and   .) Because it is

a weighted average, the reported hazard ratio may be 1 even if the survival curves are not identical. In contrast to the

hazard ratio, survival and risks are always presented as depending on time, e.g., the 5-year survival, the 120-month risk.

Second, even if we presented the time-specific hazard ratios, their causal interpretation is not straightforward.

Suppose treatment kills all high-risk individuals by time  and has no effects on others. Then the hazard ratio at time

 + 1 compares the treated and the untreated individuals who survived through . In the treated group, the survivors

are all low-risk individuals (because the high-risk ones have already been killed by treatment); in the untreated group,

the survivors are a mixture of high-risk and low-risk individuals (because treatment did not weed out the former). As a

result the hazard ratio at  + 1 will be less than 1 even though treatment is not beneficial for any individual.

This apparent paradox is an example of selection bias due to conditioning on a post-treatment variable (i.e.,

being alive at ) which is affected by treatment. For example, the hazard ratio at time 2 is the probability

Pr [2 = 1|1 = 0 ] of the event at time 2 among those who survived time 1. As depicted in the causal diagram

of Figure 17.3, the conditioning on the collider 1 will generally open the path  → 1 ←  → 2 and therefore

induce an association between treatment  and event 1 among those with 1 = 0. This built-in selection bias of

hazard ratios does not happen if the survival curves are the same in the treated and the untreated, that is, if there are

no arrows from  into the indicators for the event. Hernán (2010) described an example of this problem.

an excellent estimator of the survival curve, provided the total number of fail-

ures over the follow up period is reasonably large. Typically, the number of

Figure 17.3

cases during each interval is low (or even zero) and thus the nonparametric

estimates of the hazard Pr [ = 1|−1 = 0] at  will be very unstable. If
our interest is in estimation of the hazard at a particular , smoothing via a

parametric model may be required (see Chapter 11 and Fine Point 17.3).

An easy way to parametrically estimate the hazards is to fit a logistic

regression model for Pr [+1 = 1| = 0] that, at each , is restricted to

Functions other than the logit (e.g.,

the probit) can also be used to

model dichotomous outcomes and

therefore to estimate hazards.

individuals who survived through . The fit of this model is straightforward

when using the person-time data format. In our example, we can estimate the

hazards in the treated and the untreated by fitting the logistic model

logit Pr [+1 = 1| = 0 ] = 0 + 1+ 2×  + 3× 2

where 0 is a time-varying intercept that can be estimated by some flexible

function of time such as 0 = 0 + 4 + 5
2. The flexible time-varying

intercept allows for a time-varying hazard and the product terms between

treatment  and time (2×+ 3×2) allow the hazard ratio to vary over

time. See Technical Point 17.1 for details on how a logistic model approximatesCode: Program 17.2
Although each person occurs in

multiple rows of the person-time

data structure, the standard error of

the parameter estimates outputted

by a routine logistic regression pro-

gram will be correct if the hazards

model is correct.

a hazards model.

We then compute estimates of the survival Pr [+1 = 0| = ] by multi-

plying the estimates of one minus the estimates of Pr [+1 = 1| = 0  = ]

provided by the logistic model, separately for the treated and the untreated.

Figure 17.4 shows the survival curves obtained after parametric estimation of

the hazards. These curves are a smooth version of those in Figure 17.1.
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Fine Point 17.3

Models for survival analysis. Methods for survival analysis need to accommodate the expected censoring of failure

times due to administrative end of follow-up.

Nonparametric approaches to survival analysis, like constructing Kaplan-Meier curves, make no assumptions about

the distribution of the unobserved failure times due to administrative censoring. On the other hand, parametric models

for survival analysis assume a particular statistical distribution (e.g., exponential, Weibull) for the failure times or hazards.

The logistic model described in the main text to estimate hazards is an example of a parametric model.

Other models for survival analysis, like the Cox proportional hazards model and the accelerated failure time (AFT)

model, do not assume a particular distribution for the failure times or hazards. In particular, these models are agnostic

about the shape of the hazard when all covariates in the model have value zero–often referred to as the baseline hazard.

These models, however, impose a priori restrictions on the relation between the baseline hazard and the hazard under

other combinations of covariate values. As a result, these methods are referred to as semiparametric methods.

See the book by Hosmer, Lemeshow, and May (2008) for a review of applied survival analysis. More formal

descriptions can be found in the books by Fleming and Harrington (2005) and Kalbfleisch and Prentice (2002).

The validity of this procedure requires no misspecification of the hazards

model. In our example, this assumption seems plausible because we obtained

essentially the same survival estimates as in the previous section when we

estimated the survival in a fully nonparametric way. A 95% confidence interval

around the survival estimates can be easily constructed via bootstrapping of

the individuals in the population.

17.3 Why censoring matters

The only source of censoring in our study is a common administrative censoring

time  = 120 that is identical for all individuals. In this simple setting the

Figure 17.4

procedure described in the previous section to estimate the survival is overkill.

One can simply estimate the survival probabilities Pr [+1 = 0| = ] by the

fraction of individuals who received treatment  and survived to  + 1, or

by fitting separate logistic models for Pr [+1 = 0|] at each time, for  =
0 1  .

Now suppose that individuals start the follow-up at different dates–there

is staggered entry into the study–but the administrative end of follow-up date

is common to all. Because the administrative censoring time is the difference

between the administrative end of follow-up and the time of start of follow-up,

different individuals will have different administrative censoring times. In this

setting it is helpful to define a time-varying indicator  for censoring by time

. For each person at each month , the indicator  takes value 0 if the

administrative end of follow-up is greater than  and takes value 1 otherwise.

In the person-time data format, the row for a particular individual at time 

includes the indicator +1. We did not include this variable in our dataset

because +1 = 0 for all individuals at all times  before 120 months. In the

general case with random (i.e., individual-specific) administrative censoring,

the indicator +1 will transition from 0 to 1 at different times  for different

people.

Our goal is to estimate the survival curve that would have been observed if

nobody had been censored before , where  is the maximum administra-
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Technical Point 17.1

Approximating the hazard ratio via a logistic model. The (discrete-time) hazard ratio
Pr[+1=1|=0=1]

Pr[+1=1|=0=0]
is

exp (1) at all times +1 in the hazards model Pr [+1 = 1| = 0 ] = Pr [+1 = 1| = 0  = 0]×exp (1).
If we take logs on both sides of the equation, we obtain log Pr [+1 = 1| = 0 ] = 0 + 1 where 0 =

logPr [+1 = 1| = 0  = 0].

Suppose the hazard at  + 1 is small, i.e., Pr [+1 = 1| = 0 ] ≈ 0. Then one minus the hazard at  + 1 is
close to one, and the hazard is approximately equal to the odds: Pr [+1 = 1| = 0 ] ≈ Pr[+1=1|=0]

Pr[+1=0|=0]
. We

then have

log
Pr [+1 = 1| = 0 ]

Pr [+1 = 0| = 0 ]
= logit Pr [+1 = 1| = 0 ] ≈ 0 + 1

That is, if the hazard is close to zero at  + 1, we can approximate the log hazard ratio 1 by 1 in a logistic model

logit Pr [+1 = 1| = 0 ] = 0 + 1 like the one we used in the main text (Thompson 1977). As a rule of

thumb, the approximation is often considered to be accurate enough when Pr [+1 = 1| = 0 ]  01 for all .

This rare event condition can almost always be guaranteed to hold: we just need to define a time unit  that is

short enough for Pr [+1 = 1| = 0 ]  01. For example, if  stands for lung cancer,  may be measured in

years; if  stands for infection with the common cold virus,  may be measured in days. The shorter the time unit,

the more rows in the person-time dataset used to fit the logistic model.

tive censoring time in the study. That is, our goal is to estimate the survival

Pr [ = 0| = ] that would have been observed if the value of the time-

varying indicators  were known even after censoring. Technically, we can

also refer to this quantity as Pr
h
=0
 = 0| = 

i
where  = (1 2).

As discussed in Chapter 12, the use of the superscript  = 0 makes explicit the

quantity that we have in mind. We sometimes choose to omit the superscript

 = 0 when no confusion can arise. For simplicity, suppose that the time of

start of follow-up was as if randomly assigned to each individual, which would

be the case if there were no secular trends in any variable. Then the admin-

istrative censoring time, and therefore the indicator , is independent of both

treatment and death time.

We cannot validly estimate this survival Pr [ = 0| = ] at time  by

simply computing the fraction of individuals who received treatment level  and

survived and were not censored through . This fraction is a valid estimator

of the joint probability Pr [+1 = 0+1 = 0| = ], which is not what we

want. To see why, consider a study with  = 2 and in which the following

happens:

• Pr [1 = 0] = 1, i.e., nobody is censored by  = 1
• Pr [1 = 0|0 = 0] = 09, i.e., 90% of individuals survive through  = 1

• Pr [2 = 0|1 = 0 1 = 0] = 05, i.e., a random half of survivors is cen-

sored by  = 2

• Pr [2 = 0|2 = 01 = 0 1 = 0] = 09, i.e., 90% of the remaining in-

dividuals survive through  = 2

The fraction of uncensored survivors at  = 2 is 1× 09× 05× 09 = 0405.
However, if nobody had been censored, i.e., if Pr [2 = 0|1 = 0 1 = 0] =

1, the survival would have been 1 × 09 × 1 × 09 = 081. This example

motivates how correct estimation of the survivals Pr [ = 0| = ] requires
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the procedures described in the previous section. Specifically, under (as if)

randomly assigned censoring, the survival Pr [ = 0| = ] at  is

Y
=1

Pr [ = 0|−1 = 0  = 0  = ] for   

The estimation procedure is the same as described above except that we either

use a nonparametric estimate of, or fit a logistic model for, the cause-specific

hazard Pr [+1 = 1| = 0 +1 = 0  = ].

Often we are not ready to assume that censoring is as if randomly assigned.

When there is staggered entry, an individual’s time of administrative censoring

depends on the calendar time at study entry (later entries have shorter values

of ) and calendar time may itself be associated with the outcome. There-

fore, the above procedure will need to be adjusted for baseline calendar time.

In addition, there may be other baseline prognostic factors that are unequally

distributed between the treated ( = 1) and the untreated ( = 0), which also

requires adjustment. The next sections extend the above procedure to incorpo-

rate adjustment for baseline confounders via g-methods. In Part III we extend

the procedure to settings with time-varying treatments and confounders.

17.4 IP weighting of marginal structural models

When the treated and the untreated are not exchangeable, a direct contrast

of their survival curves cannot be endowed with a causal interpretation. In

our smoking cessation example, we estimated that the 120-month survival was

lower in quitters than in non-quitters (762% versus 820%), but that does not

necessarily imply that smoking cessation increases mortality. Older people are

more likely to quit smoking and also more likely to die. This confounding by

age makes smoking cessation look bad because the proportion of older people

is greater among quitters than among non-quitters.

Let us define 
=0
 as a counterfactual time-varying indicator for death

at  under treatment level  and no censoring. For simplicity of notation, we

will write 
=0
 as 

 when, as in this chapter, it is clear that the goal is

estimating the survival in the absence of censoring. For additional simplicity, in

the remainder of this chapter we omit  = 0 from the conditioning event of the

hazard at , Pr [+1 = 0| = 0  =  ]. That is, we write all expressions

as if all individuals had a common administrative censoring time, like in our

smoking cessation example.

Suppose we want to compare the counterfactual survivals Pr
£
=1
+1 = 0

¤
and Pr

£
=0
+1 = 0

¤
that would have been observed if everybody had received

treatment ( = 1) and no treatment ( = 0), respectively. That is, the causal

contrast of interest is

Figure 17.5

Pr
£
=1
+1 = 0

¤
vs. Pr

£
=0
+1 = 0

¤
for  = 0 2  − 1

Because of confounding, this contrast may not be validly estimated by the

contrast of the survivals Pr [+1 = 0| = 1] and Pr [+1 = 0| = 0] that we
described in the previous sections. Rather, a valid estimation of the quan-

tities Pr
£

+1 = 0

¤
for  = 1 and  = 0 typically requires adjustment for

confounders, which can be achieved through several methods. This section

focuses on IP weighting.
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Let us assume that the treated ( = 1) and the untreated ( = 0) are

exchangeable within levels of the  variables, as represented in the causal

diagram of Figure 17.5. Like in Chapters 12 to 15,  includes the variables

sex, age, race, education, intensity and duration of smoking, physical activity

in daily life, recreational exercise, and weight. We also assume positivity and

consistency. The estimation of IP weighted survival curves has two steps.

First, we estimate the stabilized IP weight  for each individual in

the study population. The procedure is exactly the same as the one de-Code: Program 17.3
scribed in Chapter 12. We fit a logistic model for the conditional probabil-

ity Pr [ = 1|] of treatment (i.e., smoking cessation) given the variables in
. The denominator of the estimated  is cPr [ = 1|] for treated indi-
viduals and

³
1−cPr [ = 1|]´ for untreated individuals, where cPr [ = 1|]

is the predicted value from the logistic model. The numerator of the esti-

mated weight  is cPr [ = 1] for the treated and ³1−cPr [ = 1]´ for the
untreated, where cPr [ = 1] can be estimated nonparametrically or as the pre-
dicted value from a logistic model for the marginal probability Pr [ = 1] of

treatment. See Chapter 11 for details on predicted values.

The application of the estimated weights  creates a pseudo-population

in which the variables in  are independent from the treatment , which

eliminates confounding by those variables. In our example, the weights had

mean 1 (as expected) and ranged from 033 to 421.

Second, using the person-time data format, we fit a hazards model like the

one described in the previous except that individuals are weighted by their

estimated . Technically, this IP weighted logistic model estimates the

parameters of the marginal structural logistic model

logit Pr
£

+1 = 0|

 = 0
¤
= 0 + 1+ 2×  + 3× 2

That is, the IP weighted model estimates the time-varying hazards that would

have been observed if all individuals in the study population had been treated

( = 1) and the time-varying hazards if they had been untreated ( = 0).

Figure 17.6

The estimates of Pr
£

+1 = 0|

 = 0
¤
from the IP weighted hazards mod-

els can then be multiplied over time (see previous section) to obtain an estimate

of the survival Pr
£

+1 = 0

¤
that would have been observed under treatment

 = 1 and under no treatment  = 0. The resulting curves are shown in Figure

17.6.

In our example, the 120-month survival estimates were 807% under smok-

ing cessation and 805% under no smoking cessation; difference 02% (95% con-

fidence interval from −41% to 37% based on 500 bootstrap samples). Though
the survival curve under treatment was lower than the curve under no treat-

ment for most of the follow-up, the maximum difference never exceeded −14%
with a 95% confidence interval from −34% to 07%. That is, after adjustment
for the covariates  via IP weighting, we found little evidence of an effect of

smoking cessation on mortality at any time during the follow-up. The validity

of this procedure requires no misspecification of both the treatment model and

the marginal hazards model.

17.5 The parametric g-formula

In the previous section we estimated the survival curve under treatment and

under no treatment in the entire study population via IP weighting. To do
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so, we adjusted for  and assumed exchangeability, positivity, and consistency.

Another method to estimate the marginal survival curves under those assump-

tions is standardization based on parametric models, that is, the parametric

g-formula.

The survival Pr
£

+1 = 0

¤
at +1 under treatment level  is the weighted

average of the survival conditional probabilities at  + 1 within levels of the

covariates  and treatment level  = , with the proportion of individuals in

each level  of  as the weights. That is, under exchangeability, positivity, and

consistency, Pr
£

+1 = 0

¤
equals the standardized survivalX



Pr [+1 = 0| =   = ] Pr [ = ] .

For a formal proof, see Section 2.3.

Therefore, the estimation of the parametric g-formula has two steps. First,

we need to estimate the conditional survivals Pr [+1 = 0| =   = ] using

our administratively censored data. Second, we need to compute their weighted

average over all values  of the covariates . We describe each of these two

steps in our smoking cessation example.

For the first step we fit a parametric hazards model like the one described

in Section 17.2 except that the variables in  are included as covariates. If

the model is correctly specified, it validly estimates the time-varying hazards

Pr [+1 = 1| = 0 ] within levels of treatment  and covariates . The

Figure 17.7

product of one minus the conditional hazards

Y
=0

Pr [+1 = 0| = 0  =   = ]

is equal to the conditional survival Pr [+1 = 0| =   = ]. Because of

conditional exchangeability given , the conditional survival for a particular

set of covariate values  =  and  =  can be causally interpreted as the

survival that would have been observed if everybody with that set of covariates

had received treatment value . That is,

Pr [+1 = 0| =   = ] = Pr
£

+1 = 0| = 

¤
Therefore the conditional hazards can be used to estimate the survival curve

under treatment ( = 1) and no treatment ( = 0) within each combination

of values  of . For example, we can use this model to estimate the survivalIn Chapter 12 we referred to models

conditional on all the covariates 

as faux marginal structural models.

curves under treatment and no treatment for white men aged 61, with college

education, low levels of exercise, etc. However, our goal is estimating the

marginal, not the conditional, survival curves under treatment and under no

treatment.

For the second step we compute the weighted average of the conditional

survival across all values  of the covariates , that is, we standardize the sur-Code: Program 17.4
The procedure is analogous to the

one described in Chapter 13

vival to the confounder distribution. To do so, we use the method described in

Section 13.3 to standardize means: standardization by averaging after expan-

sion of dataset, outcome modeling, and prediction. This method can be used

even when some the variables in  are continuous so that the sum over values

 is formally an integral. The resulting curves are shown in Figure 17.7.

In our example, the survival curve under treatment was lower than the curve

under no treatment during the entire follow-up, but the maximum difference

never exceeded−20% (95% confidence interval from−56% to 18%). The 120-
month survival estimates were 804% under smoking cessation and 806% under



17.6 G-estimation of structural nested models 219

no smoking cessation; difference 02% (95% confidence interval from −46% to

41%). That is, after adjustment for the covariates  via standardization, we

found little evidence of an effect of smoking cessation on mortality at any time

during the follow-up. Note that the survival curves estimated via IP weighting

(previous section) and the parametric g-formula (this section) are similar but

not identical because they rely on different parametric assumptions: the IP

weighted estimates require no misspecification of a model for treatment and

a model for the unconditional hazards; the parametric g-formula estimates

require no misspecification of a model for the conditional hazards.

17.6 G-estimation of structural nested models

The previous sections describe causal contrasts that compare survivals, or risks,

under different levels of treatment . The survival was computed from haz-

ards estimated by logistic regression models. This approach is feasible when

the analytic method is IP weighting of marginal structural models or the para-

metric g-formula, but not when the method is g-estimation of structural nested

models. As explained in Chapter 14, structural nested models are models for

conditional causal contrasts (e.g., the difference or ratio of covariate-specific

means under different treatment levels), not for the components of those con-

trasts (e.g., each of the means under different treatment levels). Therefore weIn fact, we may not even approxi-

mate a hazard ratio because struc-

tural nested logistic models do not

generalize easily to time-varying

treatments (Technical Point 14.1).

cannot estimate survivals or hazards using a structural nested model.

We can, however, consider a structural nested log-linear model to model

the ratio of cumulative incidences (i.e., risks) under different treatment levels.

Structural nested cumulative failure time models do precisely that (see Tech-

nical Point 17.2), but they are best used when failure is a rare event because

log-linear models do not naturally impose an upper limit of 1 on the risk. For

non-rare failures, we can instead consider a structural nested log-linear model

to model the ratio of cumulative survival probabilities (i.e., 1− risk) under dif-
ferent treatment levels. Structural nested cumulative survival time models doTchetgen Tchetgen et al (2015)

and Robins (1997b) describe sur-

vival analysis with instrumental

variables that exhibit similar prob-

lems to those described here for

structural nested models.

precisely that (see Technical Point 17.2), but they are best used when survival

is rare because log-linear models do not naturally impose an upper limit of 1

on the survival. A more general option is to use a structural nested model that

models the ratio of survival times under different treatment options. That is,

an accelerated failure time (AFT) model.

Let  
 be the counterfactual time of survival for individual  under treat-

ment level . The effect of treatment  on individual ’s survival time can be

measured by the ratio  =1
  =0

 of her counterfactual survival times under

treatment and under no treatment. If the survival time ratio is greater than 1,

then treatment is beneficial because it increases the survival time; if the ratio

is less than 1, then treatment is harmful; if the ratio is 1, then treatment has

no effect. Suppose, temporarily, that the effect of treatment is the same for

every individual in the population.

We could then consider the structural nested accelerated failure time (AFT)The ‘nested’ component is only

evident when treatment is time-

varying. See Chapter 21.

model  
 

=0
 = exp (−1), where 1 measures the expansion (or contrac-

tion) of each individual’s survival time attributable to treatment. If 1  0

then treatment increases survival time, if 1  0 then treatment decreases

survival time, if 1 = 0 then treatment does not affect survival time. MoreThe negative sign in front of  pre-

serves the usual interpretation of

positive parameters indicating harm

and negative parameters indicating

benefit.

generally, the effect of treatment may depend on covariates  so a more general

structural AFT would be  
 

=0
 = exp (−1− 2), with 1 and 2 (a

vector) constant across individuals. Rearranging the terms, the model can be
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Technical Point 17.2

Structural nested cumulative failure time (CFT) models and cumulative survival time (CST) models. For a

time-fixed treatment, a (non-nested) structural CFT model is a model for the ratio of the counterfactual risk under

treatment value  divided by the counterfactual risk under treatment value 0 conditional on treatment  and covariates

. The general form of the model is

Pr [
 = 1|]

Pr [=0
 = 1|] = exp[(;)]

where (;) is a function of treatment and covariate history indexed by the (possibly vector-valued) parameter .

For consistency, exp[(;)] must be 1 when  = 0 because then the two treatment values being compared are

identical, and when there is no effect of treatment at time  on outcome at time . An example of such a function is

(;) =  so  = 0 corresponds to no effect,   0 to beneficial effect, and   0 to harmful effect.

Analogously, for a time-fixed treatment, a (non-nested) structural CST model is a model for the ratio of the

counterfactual survival under treatment value  divided by the counterfactual survival under treatment level 0 conditional

on treatment  and covariates . The general form of the model is

Pr [
 = 0|]

Pr [=0
 = 0|] = exp[(;)]

Although CFT and CST models differ only in whether we specify a multiplicative model for Pr [
 = 1|] versus

for Pr [
 = 0|], the meaning of (;) differs because a multiplicative model for risk is not a multiplicative

model for survival, whenever the treatment effect is non-null. When we let the time index  be continuous rather than

discrete, a structural CST model is equivalent to a structural additive hazards model (Tchetgen Tchetgen et al., 2015)

as any model for Pr [
 = 0|] Pr

£
=0
 = 0|¤ induces a model for the difference in the time-specific hazards

of   and  =0, and vice-versa.

The use of structural CFT models requires that, for all values of the covariates , the conditional cumulative

probability of failure under all treatment values satisfies a particular type of rare failure assumption. In this “rare failure”

context, the structural CFT model has an advantage over AFT models: it admits unbiased estimating equations that

are differentiable in the model parameters and thus are easily solved. Page (2005) and Picciotto et al. (2012) provided

further details on structural CFT and CST models. For a time-varying treatment, this class of models can be viewed as

a special case of the multivariate structural nested mean model (Robins 1994). See Technical Point 14.1.

written as

 =0
 =  

 exp (1+ 2) for all individuals 

Following the same reasoning as in Chapter 14, consistency of counterfactu-

als implies the model  =0
 =  exp (1 + 2), in which the counterfac-

tual time  
 is replaced by the actual survival time 


 = . The parameters

1 and 2 can be estimated by a modified g-estimation procedure (to account

for administrative censoring) that we describe later in this section.

The above structural AFT is unrealistic because it is both deterministic

and rank-preserving. It is deterministic because it assumes that, for each in-

dividual, the counterfactual survival time under no treatment  =0 can be

computed without error as a function of the observed survival time  , treat-

ment , and covariates . It is rank-preserving because, under this model, if

individuals  would die before individual  had they both been untreated, i.e.,

 =0
   =0

 , then individual  would also die before individual  had they

both been treated, i.e.,  =1
   =1

 .

Because of the implausibility of rank preservation, one should not generally
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use methods for causal inference that rely on it, as we discussed in Chapter 14.

And yet again we will use a rank-preserving model here to describe g-estimation

for structural AFT models because g-estimation is easier to understand for

rank-preserving models, and because the g-estimation procedure is actually

the same for rank-preserving and non-rank-preserving models.Robins (1997b) described non-

deterministic non-rank-preserving

structural nested AFT models.
For simplicity, consider the simpler rank-preserving model  =0

 =  exp ()

without a product term between treatment and covariates. G-estimation of the

parameter  of this structural AFT model would be straightforward if admin-

istrative censoring did not exist, that is, if we could observe the time of death

 for all individuals. In fact, in that case the g-estimation procedure would be

the same as we described in Section 14.5. The first step would be to compute

candidate counterfactuals (
†) =  exp

¡
†

¢
under many possible values

† of the causal parameter . The second step would be to find the value †

that results in a (
†) that is independent of treatment  in a logistic model

for the probability of  = 1 with (
†) and the confounders  as covariates.

Such value † would be the g-estimate of .
However, this procedure cannot be implemented in the presence of admin-

istrative censoring at time  because (
†) cannot be computed for individ-

uals with unknown . One might then be tempted to restrict the g-estimation

procedure to individuals with an observed survival time only, i.e., those with

 ≤ . Unfortunately, that approach results in selection bias. To see why,

consider the following oversimplified scenario.

We conduct a 60-month randomized experiment to estimate the effect of

a dichotomous treatment  on survival time  . Only 3 types of individuals

participate in our study. Type 1 individuals are those who, in the absence of

treatment, would die at 36 months ( =0 = 36). Type 2 individuals are those

who in the absence of treatment, would die at 72 months ( =0 = 72). Type 3

individuals are those who in the absence of treatment, would die at 108 months

( =0 = 108). That is, type 3 individuals have the best prognosis and type

1 individuals have the worst one. Because of randomization, we expect that

Type

1 2 3

 =0 36 72 108

 =1 24 48 72

Table 17.1

the proportions of type 1, type 2, and type 3 individuals are the same in each

of the two treatment groups  = 1 and  = 0. That is, the treated and the

untreated are expected to be exchangeable.

Suppose that treatment  = 1 decreases the survival time compared with

 = 0. Table 17.1 shows the survival time under treatment and under no treat-

ment for each type of individual. Because the administrative end of follow-up is

 = 60 months, the death of type 1 individuals will be observed whether they

are randomly assigned to  = 1 or  = 0 (both survival times are less than 60),

and the death of type 3 individuals will be administratively censored whether

they are randomly assigned to  = 1 or  = 0 (both survival times are greater

than 60). The death of type 2 individuals, however, will only be observed if

they are assigned to  = 1. Hence an analysis that welcomes all individuals

with non-administratively censored death times will have an imbalance of in-

dividual types between the treated and the untreated. Exchangeability will be

broken because the  = 1 group will include type 1 and type 2 individuals,

whereas the  = 0 group will include type 1 individuals only. Individuals in the

 = 0 group will have, on average, a worse prognosis than those in the  = 1

group, which will make treatment look worse than it really is. This selection

bias (Chapter 8) arises when treatment has a non-null effect on survival time.

To avoid this selection bias, one needs to select individuals whose survival

time would have been observed by the end of follow-up whether they had

been treated or untreated, i.e., those with  =0
 ≤  and  =1

 ≤ . In our

example, we will have to exclude all type 2 individuals from the analysis in order
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Technical Point 17.3

Artificial censoring. Let () be the minimum survival time under no treatment that could possibly correspond

to an individual who actually died at time  (the administrative end of follow-up). For a dichotomous treatment

, () = inf { exp ()}, which implies that () =  exp ( × 0) =  if treatment contracts the survival

time (i.e.,   0), () =  exp ( × 1) =  exp () if treatment expands the survival time (i.e.,   0), and

() =  exp (0) =  if treatment does not affect survival time (i.e.,  = 0).

All individuals who are administratively censored (i.e.,   ) have ∆() = 0 because there is at least one

treatment level (the one they actually received) under which their survival time is greater than , i.e., () ≥ ().

Some of the individuals who are not administratively censored (i.e.,  ≤ ) also have ∆() = 0 and are excluded from

the analysis–they are artificially censored–to avoid selection bias.

The artificial censoring indicator ∆() is a function of () and . Under conditional exchangeability given , all

such functions, when evaluated at the true value of , are conditionally independent of treatment  given the covariates

. That is, g-estimation of the AFT model parameters can be performed based on ∆() rather than (). Technically,

∆() is substituted for () in the estimating equation of Technical Point 14.2. For practical estimation details, see

the Appendix of Hernán et al (2005).

to preserve exchangeability. That is, we will not only exclude administratively

censored individuals with   , but also some uncensored individuals withThis exclusion of uncensored indi-

viduals from the analysis is often

referred to as artificial censoring.

known survival time  ≤  because their survival time would have been

greater than  if they had received a treatment level different from the one

they actually received.

We then define an indicator ∆(), which takes value 0 when an individual

is excluded and 1 when she is not. The g-estimation procedure is then modified

by replacing the variable (†) by the indicator ∆(†). See Technical Point
17.3 for details. In our example, the g-estimate ̂ from the rank-preserving

structural AFT model  =0
 =  exp () was −0047 (95% confidence inter-Code: Program 17.5

The point estimate of  is the value

that corresponds to the minimum of

the estimating function described in

Technical Point 17.3.; the limits of

the 95% confidence interval are the

values that correspond to the value

384 (2 with one degree of free-

dom) of the estimating function.

val: −0223 to 0333). The number exp
³
−̂
´
= 105 can be interpreted as the

median survival time that would have been observed if all individuals in the

study had received  = 1 divided by the median survival time that would have

been observed if all individuals in the study had received  = 0. This survival

time ratio suggests little effect of smoking cessation  on the time to death.

As we said in Chapter 14, structural nested models, including AFT models,

have rarely been used in practice. A practical obstacle for the implementation

of the method is the lack of user-friendly software. An even more serious

obstacle in the survival analysis setting is that the parameters of structural

AFT models need to be estimated through search algorithms that are not

guaranteed to find a unique solution. This problem is exacerbated for models

with two or more parameters . As a result, the few published applications

of this method tend to use simplistic AFT models that do not allow for the

treatment effect to vary across covariate values.

This state of affairs is unfortunate because subject-matter knowledge (e.g.,

biological mechanisms) are easier to translate into parameters of structural

AFT models than into those of structural hazards models. This is especially

true when using non-deterministic and non-rank preserving structural AFT

models.



Chapter 18
VARIABLE SELECTION FOR CAUSAL INFERENCE

In the previous chapters, we have described several adjustment methods to estimate the causal effect of a treatment

 on an outcome  , including stratification and outcome regression, standardization and the parametric g-formula,

IP weighting, and g-estimation. Each of these methods carry out the adjustment in different ways but all these

methods rely on the same condition: the set of adjustment variables  must include sufficient information to

achieve conditional exchangeability between the treated  = 1 and the untreated  = 0–or, equivalently, to block

all backdoor paths between  and  without opening other biasing paths.

In practice, a common question is how to select the variables  for adjustment. This chapter offers some

guidelines for variable selection when the goal of the data analysis is causal inference. Because the variable

selection criteria for causal inference are not the same as for prediction, widespread procedures for variable selection

in predictive analyses may not be directly transferable to causal analyses. This chapter summarizes the problems

of incorrect variable selection in causal analyses and outlines some practical guidance.

18.1 The different goals of variable selection

As we have discussed throughout this book, valid causal inferences usually

require adjustment for confounding and other biases. When an association

measure between a treatment  and an outcome  may be partly or fully

explained by confounders , adjustment for these confounders needs to be

incorporated into the data analysis. Otherwise, the association measure cannot

be interpreted as a causal effect measure.Even if the outcome model includes

all confounders for the effect of

 on  are included in a model,

the association between each con-

founder and the outcome cannot be

causally interpreted because we do

not adjust for the confounders of

the confounders.

But if the goal of the data analysis is purely predictive, no adjustment for

confounding is necessary. If we just want to quantify the association between

smoking cessation  and weight gain  , we simply estimate that association

from the data by comparing the average weight gain between those who did and

did not quit smoking. More generally, if we want to develop a predictive model

for weight gain, we will want to include covariates (like smoking cessation,

baseline weight, and annual income) that predict weight gain. We do not

ask the question of whether those covariates are confounders because there is

no treatment variable whose effect can be confounded. In predictive models,

we do not try to endow any parameter estimates with a causal interpretation

and therefore we do not try to adjust for confounding because the concept ofReminder: Confounding is a causal

concept that does not apply when

the estimand is an association

rather than a causal effect.

confounding does not even apply.

The distinction between predictive/associational models and causal mod-

els was discussed in Section 15.5. For example, clinical investigators can use

outcome regression to identify patients at high risk of developing heart fail-

ure. The goal is classification, which is a form of prediction. The parameters

of these predictive models do not necessarily have any causal interpretation

and all covariates in the model have the same status, i.e., there are no treat-

ment variable  and variables . For example, a prior hospitalization may

be identified as a useful predictor of future heart failure, but nobody would

suggest stop hospitalizing people in order to prevent heart failures. Identifying

patients with bad prognosis (prediction) is very different from identifying the
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Fine Point 18.1

Variable selection procedures for regression models. Suppose we want to fit a regression model with predictive

purposes but the database includes so many potential predictors–perhaps even more than individuals–that including

all of them in the model is either impossible or results in very unstable predictions. Several approaches exist to deal with

this problem in regression models. A detailed description of these procedures can be found in many books. See, for

example, the books by Hastie, Tibshirani, and Friedman (2009), and by Harrell (2015). Below we briefly outline some

of the existing approaches.

One approach is to select a subset of the available variables. A conceptually simple way to find the best subset

would be to first decide the number of variables in the model, then fit all possible combinations of models with that

number of variables, and finally choose the best one according to some pre-specified criterion (e.g., Akaike’s Information

criterion). However, this approach becomes computationally infeasible for a large number of available variables. More

efficient methods to select variables are forward selection (start with no variables and, in each step of the algorithm,

add the variable that leads to the greatest improvement), backward elimination (start with all variables and, in each

step, delete the variable that leads to the greatest improvement), and stepwise selection (a combination of forward

selection and backward elimination). The variable selection algorithm ends when no further improvement is possible,

with improvement again defined according to some pre-specified criterion. These algorithms are easy to implement but,

on the other hand, they do not explore all possible subsets of variables.

An alternative to subset selection is shrinkage. The idea is to modify the estimation method by adding a “penalty”

that forces the model parameter estimates (other than the intercept) to be closer to zero than they would have been in

the absence of the penalty. That is, the parameter estimates are shrunk towards zero. As a result of this shrinkage, the

variance decreases and the prediction becomes more stable. The two best known shrinkage methods are ridge regression

and the lasso or “least absolute shrinkage and selection operator”, which was proposed by Santosa and Symes (1986)

and rediscovered by Tibshirani (1996). Unlike ridge regression, the lasso allows some parameter values to be exactly

zero. Therefore, the lasso is both a shrinkage method and a subset selection method. The lasso has become the preferred

variable selection method for regression models, as it generally outperforms stepwise selection in terms of prediction

accuracy.

best course of action to prevent or treat a disease (causal inference).

For pure prediction, investigators may want to select any variables that

improve predictive ability. The selection of these variables can be automated

to obtain the best possible prediction using data from the population of inter-

est. Some automatic variable selection algorithms, like the lasso, are designed

for predictive regression models (see Fine Point 18.1) whereas others are im-

plemented as part of non-regression algorithms (e.g., neural networks). All

of them can use cross-validation (see Fine Point 18.2) to optimize predictive

accuracy. Because some selection algorithms are “black-box” procedures, it isIn a randomized experiment, the es-

timated () adjusts for both sys-

tematic and random imbalances in

covariates, and thus does better

than adjustment for the true ()

which ignores random imbalances.

not always easy to explain how the variables are selected or why the algorithm

works. However, that does not necessarily matter. A reasonable point of view

is that, for purely predictive purposes, whatever works to improve prediction

is fair game, regarding of interpretability.

In contrast, in a causal analysis, a thoughtful selection of confounders is

needed before endowing the treatment parameter estimates with a causal inter-

pretation. Automatic variable selection procedures may work for prediction,

but not generally for causal inference. Variable selection algorithms may select

variables that introduce bias in the effect estimate. There are several reasons

why this bias may arise. Some of these reasons have been described earlier in

the book; others have not been described yet. The next section summarizes

all of them.
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Fine Point 18.2

Overfitting and cross-validation. Overfitting is a common problem of all variable selection methods for regression

models: The variables are selected to predict the data points as well as possible, without taking in consideration that

some of the variation observed in the data is purely random. As a result, the model predicts very well for the individuals

used to estimate the model parameters, but the model predicts poorly for future individuals who were not used to estimate

the model parameters. The same problem arises in predictive algorithms such as random forests, neural networks, and

other machine learning algorithms.

A straightforward solution to the overfitting problem is to split the sample in two parts: a training sample used to

run the predictive algorithm (that is, to estimate the model parameters when using regression) and a validation sample

used to evaluate the accuracy of the algorithm’s predictions. For a sample size , we use  individuals for the validation

set and −  individuals for the training set. When using the lasso, the degree of shrinkage in the training sample may

be guided by the model’s performance in the validation sample.

The obvious downside of splitting the sample into training and validation subsamples is that the predictive algorithm

only uses–e.g., the model parameters are estimated in–a subset of individuals, which increases the variance. A solution

is to repeat the splitting process multiple times, which increases the effective number of individuals used by he predictive

algorithm. Then one can evaluate the algorithm’s predictive accuracy as the average over all the validation samples.

This procedure is known as cross-validation or out-of-sample testing. Different forms of cross-validation exist.

A procedure referred to as “leave--out cross-validation” analyzes all possible partitions of the sample into training

sample and validation sample of size . However, examining all such partitions may become computationally infeasible

for moderately large values of  and . Therefore, in practice, it is common to choose  = 1, a procedure referred

to as “leave-one-out cross-validation.” When even leave-one-out cross-validation is too computationally intensive, one

may consider a cross-validation procedure that does not exhaust all possible partitions. For example, in “-fold cross

validation,” the sample is split into  subsamples of equal size. Then one of the subsamples is used as the validation

sample and the other  − 1 subsamples as the training sample. The procedure is repeated  times, with  = 10 being
a common choice. See the book by Hastie, Tibshirani, and Friedman (2009) for a description of cross-validation and

related techniques.

18.2 Variables that induce or amplify bias

Imagine that we have unlimited computational power and a dataset with a

quasi-infinite number of individuals (the rows of the dataset) and many vari-

A YL

U

Figure 18.1

ables measured for each individual (the columns of the data set), including

treatment , outcome  , and a large number of variables , some of which

may be confounders of the effect of  on  . In this setting, we can afford to

adjust for as many variables in the dataset as we wish, without computational,

numerical, or statistical constraints.

Say that we want to unbiasedly estimate the average causal effect of a bi-

nary treatment  on the outcome  , that is, E
£
 =1

¤− E £ =0
¤
. Then the

goal of covariate adjustment is to eliminate as much confounding as possible

by using the information contained in the measured variables . We could

easily adjust for all measured variables  via stratification/outcome regres-Collapsibility reminder: When ad-

justing for covariates using strati-

fication, remind that the the ad-

justed association measure may dif-

fer from the unadjusted association

measure, even when no confound-

ing exists. See Fine Point 4.3.

sion, standardization/g-formula, IP weighting, or g-estimation. Are there any

reasons to adjust for only a subset of  rather than simply adjust for all avail-

able variables ? The answer is yes. Even in this ideal setting, we want to

ensure that some variables are not selected for adjustment because adjustment

for those variables would induce bias. The next examples illustrate this point

when some of the variables  in  are causally affected by .

Suppose the causal structure of the problem is represented by the causal

diagram of Figure 18.1 (same as Figure 7.7) in which the variable  is a collider.
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Here the average causal effect E[ =1]− E[ =0] = 0 is unbiasedly estimated

by E [ | = 1]−E [ | = 0] since there is no confounding by . Suppose now
we try to estimate the average causal effect by adjusting for , e.g., via the

g-formula
P

 E [ | = 1  = ] Pr ( = ) −P E [ | = 0  = ] Pr ( = ).

This contrast differs from E [ | = 1] − E [ | = 0]–and thus is biased–
because  is both is conditionally associated with  given  and marginally

associated with , so Pr ( = ) 6= Pr ( = |). Because the - association

adjusted for  is expected to be non-null even though the causal effect of

treatment  on the outcome  is null, we say that there is selection bias under

Figure 18.2

the null. The same bias is expected to arise when we adjust for a variable 

that, as in the causal diagram of Figure 18.2, is a descendant of the collider

. You may want to review Chapter 8 for more examples of causal structures

with colliders and their descendants.

Selection bias may also appear when adjusting for a noncollider affected

Figure 18.3

by treatment, like the variable  in the causal diagram in Figure 18.3. Here

the average causal effect E[ =1] − E[ =0] 6= 0 is also unbiasedly estimated
by E [ | = 1]− E [ | = 0] since there is no confounding by . However, if

we try to estimate the average causal effect by adjusting for , the g-formula

contrast will differ from E [ | = 1] − E [ | = 0] for the same reasons as
in the previous paragraph. Now suppose that the arrow from  to  had

been absent, that is, that the null hypothesis of no effect of  on  were true

and so E[ =1] − E[ =0] = 0. Then  and  would be independent (both

marginally and conditionally on ) and the g-formula contrast would be zero

and thus unbiased. The key reason for this result is that, under the null, 

no longer has a causal effect of . That is, unlike in Figures 18.1 and 18.2,

adjusting for  in Figure 18.3 results in selection bias only when  has a non-

null causal effect on  . We then say that there is selection bias under the

alternative or off the null (see Section 6.5).

When the adjustment variable is affected by the treatment  and affects

Figure 18.4 the outcome  , we say that the variable is a mediator. Consider the causal

diagram in Figure 18.4, which includes the mediator  on a causal path from

the treatment  to the outcome  . The - association adjusted for the

mediator , or its descendants, will differ from the effect of treatment  on

the outcome  because the adjustment blocks the component of the effect that

goes through . Sometimes this problem is referred to as overadjustment forIn Figure 18.4, adjusting for 

blocks the path  →  →  but

not the path  →  . Thus the

- association adjusted for  is a

biased estimator of the total effect

of  on  but an unbiased esti-

mator of the direct effect of  on

 that is not mediated through 

(Schisterman et al. 2009).

mediators when the average causal effect of  on  is the contrast of interest.

The bias-inducing variables discussed above share a common feature: they

are affected by treatment and therefore they are post-treatment variables. One

might then think that we should always avoid adjustment for variables that

occur after treatment . The rule of not adjusting for post-treatment variables

would be easy to follow because the temporal sequence of the adjustment vari-

ables and the treatment is usually known. Unfortunately, following this simple

rule may result in the exclusion of useful adjustment variables, as we discussed

in Fine Point 7.4. Consider the causal diagram in Figure 18.5. The variable

 is a post-treatment variable, but it can be used to block the backdoor path

Figure 18.5

between treatment  and outcome  . Therefore, the - association adjusted

for  is an unbiased estimator of the effect of  on  , whereas the unadjusted

- association is a biased estimator. The take home message is that causal

graphs do not care about temporal order. Thus, when  does not affect , the

analysis must be the same whether  is temporally before or temporally after

.

The problem is that, even when we know the temporal order of the vari-

ables, we cannot determine from the data whether or not  affects . In fact,

Mahyar Etminan
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given the temporal ordering    , any joint distribution of (  ) without

any independencies is compatible with several causal graphs. So the decision

whether to adjust for  must be based on information outside of the data.

That is, whether to adjust for  cannot be determined via any automated

procedures that rely exclusively on statistical associations. For example, as

discussed in Chapter 7, there is no way to distinguish a collider from a con-

founder by using data only. Rather, the exclusion of bias-inducing variables

from the adjustment set needs to be guided by subject-matter knowledge (if it

exists) about the causal structure of the problem.

We next turn to the question of adjustment for variables  that are tem-

porally prior to treatment , that is, our temporal ordering is now    .

Suppose, for simplicity, that the sample size is very large, greatly exceeding

the number of covariates  available for adjustment. As a consequence, the

variance of any estimator will be negligible and the only issue is bias. In this

setting it is commonly believed that an estimator that adjusts for all available

pretreatment covariates will minimize the bias. However, this belief is wrong

for two separate reasons.

Consider the causal diagram of Figure 18.6 (same as Figure 7.4), which

includes a pre-treatment variable . Because  is a collider on a path from

 to  , adjusting for it will introduce selection bias, which we referred to as

M-bias in Chapter 7. Again, the observed data cannot distinguish between

L YA

U2

U1

Figure 18.6 confounders and colliders, so one must rely on whatever external information

one may have to decide whether or not to adjust for a pre-treatment variable .

In fact, it is also possible that  is both a confounder and a collider–if there

were and arrow from  to  in Figure 18.6–which implies that the average

causal effect cannot be identified, regardless of whether we do or do not adjust

for .

There is one additional reason to avoid indiscriminate adjustment for pre-

treatment variables: bias amplification, a phenomenon we have not yet de-

scribed in this book. Consider the causal diagram of Figure 18.7 (same as

Figure 16.1), which represents a setting in which the causal effect of treatment

 on the outcome  is confounded by the unmeasured variable  . Because

 is not available in the data, we cannot adjust for  and the confounding

is intractable. Adjustment for the variable –using the g-formula as above

with  replaced by –does not eliminate confounding because  is not on

Z YA

U

Figure 18.7 any backdoor path from the treatment  to the outcome  . In fact,  is an

instrument–which can be used for instrumental variable estimation in some

situations described in Chapter 16–and therefore useless for direct confound-

ing adjustment by the g-formula.

Interestingly, even though  cannot be used to adjust away the confounding

bias due to  , adjustment for the instrument  can amplify the confounding

bias due to  . That is, the - association adjusted for  may be further from

the effect on  on  than the - association not adjusted for . This biasBias amplification is guaranteed if

all the equations in the structural

equation model corrresponding to

the causal diagram are linear (Pearl

2011), but may also occur in more

realistic settings (Ding et al. 2017).

amplification due to adjusting for an instrument , often referred to as Z-bias,

is a reason to avoid adjustment for variables that, like , are instruments. Bias

amplification, however, is not guaranteed: adjustment for  could also reduce

the bias due to confounding by the unmeasured variable  . Generally, it is not

possible to know whether adjustment for an instrument will amplify or reduce

bias.

In summary, even if we had no computational constraints and a quasi-

infinite sample size, it is not advisable to adjust for all available variables .An example of the application of ex-

pert knowledge to adjustment was

described by Hernán et al (2002).

Ideally, the adjustment set would not include any variables that may introduce

or amplify bias. Because these bias-inducing variables cannot be empirically
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identified by purely statistical algorithms, expert knowledge is needed to guide

variable selection.

18.3 Causal inference and machine learning

For the remainder of this chapter, we will assume that we have somehow suc-

ceeded at ensuring that  includes no variables that may induce or amplifyThe next three sections reflect

Miguel Hernán’s informal interpre-

tation (as of April 2019) of a set

of theoretical lectures that James

Robins delivered in Boston, Berlin,

Rotterdam, and elsewhere beween

2018 and early 2019.

bias (i.e., no variables that would destroy conditional exchangeability if ad-

justed for) while still including all confounders  of the average causal effect of

 on  (i.e., all variables needed to achieve conditional exchangeability). Our

next problem is to estimate this effect E
£
 =1

¤ − E £ =0
¤
in practice when

 is very high-dimensional.

Depending on the adjustment method that we choose, the variables  will

be used in different ways. When using the plug-in g-formula (standardization),

we will estimate the mean outcome  conditional on the variables , which

we refer to as (); when using IP weighting, we will estimate the probability

of treatment  conditional on the variables , which we refer to as (). We

can produce estimates ̂() and ̂() via the sort of parametric models (e.g.,

linear and logistic regression) that we have described in Part II of this book. To

reduce the possibility of model misspecification, we will want to fit richly pa-

rameterized models with multiple product terms and flexible functional forms

(e.g., cubic splines) for the variables in .

The use of traditional parametric models encounters a serious constraint

in many practical applications. The number of parameters in those models

will be very large compared with, or larger than, the sample size . However,

traditional parametric models can only have a small number of parameters

compared with the sample size. Therefore, fitting richly parametrized mod-Remember that some of the vari-

ables in  may not even be con-

founders so we do not need to ad-

just for them.

els with terms for all variables in  will yield very imprecise ̂() and ̂()

estimates, or may actually be impossible under the usual large sample approx-

imations used to fit linear or logistic models when the number of parameters in

the model is greater than the number of individuals  in the dataset. Also, as

discussed in Section 15.5,  may include non-confounders that are strongly as-

sociated with the treatment , which will result in quasi-violations of positivity

when using methods that require fitting a model for ().

Possible ways forward are to fit the parametric models using the lasso (see

Fine Point 18.1), a variable selection algorithm originally designed for predic-

tive regression models, or to estimate the conditional expectations () and

() using predictive machine learning algorithms such as tree-based algo-

rithms (e.g., random forests) or neural networks (e.g., deep learning). In very

high-dimensional databases, these and other machine learning algorithms canMachine learning algorithms can

use cross-validation (see Fine Point

18.2) to optimize predictive accu-

racy.

effectively incorporate thousands of parameters and thus outperform tradi-

tional parametric models for the accurate prediction of conditional expecta-

tions. But the use of predictive machine learning algorithms to estimate ()

and () raises two serious concerns.

First, machine learning algorithms do not guarantee that the selected vari-

ables will eliminate confounding when using methods that require estimates

of either the conditional mean outcome () (like the plug-in g-formula) orMultiple authors have studied the

problems of ad hoc or automatic

variable selection for causal infer-

ence. See Greenland (2008) for a

list of citations.

the probability of treatment () (like IP weighting). An improved approach

is to use a doubly robust estimator that appropriately combines estimates of

both () and (). Doubly robust estimators may succeed because their

bias, unlike that of non-doubly robust estimators, depends on the product of
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the error 1
()
− 1

̂()
in the estimation of 1

()
with the error ()− ̂() in the

estimation of (). Therefore, doubly robust estimators may have small biasThis property of doubly robust esti-

mators is referred to as a second-

order bias. See Technical Point

13.2 for details.

when they are based on accurate estimates ̂() and ̂() obtained via machine

learning estimators.

Second, machine learning algorithms are statistical black boxes with largely

unknown statistical properties. That is, even if a doubly robust estimator is

unbiased, the variance of the resulting estimate may be wrong. As a result,

the calculated confidence intervals will lose their frequentist interpretation.The degree of undercoverage will

be greater when there is some de-

gree of confounding in the super-

population since, in that case, Wald

confidence intervals will not be cen-

tered on an unbiased estimator of

the causal effect (see Chapter 10).

Specifically, it is expected that 95% confidence intervals obtained via predictive

machine learning will be too narrow and thus invalid: they fail to trap the

causal parameter of interest at least 95% of the time.

Thus, the use of doubly robust estimators is key to combining causal infer-

ence with machine learning, but it is not sufficient. The next section describes

two modifications to doubly robust estimation that tackle this second problem:

sample splitting and cross-fitting.

18.4 Doubly robust machine learning estimators

Let us suppose that the use of predictive machine learning algorithms results

in a small bias for a doubly robust estimator. Small bias means that the bias of

the estimate is much smaller than its standard error. More precisely, the bias

has to be less than 1
√
. A small bias is easier to achieve with doubly robust

estimators than with non-doubly estimators because, again, the bias of doubly

robust estimators is the product of the errors 1
()
− 1

̂()
and () − ̂().

That is, even if each of the conditional expectations are estimated with an

error larger than 1
√
, the bias of the doubly robust estimator may still be

sufficiently small for the construction of valid confidence intervals.

Then, in large samples (i.e., asymptotically) and under some weak condi-

tions, we can define a consistent doubly robust estimator that will follow a

normal distribution with mean at the true value of the causal parameter. That

is, we will be able to construct valid confidence intervals for the doubly robust

estimator with small bias. For this to be true, the doubly robust estimator

needs to incorporate two procedures, sample splitting and cross-fitting, which

we describe below.

We first describe sample splitting. First, we randomly divide the study pop-

ulation of  individuals into two halves: an estimation sample and a training

sample, each with 2 individuals. Second, we apply the predictive algorithmsWe may refer to the training sample

as the nuisance sample because we

use it to estimate the nuisance re-

gressions for () and (). Fine

Point 15.1 reviews the concept of

nuisance parameters.

to the training sample in order to obtain estimators of ̂() and ̂() for the

conditional expectations of outcome and treatment, respectively. Third, we

compute the doubly robust estimator of the average causal effect in the esti-

mation sample using the estimators of ̂() and ̂() from the training sample.

We have now obtained a doubly robust machine learning estimate of the aver-

age causal effect in a random half of the study population.

Sample splitting allows us to use standard statistical inference procedures

based on the 2 individuals in the estimation sample. Being able to construct

a valid confidence interval is a good thing but, unfortunately, we lose half of the

sample size in the process. As a result, our confidence interval will be wider

than the one we would have obtained if we had been able to use the entire

sample of  individuals. A way to overcome this problem is cross-fitting.

We now describe how cross-fitting recovers the statistical efficiency lost by
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sample splitting. First, we repeat the above procedure but swapping the rolesSample splitting and cross-fitting

are not new procedures. However,

the idea of combining these proce-

dures with machine learning has not

been emphasized until recently.

of the estimation and training halves of the study population. That is, we

use the half formerly reserved for estimation as the new training sample, and

the half formerly used for training as the new estimation sample. We then

compute the doubly robust estimator of the average causal effect in the new

estimation sample using the estimators of ̂() and ̂() from the new training

sample. We have now obtained a doubly robust machine learning estimate of

the average causal effect in the other random half of the population.

The next step is to compute the average of the two doubly robust estimates

from each half of the population. This average will be our doubly robust

estimate of the effect in the entire study population. A 95% confidence interval

around this estimate can be constructed by bootstrapping, either by adding

and subtracting 196 times the bootstrap standard error or by using the 25

and 975 percentiles of the bootstrap estimates as the bounds of the interval.

We are done. Through sample splitting and cross-fitting, we can combine

doubly robust estimation and machine learning to obtain causal effect estimates

which have known statistical properties and which use all the available data.

An active area of research is the development of procedures to detect whether

the bias of doubly robust estimators is too large and, if so, to obtain estimates

with smaller bias in the estimation sample without having to redo the machine

learning component in the training sample.

18.5 Variable selection is a difficult problem

The methods outlined in the previous section invalidate the widespread belief

that any data-based procedure to select adjustment variables will inevitably

result in incorrect confidence intervals. As we have seen, the combination

of causal inference methods with machine learning algorithms for confounder

selection can, under certain conditions, result in correct statistical inference.

However, doubly robust machine learning does not solve all our problems for

at least four reasons.

First, in many applications, the available subject-matter knowledge may be

insufficient to identify all important confounders or to rule out variables that

induce or amplify bias. Thus there is no guarantee that doubly robust machine

learning estimators will have a small bias.

Second, many machine learning algorithms are available but no algorithm

is optimal in all settings. No mathematical theorem can show that one algo-

rithm is generally better than another. The choice of algorithm should depend

on the causal structure that gave rise to the data, but such causal structure

may be unknown or hard to summarize for the development of practical rec-

ommendations.

Third, the implementation of doubly robust estimators is difficult–and

computationally expensive when combined with machine learning–in high-

dimensional settings with time-varying treatments. This is especially true for

causal survival analysis. As a result, most published examples of causal infer-

ence from complex longitudinal data use single robust estimators, which are

the ones emphasized in Part III of this book.

Fourth, doubly robust machine learning can yield a variance of the causal

effect that equals the variance that would have been obtained if the true con-

ditional expectations () and () were known. However, there is not guar-

antee that such variance will be small enough for meaningful causal inference.



18.5 Variable selection is a difficult problem 231

Suppose that we obtain a doubly robust machine learning estimate of the

causal effect, as described in the previous section, only to find out that its

(correct) variance is too big to be useful. This will happen, even when have

done everything correctly, if some of the covariates in  are strongly associated

with the treatment . Then the estimate of the probability of treatment ()

may be near 0 or near 1 for individuals with a particular value of . As a

result, the effect estimate will have a very large variance and thus a very wide

(but correct) 95% confidence interval. Since we do not like very wide 95%

confidence intervals, even if they are correct, we may be tempted to throw out

the variables in  that are causing the “problem” and then repeat the data

analysis. If we did that, we would be fundamentally changing the game. UsingThis result raises a puzzling philo-

sophical question: If the confidence

interval is invalid when we use the

data to rule out, say, 5 variables

that make the variance too large,

then why should the confidence in-

terval be valid if we had happened

to receive a dataset that did not in-

clude those 5 variables? Given that

we always work with datasets in

which some potential confounders

are not recorded, how should we in-

terpret confidence intervals in any

observational analysis?

the data to discard covariates in  that are associated with treatment, but

not so much with the outcome, makes it no longer possible to guarantee that

the 95% confidence interval around the effect estimate is valid. The tension

between including all potential confounders to eliminate bias and excluding

some variables to reduce the variance is hard to resolve.

Given all of the above, developing a clear set of general guidelines for vari-

able selection may not be possible. In fact, so much methodological research is

ongoing around these issues that this chapter cannot possibly be prescriptive.

The best scientific advice for causal inference may be to carry out multiple sen-

sitivity analyses: implement several analytic methods and inspect the resulting

effect estimates. If the various effect estimates are compatible, we will be more

confident in the results. If the various effect estimates are not compatible, our

job as researchers is to try to understand why.
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Part III

Causal inference from complex longitudinal data





Chapter 19
TIME-VARYING TREATMENTS

So far this book has dealt with fixed treatments which do not vary over time. However, many causal questions

involve treatments that vary over time. For example, we may be interested in estimating the causal effects of

medical treatments, lifestyle habits, employment status, marital status, occupational exposures, etc. Because

these treatments may take different values for a single individual over time, we refer to them as time-varying

treatments.

Restricting our attention to time-fixed treatments during Parts I and II of this book helped us introduce

basic concepts and methods. It is now time to consider more realistic causal questions that involve the contrast

of hypothetical interventions that are played out over time. Part III extends the material in Parts I and II to

time-varying treatments. This chapter describes some key terminology and concepts for causal inference with

time-varying treatments. Though we have done our best to simplify those concepts (if you don’t believe us, check

out the causal inference literature), this is still one of the most technical chapters in the book. Unfortunately,

further simplification would result in too much loss of rigor. But if you made it this far, you are qualified to

understand this chapter.

19.1 The causal effect of time-varying treatments

Consider a time-fixed treatment variable  (1: treated, 0: untreated) at time

zero of follow-up and an outcome variable  measured 60 months later. We

have previously defined the average causal effect of  on the outcome  as the

contrast between the mean counterfactual outcome  =1 under treatment and

the mean counterfactual outcome  =0 under no treatment, that is, E
£
 =1

¤−
E
£
 =0

¤
. Because treatment status is determined at a single time (time zero)

for everybody, the average causal effect does not need to make reference to

the time at which treatment occurs. In contrast, causal contrasts that involve

time-varying treatments need to incorporate time explicitly.

To see this, consider a time-varying dichotomous treatment  that may

change at every month  of follow-up, where  = 0 1 2 with  = 59.For simplicity, we will provisionally

assume that no individuals were lost

to follow-up or died during this pe-

riod, and we will also assume that

all variables were perfectly mea-

sured.

For example, in a 5-year follow-up study of individuals infected with the hu-

man immunodeficiency virus (HIV),  takes value 1 if the individual receives

antiretroviral therapy in month , and 0 otherwise. No individuals received

treatment before the start of the study at time 0, i.e., −1 = 0 for all individ-
uals.

We use an overbar to denote treatment history, that is, ̄ = (0 1 )

is the history of treatment from time 0 to time . When we refer to the en-

tire treatment history through , we often represent ̄ as ̄ without a timeFor compatibility with many pub-

lished papers, we use zero-based in-

dexing for time. That is, the first

time of possible treatment is  = 0

rather than  = 1.

subscript. In our HIV study, an individual who receives treatment continuously

throughout the follow-up has treatment history ̄ = (0 = 1 1 = 1 59 = 1) =

(1 1 1), or ̄ = 1̄. Analogously, an individual who never receives treatment

during the follow-up has treatment history ̄ = (0 0 0) = 0̄. Most individu-

als are treated during part of the follow-up only, and therefore have intermedi-

ate treatment histories with some 1s and some 0s–which we cannot represent

as compactly as 1̄ and 0̄.
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Suppose  measures health status–with higher values of  indicating

better health–at the end of follow-up at time  + 1 = 60. We wouldTo keep things simple, our exam-

ple considers an outcome measured

at a fixed time. However, the con-

cepts discussed in this chapter also

apply to time-varying outcomes and

failure time outcomes.

like to estimate the average causal effect of the time-varying treatment ̄ on

the outcome  . But we can no longer define the average causal effect of a

time-varying treatment as a contrast at a single time , because the contrast

E
£
 =1

¤−E £ =0
¤
quantifies the effect of treatment  at a single time ,

not the effect of the time-varying treatment  at all times  between 0 and

59.

Indeed we will have to define the average causal effect as a contrast between

the counterfactual mean outcomes under two treatment strategies that involveRemember: we use lower-case to

denote possible realizations of a

random variable, e.g.,  is a re-

alization of treatment .

treatment at all times between the start ( = 0) and the end ( = ) of

the follow-up. As a consequence, the average causal effect of a time-varying

treatment is not uniquely defined. In the next section, we describe many

possible definitions of average causal effect for a time-varying treatment.

19.2 Treatment strategies

A treatment strategy–also referred to as a plan, policy, protocol, or regime–

is a rule to assign treatment at each time  of follow-up. For example, twoA general counterfactual theory to

compare treatment strategies was

first articulated by Robins (1986,

1987, 1997a).

treatment strategies are “always treat” and “never treat” during the follow-

up. The strategy “always treat” is represented by ̄ = (1 1 1) = 1̄, and the

strategy “never treat” is represented by ̄ = (0 0 0) = 0̄. We can now define

an average causal effect of ̄ on the outcome  as the contrast between the

mean counterfactual outcome  ̄=1̄ under the strategy “always treat” and the

mean counterfactual outcome  ̄=0̄ under the strategy “never treat”, that is,

E
£
 ̄=1̄

¤− E £ ̄=0̄
¤
.

But there are many other possible causal effects for the time-varying treat-

ment ̄, each of them defined by a contrast of outcomes under two particular

treatment strategies. For example, we might be interested in the average causal

effect defined by the contrast E [ ̄]−E
h
 ̄0

i
that compares the strategy “treat

at every other month” ̄ = (1 0 1 0) with the strategy “treat at all months

except the first one” ̄0 = (0 1 1 1). The number of possible contrasts is

very large: we can define at least 2 treatment strategies because there are 2

possible combinations of values (0 1 ) for a dichotomous . In fact, as

we next explain, these 2 such strategies do not exhaust all possible treatment

strategies.

To define even more treatment strategies in our HIV example, consider the

time-varying covariate  which denotes CD4 cell count (in cells/L) measured

at month  in all individuals. The variable  takes value 1 when the CD4 cell

count is low, which indicates a bad prognosis, and 0 otherwise. At time zero,

all individuals have a high CD4 cell count, 0 = 0. We could then consider the

strategy “do no treat while  = 0, start treatment when  = 1 and treat

continuously after that time”. This treatment strategy is different from the

ones considered in the previous paragraph because we cannot represent it by

a rule ̄ = (0 1 ) under which all individuals get the same treatment

0 at time  = 0, 1 at time  = 1, etc. Now, at each time, some individuals

will be treated and others will be untreated, depending on the value of their

evolving . This is an example of a dynamic treatment strategy, a rule in

which the treatment  at time  depends on the evolution of an individual’s

time-varying covariate(s) ̄. Strategies ̄ for which treatment does not depend



19.3 Sequentially randomized experiments 237

Fine Point 19.1

Deterministic and random treatment strategies. A dynamic treatment strategy is a rule  =£
0 (̄−1 0)   

¡
̄−1 ̄

¢¤
, where 

¡
̄−1 ̄

¢
that specifies the treatment assigned at  to an individual with

past history
¡
̄−1 ̄

¢
. An example in our HIV study: 

¡
̄−1 ̄

¢
is 1 if an individual’s CD4 cell count (a function of ̄)

was low at or before ; otherwise 
¡
̄−1 ̄

¢
is 0. A static treatment strategy is a rule  = [0 (̄−1)    (̄−1)],

where  (̄−1) does not depend on ̄. We will often abbreviate 
¡
̄−1 ̄

¢
as 

¡
̄−1 ̄

¢
.

Most static and dynamic strategies we are interested in comparing are deterministic treatment strategies, which

assign a particular value of treatment (0 or 1) to each individual at each time. More generally, we could consider random

treatment strategies that do not assign a particular value of treatment, but rather a probability of receiving a treatment

value. Random treatment strategies can be static (e.g., “independently at each month, treat individuals with probability

03 and do not treat with probability 07”) or dynamic (e.g., “independently at each month, treat individuals whose

CD4 cell count is low with probability 03, but do not treat individuals with high CD4 cell count”).

We refer to the strategy  for which the mean counterfactual outcome E [ ] is maximized (when higher values

of outcome are better) as the optimal treatment strategy. For a drug treatment, the optimal strategy will almost

always be dynamic because treatment needs to be discontinued when toxicity develops. Also, no random strategy can

ever be preferred to the optimal deterministic strategy. However, random strategies (i.e., ordinary randomized trials and

sequentially randomized trials) remain scientifically necessary because, before the trial, it is unknown which deterministic

regime is optimal. See Young et al. (2014) for a taxonomy of treatment strategies. In the text, except if noted otherwise,

the letter  will refer only to deterministic treatment strategies.

on covariates are non-dynamic or static treatment strategies. See Fine Point

19.1 for a formal definition.

Causal inference with time-varying treatments involves the contrast of coun-

terfactual outcomes under two or more treatment strategies. The average

causal effect of a time-varying treatment is only well-defined if the treatment

strategies of interest are specified. In our HIV example, we can define an

average causal effect based on the difference E [ ̄] − E
h
 ̄0

i
that contrasts

strategy ̄ (say, “always treat”) versus strategy ̄0 (say, “never treat”), or on
the difference E [ ̄]−E [ ] that contrasts strategy ̄ (“always treat”) versus

strategy  (say, “treat only after CD4 cell count is low”). Note we will often use

 to represent any–static or dynamic–strategy. When we use it to represent

a static strategy, we sometimes write  =̄ rather than just   or  ̄.

That is, there is not a single definition of causal effect for time-varying

treatments. Even when only two treatment options–treat or do not treat–

exist at each time , we can still define as many causal effects as pairs of

treatment strategies exist. In the next section, we describe a study design

under which all these causal effects can be validly estimated: the sequentially

randomized experiment.

19.3 Sequentially randomized experiments

The causal diagrams in Figures 19.1, 19.2, and 19.3 summarize three situations

that can occur in studies with time-varying treatments. In all three diagrams,Recall that, by definition, a causal

graph must always include all com-

mon causes of any two variables on

the graph.

 represents the time-varying treatment,  the set of measured variables,

 the outcome, and  the set of unmeasured variables at  that are com-

mon causes of at least two other variables on the causal graph. Because the

covariates  are not measured, their values are unknown and therefore un-
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Technical Point 19.1

On the definition of dynamic strategies. Each dynamic strategy  =
£
0
¡
̄−1 ̄0

¢
  

¡
̄−1 ̄

¢¤
that depends

on past treatment and covariate history is associated with a dynamic strategy 0 =
£
00
¡
̄0
¢
  0

¡
̄
¢¤
that depends

only on past covariate history. By consistency (see Technical Point 19.2), an individual will have the same treatment,

covariate, and outcome history when following strategy  from time zero as when following strategy 0 from time

zero. In particular,   =  0 and ̄() = ̄
0
(). Specifically, 0 is defined in terms of  recursively by 00 (0) =

0 (̄−1 = 0 0) (by convention, ̄−1 can only take the value zero) and 0
¡
̄
¢
= 

£
0
¡
̄−1

¢
 ̄
¤
. For any strategy

 for which treatment at each  already does not depend on past treatment history,  and 0 are the identical set of
functions. The above definition of 0 in terms of  guarantees that an individual has followed strategy  through time 
in the observed data, i.e.,  = 

¡
̄−1 ̄

¢
for  ≤ , if and only if the individual has followed strategy 0 through

, i.e.,  = 0
¡
̄
¢
for  ≤ .

available for the analysis. In our HIV study, the time-varying covariate CD4

cell count  is a consequence of the true, but unmeasured, chronic damage to

the immune system . The greater an individual’s immune damage , the

Figure 19.1

lower her CD4 cell count  and her health status  . For simplicity, the causal

diagrams include only the first two times of follow-up  = 0 and  = 1, and we

will assume that all participants adhered to the assigned treatment (see Fine

Point 19.2).

The causal diagram in Figure 19.1 lacks arrows from either the measured

Figure 19.2

covariates ̄ or the unmeasured covariates ̄ into treatment . The causal

diagram in Figure 19.2 has arrows from the measured covariates ̄, but not

from the unmeasured covariates ̄, into treatment . The causal diagram

in Figure 19.3 has arrows from both the measured covariates ̄ and the un-

measured covariates ̄ into treatment .

Figure 19.3

Figure 19.1 could represent a randomized experiment in which treatment

 at each time  is randomly assigned with a probability that depends only on

prior treatment history. Our HIV study would be represented by Figure 19.1 if,

for example, an individual’s treatment value at each month  were randomly

assigned with probability 05 for individuals who did not receive treatment

during the previous month (−1 = 0), and with probability 1 for individuals
who did receive treatment during the previous month  (−1 = 1). When

interested in the contrast of static treatment strategies, Figure 19.1 is the

proper generalization of no confounding by measured or unmeasured variables

for time-varying treatments. Under this causal diagram, the counterfactual

outcome mean E [ ̄] if everybody had followed the static treatment strategy

̄ is simply the mean outcome E
£
 | = ̄

¤
among those who followed the

strategy ̄. (Interestingly, the same is not true for dynamic strategies. The

counterfactual mean E [ ] under a dynamic strategy  that depends on the

variables  is only the mean outcome among those who followed the strategy

 if the probability of receiving treatment  = 1 is exactly 05 at all times 

at which treatment  depends on . Otherwise, identifying E [
] requires

the application of g-methods to data on , , and  under either Figure 19.1

or Figure 19.2.)

Figure 19.2 could represent a randomized experiment in which treatment

at each time  is randomly assigned by the investigators with a probability that

depends on prior treatment and measured covariate history. Our study would

be represented by Figure 19.2 if, for example, an individual’s treatment value

at each month  were randomly assigned with probability 04 for untreated
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Fine Point 19.2

Per-protocol effects to compare treatment strategies. Many randomized trials assign individuals to a treatment

at baseline with the intention that they will keep taking it during the follow-up, unless the treatment becomes toxic or

otherwise contraindicated. That is, the protocol of the trial implicitly or explicitly aims at the comparison of dynamic

treatment strategies, and the per-protocol effect (introduced in Section 9.5) is the effect that would have been observed

if everybody had adhered to their assigned treatment strategy.

For example, the goal of a trial of statin therapy among healthy individuals may be the comparison of the dynamic

strategies “initiate statin therapy at baseline and keep taking it during the study unless rhabdomyolysis occurs” versus

“do not take statin therapy during the study unless LDL-cholesterol is high or coronary heart disease is diagnosed.”

Estimating the per-protocol effect in this randomized trial raises the same issues as any comparison of treatment

strategies in an observational study. Specifically, valid estimation of the per-protocol effect generally demands that trial

investigators collect post-randomization data on adherence to the strategy and on (time-varying) prognostic factors

associated with adherence (Hernán and Robins 2017). Baseline randomization makes us expect baseline exchangeability

for the assigned treatment strategy, not sequential exchangeability for the strategy that is actually received.

individuals with high CD4 cell count (−1 = 0,  = 1), 08 for untreated

individuals with low CD4 cell count (−1 = 0,  = 0), and 05 for previously
treated individuals, regardless of their CD4 cell count (−1 = 1). In Figure
19.2, there is confounding by measured, but not unmeasured, variables for the

time-varying treatment.

An experiment in which treatment is randomly assigned at each time  to

each individual is referred to as a sequentially randomized experiment. There-

fore Figures 19.1 and 19.2 could represent sequentially randomized experi-

ments. On the other hand, Figure 19.3 cannot represent a randomized experi-

ment: the value of treatment  at each time  depends partly on unmeasured

variables  which are causes of  and  , but unmeasured variables obviously

cannot be used by investigators to assign treatment. That is, a sequentially

randomized experiment can be represented by a causal diagram with many time

points  = 0 1 and with no direct arrows from the unmeasured prognostic

factors  into treatment  at any time .

In observational studies, decisions about treatment often depend on out-

come predictors such as prognostic factors. Therefore, observational studies

will be typically represented by either Figure 19.2 or Figure 19.3 rather than

Figure 19.1. For example, suppose our HIV follow-up study were an observa-

tional study (not an experiment) in which the lower the CD4 cell count , the

more likely a patient is to be treated. Then our study would be represented by

Figure 19.2 if, at each month , treatment decisions in the real world were made

based on the values of prior treatment and CD4 cell count history (̄−1, ̄),
but not on the values of any unmeasured variables ̄. Thus, an observational

study represented by Figure 19.2 would differ from a sequentially randomized

experiment only in that the assignment probabilities are unknown (but could

be estimated from the data). Unfortunately, it is impossible to show empiri-

cally whether an observational study is represented by the causal diagram in

either Figure 19.2 or Figure 19.3. Observational studies represented by Figure

19.3 have unmeasured confounding, as we describe later.

Sequentially randomized experiments are not frequently used in practice.

However, the concept of sequentially randomized experiment is helpful to un-

derstand some key conditions for valid estimation of causal effects of time-

varying treatments. The next section presents these conditions formally.
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19.4 Sequential exchangeability

As described in Parts I and II, valid causal inferences about time-fixed treat-

ments typically require conditional exchangeability  ⊥⊥|. When exchange-
ability  ⊥⊥| holds, we can obtain unbiased estimates of the causal effect of
treatment  on the outcome  if we appropriately adjust for the variables in 

via standardization, IP weighting, g-estimation, or other methods. We expect

conditional exchangeability to hold in conditionally randomized experiments–

a trial in which individuals are assigned treatment with a probability that de-

pends on the values of the covariates . Conditional exchangeability holds in

observational studies if the probability of receiving treatment depends on the

measured covariates  and, conditional on , does not further depend on any

unmeasured, common causes of treatment an outcome.

Similarly, causal inference with time-varying treatments requires adjusting

for the time-varying covariates ̄ to achieve conditional exchangeability at

each time point, that is, sequential conditional exchangeability. For example,

in a study with two time points, sequential conditional exchangeability is the

combination of conditional exchangeability at both the first time and the sec-

ond time of the study. That is,  ⊥⊥0|0 and  ⊥⊥1|0 = (0) 0 1.For those with ob-

served treatment history

[0 = (0) 1 = (0 0 1)]

equal to (i.e., compatible with) the

treatment they would have received

under strategy  through the end of

follow-up, the counterfactual out-

come   is equal to the observed

outcome  and therefore also to

the counterfactual outcome under

the strategy 0 = 0 1 = 1.

(For brevity, in this book we drop the word “conditional” and simply say se-

quential exchangeability.) We will refer this set of conditional independences

as sequential exchangeability for   under any–static or dynamic–strategy 

that involves interventions on both components of the time-varying treatment

(0 1).

A sequentially randomized experiment–an experiment in which treatment

 at each time  is randomly assigned with a probability that depends only

on the values of their prior covariate history ̄ and treatment history ̄−1–
implies sequential exchangeability for  . That is, for any strategy , the

treated and the untreated at each time  are exchangeable for   conditional

on prior covariate history ̄ and any observed treatment history ̄−1 =
(̄−2 ̄−1) compatible with strategy . Formally, sequential exchangeability
for   is defined as

 ⊥⊥|̄−1 = (̄−2 ̄−1) ̄ for all strategies  and  = 0 1

This form of sequential exchangeability (there are others, as we will see)In Figure 19.1, sequential uncondi-

tional exchangeability for  holds,

that is,

 ̄⊥⊥|̄−1 = ̄−1 for all sta-
tic strategies ̄. Unconditional ex-

changeability implies that associa-

tion is causation, i.e., E [ ̄] =

E
£
 |̄ = ̄

¤
.

always holds in any causal graph which, like Figure 19.2, has no arrows from

the unmeasured variables  into the treatment variables . Therefore sequen-

tial exchangeability for   holds in sequentially randomized experiments and

observational studies in which the probability of receiving treatment at each

time depends on their treatment and measured covariate history
¡
̄−1 ̄

¢
and, conditional on this history, does not depend on any unmeasured causes

of the outcome.

That is, in observational studies represented by Figure 19.2 the mean of

the counterfactual outcome E [ ] under all strategies  is identified, whereasWhenever we talk about identifica-

tion of causal effects, the identify-

ing formula will be the g-formula.

In rare cases not relevant to our dis-

cussion, effects can be identified by

formulas that are related to, but not

equal to, the g-formula (e.g., Tech-

nical Point 7.3).

in observational studies represented by Figure 19.3 no mean counterfactual

outcome E [ ] is identified. In observational studies represented by other

causal diagrams, the mean counterfactual outcome E [ ] under some but not

all strategies  is identified.

For example, consider an observational study represented by the causal

diagram in Figure 19.4, which includes an unmeasured variable 0. In our

HIV example, 0 could be an indicator for a scheduled clinic visit at time

0 that was not recorded in our database. In that case 0 would be a cause

shared by treatment 0 and obtaining a (somewhat noisy) measurement 1 of
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Technical Point 19.2

Positivity and consistency for time-varying treatments. The positivity condition needs to be generalized from the

fixed version “if  () 6= 0, | (|)  0 for all  and ” to the sequential version

If ̄−1̄
¡
̄−1 ̄

¢ 6= 0, then |̄−1̄ ¡|̄−1 ¢  0 for all ¡̄ ¢
In a sequentially randomized experiment, positivity will hold if the randomization probabilities at each time  are never

either 0 nor 1, no matter the past treatment and covariate history. If we are interested in a particular strategy , the

above positivity condition needs to only hold for treatment histories compatible with , i.e., for each ,  = 
¡
̄−1 

¢
.

The consistency condition also needs to be generalized from the fixed version “If  =  for a given individual, then

  =  for that individual” to the sequential version

 ̄ =  ̄∗ if ∗ = ;  ̄ =  if  = ̄; ̄̄ = ̄̄
∗
 if ∗−1 = −1, ̄̄ = ̄ if −1 = −1

where ̄̄ is the counterfactual -history through time  under strategy . Technically, the identification of effects of

time-varying treatments on  requires weaker consistency conditions: “If  =  for a given individual, then  ̄ = 

for that individual” is sufficient for static strategies, and “For any strategy , if  = 
¡
−1 

¢
at each time  for

a given individual, then   =  ” is sufficient for dynamic strategies. However, the stronger sequential consistency is a

natural condition that we will always accept.

Note that, if we expect that the interventions “treat in month ” corresponding to  = 1 and “do not treat in

month ” corresponding to  = 0 are sufficiently well defined at all times , then all static and dynamic strategies

involving  will be similarly well defined.

CD4 cell count, with 1 representing the underlying but unknown true value

Figure 19.4

of CD4 cell count. Even though 0 is unmeasured, the mean counterfactual

outcome is still identified under any static strategy  = ̄; however, the mean

counterfactual outcome E [ ] is not identified under any dynamic strategy 

with treatment assignment depending on 1. To illustrate why identification

is possible under some but not all strategies, we will use SWIGs in the next

section.

In addition to some form of sequential exchangeability, causal inference

involving time-varying treatments also requires a sequential version of the con-

ditions of positivity and consistency. In a sequentially randomized experiment,

both sequential positivity and consistency are expected to hold (see Technical

Point 19.2). Below we will assume that sequential positivity and consistency

hold. Under the three identifiability conditions, we can identify the mean coun-

terfactual outcome E [ ] under a strategy of interest  as long as we use meth-

ods that appropriately adjust for treatment and covariate history
¡
̄−1 ̄

¢
,

such as the g-formula (standardization), IP weighting, and g-estimation.

19.5 Identifiability under some but not all treatment strategies

In Chapter 7, we presented a graphical rule–the backdoor criterion–to assessPearl and Robins (1995) proposed

a generalized backdoor criterion for

static strategies. Robins (1997) ex-

tended the procedure to dynamic

strategies.

whether exchangeability holds for a time-fixed treatment under a particular

causal diagram. The backdoor criterion can be generalized for time-varying

treatments. For example, for static strategies, a sufficient condition for iden-

tification of the causal effect of treatment strategies is that, at each time ,

all backdoor paths into  that do not go through any future treatment are
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blocked.

However, the generalized backdoor criterion does not directly show the con-

nection between blocking backdoor paths and sequential exchangeability, be-

cause the procedure is based on causal directed acyclic graphs that do not

Figure 19.5

include counterfactual outcomes. An alternative graphical check for identifia-

bility of causal effects is based on SWIGs, also discussed in Chapter 7. SWIGs

are especially helpful for time-varying treatments.

Consider the causal diagrams in Figures 19.5 and 19.6, which are simplified

versions of those in Figures 19.2 and 19.4. We have omitted the nodes 0 and

0 and the arrow from 0 to 1. In addition, the arrow from 1 to  is absent

so 1 is no longer a direct cause of  . Figures 19.5 and 19.6 (like Figures 19.2

and 19.4) differ in whether  and subsequent covariates  for    share a

cause .

As discussed in Part I of this book, a SWIG represents a counterfactual

world under a particular intervention. The SWIG in Figure 19.7 represents the

world in Figure 19.5 if all individuals had received the static strategy (0 1),

where 0 and 1 can take values 0 or 1. For example, Figure 19.7 can be used

to represent the world under the strategy “always treat” (0 = 1 1 = 1) or

under the strategy “never treat” (0 = 0 1 = 0). To construct this SWIG, we

Figure 19.6

first split the treatment nodes 0 and 1. The right side of the split treat-

ments represents the value of treatment under the intervention. The left side

represents the value of treatment that would have been observed when inter-

vening on all previous treatments. Therefore, the left side of 0 is precisely

0 because there are no previous treatments to intervene on, and the left side

of 1 is the counterfactual treatment 
0
1 that would be observed after setting

0 to the value 0. All arrows into a given treatment in the original causal

diagram now point into the left side, and all arrows out of a given treatment

now originate from the right side. The outcome variable is the counterfac-

tual outcome  01 and the covariates  are replaced by their corresponding

counterfactual variables. Note that we write the counterfactual variable cor-

Figure 19.7

responding to 1 under strategy (0 1) as 
0
1 , rather than 

01
1 , because a

future intervention on 1 cannot affect the value of earlier 1.

Unlike the directed acyclic graph in Figure 19.5, the SWIG in Figure 19.7

does include the counterfactual outcome, which means that we can visually

check for exchangeability using d-separation.

In Figure 19.7, we can use d-separation to show that both  01⊥⊥0 and
 01⊥⊥0

1 |0 01 hold for any static strategy (0 1). Note that this second

conditional independence holds even though there seems to be an open path

0
1 ← 0 → 01 ← 1 →  01 . However, this path is actually blocked for

the following reason. In the counterfactual world, 0 is a constant and in prob-

ability statements constants are always implicitly conditioned on even though,

by convention, they are not shown in the conditioning event. However, when

checking d-separation we need to remember that constants are conditioned on,

blocking the above path.

The second conditional independence  01⊥⊥0
1 |0 01 implies, by de-

finition,  01⊥⊥0
1 |0 = 0 

0
1 in the subset of individuals who received

treatment 0 = 0. Therefore, by consistency, we conclude that 
01⊥⊥0 01⊥⊥0

1 |0 = 0 
0
1 equals

 01⊥⊥1|0 = 0 1 because,

by consistency, 01 = 1 and

0
1 = 1 when 0 = 0.

and  01⊥⊥1|0 = 0 1 holds under the causal diagram in Figure 19.5,

which corresponds to the SWIG in Figure 19.7 where we can actually check

for exchangeability. If there were multiple time points, we would say that

 ̄⊥⊥|̄−1 = ̄−1 ̄ for  = 0 1

We refer to the above condition as static sequential exchangeability for  ̄,
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Technical Point 19.3

The many forms of sequential exchangeability. Consider a sequentially randomized experiment of a time-varying

treatment  with multiple time points  = 0 1 . The SWIG that represents this experiment is just a longer version

of Figure 19.7. The following conditional independence can be directly read from the SWIG:¡
  +1

¢⊥⊥−1
 |̄−2

−1  ̄
−1


where +1 is the counterfactual covariate history from time +1 through the end of follow-up. The above conditional

independence implies
¡
  +1

¢⊥⊥−1
 |̄−2

−1 = −1 ̄
−1
 for the particular instance ̄

−2
−1 = −1, with −1

being a component of strategy . Because of consistency, the last conditional independence statement equals¡
  +1

¢⊥⊥|̄−1 = −1 ̄

When this statement holds for all , we say that there is sequential exchangeability. Interestingly, even though this

sequential exchangeability condition only refers to static strategies  = , it is equivalent to the seemingly stronger¡
  


+1

¢⊥⊥|̄−1 = 
¡
̄−1 ̄

¢
 ̄ for all ,

and, if positivity holds, is therefore sufficient to identify the outcome and covariate distribution under any static and dy-

namic strategies  (Robins 1986). This identification results from the joint conditional independence between
¡
  +1

¢
and . Note that, for dynamic strategies, sequential exchangeability does not follow from the separate independences

 ⊥⊥|̄−1 = −1 ̄ and 

+1⊥⊥|̄−1 = −1 ̄.

Stronger conditional independences are expected to hold in a sequentially randomized experiment, but they

(i) cannot be read from SWIGs and (ii) are not necessary for identification of the causal effects of treatment

strategies in the population. For example, a sequentially randomized trial implies the stronger joint independence©
  +1; all 

ª⊥⊥|̄−1 ̄.
An even stronger condition that is expected to hold in sequentially randomized experiments is³

 Ā ̄Ā
´
⊥⊥|̄−1 ̄

where, for a dichotomous treatment , Ā denotes the set of all 2 static strategies ̄,  Ā denotes the set of all

counterfactual outcomes  ̄, and ̄Ā denotes the set of all counterfactual covariate histories. Using a terminology

analogous to that of Technical Point 2.1, we refer to this joint independence condition as full sequential exchangeability.

which is weaker than sequential exchangeability for  , because it only re-

quires conditional independence between counterfactual outcomes  ̄ indexed

by static strategies  = ̄ and treatment . Static sequential exchangeabil-

ity is sufficient to identify the mean counterfactual outcome under any static

strategy  = ̄. See also Technical Point 19.3.

Figure 19.8

Static sequential exchangeability also holds under the causal diagram in

Figure 19.6, as can be checked by applying d-separation to its corresponding

SWIG in Figure 19.8. Therefore, in an observational study represented by

Figure 19.6, we can identify the mean counterfactual outcome under any static

strategy (0 1).

Let us return to Figure 19.5. Let us now assume that the arrow from 1
to 1 were missing. In that case, the arrow from 01 to 0

1 would also be

missing from the SWIG in Figure 19.7. It would then follow by d-separation

that sequential exchangeability holds unconditionally for 0 and conditionally

on 0 for 
0
1 , and therefore that the mean counterfactual outcome under any

static strategy could be identified without data on 1. Now let us assume that,
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Fine Point 19.3

Dynamic strategies that depend on baseline covariates. For simplicity, the causal graphs depicted in this chapter

do not include a baseline confounder 0. If we included 0 in Figure 19.9, then we could have considered a strategy

in which the random variable representing the intervention 0(0) replaces 0. Then, when checking d-separation

between 

1 and   on the graph,  ⊥⊥

1|0 0(0) 0 1, we need to condition on the entire past, including
0(0). If we instantiate this expression at 0 = 0(0), then the intervention variable can be removed from the

conditioning event because 0(0) is now equal to the observed 0 and thus is redundant. That is, we have now

 ⊥⊥
1|0 = 0(0) 0 


1 which, by consistency, is 

⊥⊥1|0 = 0(0) 0 1. This conditional independence is

sequential exchangeability for   and treatment 1 when there is also a baseline confounder 0.

in Figure 19.5, there was an arrow from 1 to 1. Then the SWIG in Figure

19.7 would include an arrow from 1 to 0
1 , and that no form of sequential

Figure 19.9

exchangeability would hold. Therefore the counterfactual mean would not be

identified under any strategy.

We now discuss the SWIGs for Figures 19.5 and 19.6 under dynamic regimes.

The SWIG in Figure 19.9 represents the world of Figure 19.5 under a dynamic

treatment strategy  = [0 1(1)] in which treatment 0 is assigned a fixed

value 0 (either 0 or 1), and treatment 1 at time  = 1 is assigned a value

1(

1) that depends on the value of 


1 that was observed after having as-

signed treatment value 0 at time  = 0. For example,  may be the strategy

“do no treat at time 0, treat at time 1 only if CD4 cell count is low, i.e., if



1 = 1”. Under this strategy 0 = 0 for everybody, and 1(


1) = 1 when



1 = 1 and 1(


1) = 0 when 


1 = 0. Therefore the SWIG includes an arrow

from 

1 to 1(


1). This arrow was not part of the original causal graph; it is

Figure 19.10

the result of the intervention. We therefore draw this arrow differently from

the others, even though we need to treat it as any other arrow when evaluating

d-separation. The outcome in the SWIG is the counterfactual outcome  

under the dynamic treatment strategy .

By applying d-separation to the SWIG in Figure 19.9, we find that both

 ⊥⊥0 and  ⊥⊥1|0 = 0 

1 hold for any strategy . That is, sequential

exchangeability for   holds, which means that we can identify the mean

counterfactual outcome under all strategies  (see also Fine Point 19.3). This

result, however, does not hold for the causal diagram in Figure 19.6.

The SWIG in Figure 19.10 represents the world of Figure 19.6 under aTechnically, what we read from the

SWIG is  ⊥⊥
1|0 1 which, by

consistency, implies  ⊥⊥1|0 =
0 1

dynamic treatment strategy  = [0 1(1)]. By applying d-separation to the

SWIG in Figure 19.10, we find that  ⊥⊥0 does not hold because of the open
path 0 ← 0 → 


1 → 1(


1)→  . That is, sequential exchangeability for

  does not hold, which means that we cannot identify the mean counterfactual

outcome for any strategy .

In summary, in observational studies (or sequentially randomized trials)

represented by Figure 19.5, sequential exchangeability for   holds, and there-

fore the data can be used to validly estimate causal effects involving static and

dynamic strategies. On the other hand, in observational studies represented by

Figure 19.6, only the weaker condition for static strategies holds, and therefore

the data can be used to validly estimate causal effects involving static strate-

gies, but not dynamic strategies. Another way to think about this is that in

the counterfactual world represented by the SWIG in Figure 19.10, the distri-

bution of   depends on the distribution of 1(

1) and thus of 


1. However,

the distribution of 

1 is not identifiable due to the path 0 ←0 → 


1.
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One last example. Consider Figure 19.11 which is equal to Figure 19.6

except for the presence of an arrow from 1 to  , and its corresponding SWIG

under a static strategy in Figure 19.12. We can use d-separation to show that

neither sequential exchangeability for   nor static sequential exchangeability

for  ̄ hold. Therefore, in observational study represented by Figure 19.11, we

cannot use the data to validly estimate causal effects involving any strategies.

19.6 Time-varying confounding and time-varying confounders

Figure 19.11

No form of sequential exchangeability is guaranteed to hold in observational

studies. Achieving approximate exchangeability requires expert knowledge,

Figure 19.12

which will guide investigators in the design of their studies to measure as

many of the relevant variables ̄ as possible. For example, in an HIV study,

experts would agree that time-varying variables like CD4 cell count, viral load,

symptoms need to be appropriately measured and adjusted for.

But the question “Are the measured covariates sufficient to ensure sequen-

tial exchangeability?” can never be answered with certainty. Yet we can use

our expert knowledge to organize our beliefs about exchangeability and rep-

resent them in a causal diagram. Figures 19.1 to 19.4 are examples of causal

diagrams that summarize different scenarios. Note that we drew these causal

diagrams in the absence of selection (e.g., censoring by loss to follow-up) so

that we can concentrate on confounding here.

Consider Figure 19.5. Like in Part I of this book, suppose that we are

interested in the effect of the time-fixed treatment 1 on the outcome  . We

say that there is confounding for the effect of 1 on  because 1 and 

share the cause  , i.e., because there is an open backdoor path between 1
and  through  . To estimate this effect without bias, we need to adjust for

confounders of the effect of the treatment 1 on the outcome  , as explained

in Chapter 7. In other words, we need to be able to block all open backdoor

paths between 1 and  . This backdoor path 1 ←− 1 ←−  −→  cannot

be blocked by conditioning on the common cause  because  is unmeasured

and therefore unavailable to the investigators. However, this backdoor path

can be blocked by conditioning on 1, which is measured. Thus, if the investi-

gators collected data on 1 for all individuals, there would be no unmeasured

confounding for the effect of 1. We then say that 1 is a confounder for

the effect of 1, even though the actual common cause of 1 and  was the

unmeasured  (re-read Section 7.3 if you need to refresh your memory about

confounding and causal diagrams).

As discussed in Chapter 7, the confounders do not have to be direct causesA second backdoor path gets open

after conditioning on collider 1:

1 ←− 0 −→ 1 ←−  −→ 

This second backdoor path can be

safely blocked by conditioning on

prior treatment 0, assuming it is

available to investigators.

of the outcome. In Figure 19.5, the arrow from the confounder 1 to the

outcome  does not exist. Then the source of the confounding (i.e., the causal

confounder) is the unmeasured common cause  . Nonetheless, because data

on 1 suffice to block the backdoor paths from 1 to  and thus to control

confounding, we refer to 1 as a confounder for the effect of 1 on  .

Now imagine the very long causal diagram that contains all time points  =

0 1 2, and in which  affects subsequent treatments  +1 and shares

unmeasured causes  with the outcome  . Suppose that we want to estimate

the causal effects of treatment strategies defined by interventions on 0 1

2 on the outcome  . Then, at each time , the covariate history ̄ will be

needed, together with the treatment history ̄−1, to block the backdoor paths
between treatment  and the outcome  . Thus, no unmeasured confounding
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A definition of time-varying confounding. In the absence of selection bias, we say there is confounding for causal

effects involving E [ ̄] if E [ ̄] 6= E [ | = ̄], that is, if the mean outcome had, contrary to fact, all individuals in

the study followed strategy ̄ differs from the mean outcome among the subset of individuals who followed strategy ̄

in the actual study.

We say the confounding is solely time-fixed (i.e., wholly attributable to baseline covariates) if E [ ̄|0] =
E [ | = ̄ 0], as would be the case if the only arrows pointing into 1 in Figure 19.2 were from 0 and 0. In

contrast, if the identifiability conditions hold, but E [ ̄|0] 6= E [ | = ̄ 0], we say that time-varying confounding

is present. If the identifiability conditions do not hold, as in Figure 19.3, we say that there is unmeasured confounding.

A sufficient condition for no time-varying confounding is unconditional sequential exchangeability for  ̄, that is,

 ̄⊥⊥|̄−1 = ̄−1. This condition holds in sequentially randomized experiments, like the one represented in Figure
19.1, in which treatment  at each time  is randomly assigned with a probability that depends only on the values of

prior treatment history ̄−1. In fact, the causal diagram in Figure 19.1 can be greatly simplified. To do so, first note

that 1 is not a common cause of any two nodes in the graph so it can be omitted from the graph. Once 1 is gone,

then both 0 and 1 can be omitted too because they cease to be common causes of two nodes in the graph. In the

graph without 0, 1, and 1, the node 0 can be omitted too. That is, the causal diagram in Figure 19.1 can be

simplified to include only the nodes 0, 1 and  .

for the effect of ̄ requires that the investigators collected data on ̄ for all

individuals. We then say that the time-varying covariates in ̄ are time-

varying confounders for the effect of the time-varying treatment ̄ on  atTime-varying confounders are

sometimes referred to as time-

dependent confounders.

several (or, in our example, all) times  in the study. See Fine Point 19.4 for

a more precise definition of time-varying confounding.

Unfortunately, we cannot empirically confirm that all confounders, whether

time-fixed or time-varying, are measured. That is, we cannot empirically dif-

ferentiate between Figure 19.2 with no unmeasured confounding and Figure

19.3 with unmeasured confounding. Interestingly, even if all confounders were

correctly measured and modeled, most adjustment methods may still result in

biased estimates when comparing treatment strategies. The next chapter ex-

plains why g-methods are the appropriate approach to adjust for time-varying

confounders.



Chapter 20
TREATMENT-CONFOUNDER FEEDBACK

The previous chapter identified sequential exchangeability as a key condition to identify the causal effects of time-

varying treatments. Suppose that we have a study in which the strongest form of sequential exchangeability holds:

the measured time-varying confounders are sufficient to validly estimate the causal effect of any treatment strategy.

Then the question is what confounding adjustment method to use. The answer to this question highlights a key

problem in causal inference about time-varying treatments: treatment-confounder feedback.

When treatment-confounder feedback exists, using traditional adjustment methods may introduce bias in

the effect estimates. That is, even if we had all the information required to validly estimate the average causal

effect of any treatment strategy, we would be generally unable to do so. This chapter describes the structure of

treatment-confounder feedback and the reasons why traditional adjustment methods fail.

20.1 The elements of treatment-confounder feedback

Consider again the sequentially randomized trial of HIV-positive individuals

that we discussed in the previous chapter. For every person in the study, we

have data on treatment  (1: treated, 0: untreated) and covariates  at each

month of follow-up  = 0 1 2, and on an outcome  that measures health

status at month  + 1. The causal diagram in Figure 20.1, which is equal

Figure 20.1

to the one in Figure 19.2, represents the first two months of the study. The

time-varying covariates  are time-varying confounders. (As in the previous

chapter, we are using this example without censoring so that we can focus on

confounding.)

Something else is going on in Figure 20.1. Not only is there an arrow from

CD4 cell count  to treatment , but also there is an arrow from treatment

−1 to future CD4 cell count –because receiving treatment −1 increases
future CD4 cell count . That is, the confounder affects the treatment and

the treatment affects the confounder. There is treatment-confounder feedback

(see also Fine Point 20.1).

Figure 20.2

Note that time-varying confounding can occur without treatment-confounder

feedback. The causal diagram in Figure 20.2. is the same as the one in

Figure 20.1, except that the arrows from treatment −1 to future  and

 have been deleted. In a setting represented by this diagram, the time-

varying covariates  are time-varying confounders, but they are not affected

by prior treatment. Therefore, there is time-varying confounding, but there is

no treatment-confounder feedback.

Treatment-confounder feedback creates an interesting problem for causal

inference. To state the problem in its simplest form, let us simplify the causal

diagram in Figure 20.1 a bit more. Figure 20.3 is the smallest subset of Figure

20.1 that illustrates treatment-confounder feedback in a sequentially random-

ized trial with two time points. When drawing the causal diagram in Figure

20.3, we made two simplifications:

• Because our interest is in the implications of confounding by 1, we
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Representing feedback cycles with acyclic graphs. Interestingly, an acyclic graph–like the one in Figure 20.1–can

be used to represent a treatment-confounder feedback loop or cycle. The trick to achieve this visual representation is

to elaborate the treatment-confounder feedback loop in time. That is, −1 →  →  → +1 and so on.

The representation of feedback cycles with acyclic graphs also requires that time be considered as a discrete variable.

That is, we say that treatment and covariates can change during each interval [  + 1) for  = 0 1 , but we do

not specify when exactly during the interval the change takes place. This discretization of time is not a limitation in

practice: the length of the intervals can be chosen to be as short as the granularity of the data requires. For example,

in a study where individuals see their doctors once per month or less frequently (as in our HIV example), time may be

safely discretized into month intervals. In other cases, year intervals or day intervals may be more appropriate. Also, as

we said in Chapter 17, time is typically measured in discrete intervals (years, months, days) any way, so the discretization

of time is often not even a choice.

did not bother to include a node 0 for baseline CD4 cell count. Just

suppose that treatment 0 is marginally randomized and treatment 1
is conditionally randomized given 1.

• The unmeasured variable 0 is not included.
• There is no arrow from 0 to 1, which implies that treatment is assigned

using information on 1 only.

• There are no arrows from 0, 1 and 1 to  , which would be the case

if treatment has no causal effect on the outcome  of any individual, i.e.,

the sharp null hypothesis holds.

Figure 20.3

None of these simplifications affect the arguments below. A more compli-

cated causal diagram would not add any conceptual insights to the discussion

in this chapter; it would just be harder to read.

Now suppose that treatment has no effect on any individual’s  , which im-

plies the causal diagram in Figure 20.3 is the correct one, but the investigators

do not know it. Also suppose that we have data on treatment 0 in month 0

and1 in month 1, on the confounder CD4 cell count 1 at the start of month 1,

and on the outcome  at the end of follow-up. We wish to use these data to esti-

mate the average causal effect of the static treatment strategy “always treat”,

(0 = 1 1 = 1), compared with the static treatment strategy “never treat”,

(0 = 0 1 = 0) on the outcome  , that is, E
£
 0=11=1

¤ − E £ 0=01=0
¤
.

According to Figure 20.3, the true, but unknown to the investigator, average

causal effect is 0 because there are no forward-directed paths from either treat-

ment variable to the outcome. That is, one cannot start at either 0 or 1
and, following the direction of the arrows, arrive at  .

Figure 20.4

Figure 20.3 can depict a sequentially randomized trial because there are no

direct arrows from the unmeasured  into the treatment variables. Therefore,

as we discussed in the previous chapter, we should be able to use the observed

data on 0, 1, 1, and  to conclude that E
£
 0=11=1

¤− E £ 0=01=0
¤

is equal to 0. However, as we explain in the next section, we will not generally

be able to correctly estimate the causal effect when we adjust for 1 using tra-

ditional methods, like stratification, outcome regression, and matching. That

is, in this example, an attempt to adjust for the confounder 1 using these

methods will generally result in an effect estimate that is different from 0, and

thus invalid.
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In other words, when there are time-varying confounders and treatment-

confounder feedback, traditional methods cannot be used to correctly adjust

for those confounders. Even if we had sufficient longitudinal data to ensureFigure 20.3 represents either a se-

quentially randomized trial or an

observational study with no unmea-

sured confounding; Figure 20.4 rep-

resents an observational study.

sequential exchangeability, traditional methods would not generally provide a

valid estimate of the causal effect of any treatment strategies. In contrast,

g-methods appropriately adjust for the time-varying confounders even in the

presence of treatment-confounder feedback.

This limitation of traditional methods applies to settings in which the time-

varying confounders are affected by prior treatment as in Figure 20.3, but also

to settings in which the time-varying confounders share causes  with prior

treatment as in Figure 20.4, which is a subset of Figure 19.4. We refer to both

Figures 20.3 and 20.4 (and Figures 19.2 and 19.4) as examples of treatment-

confounder feedback. The next section explains why traditional methods can-

not adequately handle treatment-confounder feedback.

20.2 The bias of traditional methods

To illustrate the bias of traditional methods, let us consider a (hypothetical)

sequentially randomized trial with 32 000 HIV-positive individuals and twoThis is an ideal trial with full adher-

ence to the assigned treatment and

no losses to follow-up.

time points  = 0 and  = 1. Treatment 0 = 1 is randomly assigned at

baseline with probability 05. Treatment 1 is randomly assigned in month

1 with a probability that depends only on the value of CD4 cell count 1 at

the start of month 1–04 if 1 = 0 (high), 08 if 1 = 1 (low). The outcome

Table 20.1

 0 1 1 Mean 

2400 0 0 0 84

1600 0 0 1 84

2400 0 1 0 52

9600 0 1 1 52

4800 1 0 0 76

3200 1 0 1 76

1600 1 1 0 44

6400 1 1 1 44

 , which is measured at the end of follow-up, is a function of CD4 cell count,

concentration of virus in the serum, and other clinical measures, with higher

values of  signifying better health.

Table 20.1 shows the data from this trial. To save space, the table displays

one row per combination of values of 0, 1, and 1, rather than one row per

individual. For each of the eight combinations, the table provides the number

of subjects  and the mean value of the outcome E [ |0 1 1]. Thus, row 1
shows that the mean of the 2400 individuals with (0 = 0 1 = 0 1 = 0) was

E [ |0 = 0 1 = 0 1 = 0] = 84. In this sequentially randomized trial, the

identifiability conditions–sequential exchangeability, positivity, and consistency–

hold. By design, there are no confounders for the effect of 0 on  , and 1 is

the only confounder for the effect of 1 on  so (conditional on 1) sequential

exchangeability holds. By inspection of Table 20.1, we can conclude that theIf there were additional times  at

which treatment  were affected

by , then  would be a time-

varying confounder

positivity condition is satisfied, because otherwise one or more of the eight

rows would have zero individuals.

The causal diagram in Figure 20.3 depicts this sequentially randomized ex-

periment when the sharp null hypothesis holds. To check whether the data in

Table 20.1 are consistent with the causal diagram in Figure 20.3, we can sepa-Figure 20.3 represents the null be-

cause there is no arrow from 1 to

 . Otherwise, 0 would have an

effect on  through 1

rately estimate the average causal effects of each of the time-fixed treatments

0 and 1 within levels of past covariates and treatment, which should all be

null. In the calculations below, we will ignore random variability.

A quick inspection of the table shows that the average causal effect of

treatment 1 is indeed zero in all four strata defined by 0 and 1. Consider

the effect of 1 in the 4000 individuals with 0 = 0 and 1 = 0, whose data

are shown in rows 1 and 2 of Table 20.1. The mean outcome among those

who did not receive treatment at time 1, E [ |0 = 0 1 = 0 1 = 0], is 84,
and the mean outcome among those who did receive treatment at time 1,
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G-null test. Suppose the sharp null hypothesis is true. Then any counterfactual outcome   is the observed outcome

 . In this setting, sequential exchangeability for   can be written as ⊥⊥0|0 and ⊥⊥1|0 = (0) 0 1 in a

study with two time points. The first independence implies no causal effect of 0 in any strata defined by 0, and the

second independence implies no causal effect of 1 in any strata defined by 1 and 0. Therefore, under sequential

exchangeability, a test of these conditional independences is a test of the sharp null. This is the g-null test.

Conversely, the g-null theorem (Robins 1986) says that, if these conditional independences hold, then the distribution

of   and therefore the mean E [ ] is the same for all , and also equal to the distribution and mean of the observed

 . Note, however, that equality of distributions under all  only implies the sharp null hypothesis under a strong

form of faithfulness that forbids perfect cancellations of effects. As discussed in Fine Point 6.2, we assume faithfulness

throughout this book unless we say otherwise.

E [ |0 = 0 1 = 0 1 = 1], is also 84. Therefore the difference

E [ |0 = 0 1 = 0 1 = 1]− E [ |0 = 0 1 = 0 1 = 0]

is zero. Because the identifiability conditions hold, this associational difference

validly estimates the average causal effect

E
£
 1=1|0 = 0 1 = 0

¤− E £ 1=0|0 = 0 1 = 0
¤

in the stratum (0 = 0 1 = 0). Similarly, it is easy to check that the aver-

age causal effect of treatment 1 on  is zero in the remaining three strata

(0 = 0 1 = 1), (0 = 1 1 = 0), (0 = 1 1 = 1), by comparing the mean

outcome between rows 3 and 4, rows 5 and 6, and rows 7 and 8, respectively.

We can now show that the average causal effect of 0 is also zero. To do so,

we need to compute the associational difference E [ |0 = 1] − E [ |0 = 0]
which, because of randomization, is a valid estimator of the causal contrast

E
£
 0=1

¤ − E £ 0=0
¤
. The mean outcome E [ |0 = 0] among the 16 000

individuals treated at time 0 is the weighted average of the mean outcomes inThe weighted average is
2400
16000

× 84 + 1600
16000

× 84 +
2400
16000

× 52 + 9600
16000

× 52 = 60
rows 1, 2, 3 and 4, which is 60. And E [ |0 = 1], computed analogously, is
also 60. Therefore, the average causal effect of 0 is zero.

We have confirmed that the causal effects of 0 and 1 (conditional on

the past) are zero when we treat 0 and 1 separately as time-fixed treat-

ments. What if we now treat the joint treatment (0 1) as a time-varying

treatment and compare two treatment strategies? For example, let us say that

we want to compare the strategies “always treat” versus “never treat”, that is

(0 = 1 1 = 1) versus (0 = 0 1 = 0). Because the identifiability conditions

hold, the data in Table 20.1 should suffice to validly estimate this effect.

Because the effect for each of the individuals components of the strategy, 0
and 1, is zero, it follows from the g-null theorem that the average causal effect

E
£
 0=11=1

¤ − E £ 0=01=0
¤
is zero. But is this what we conclude from

the data if we use conventional analytic methods? To answer this question,

let us conduct two data analyses. In the first one, we do not adjust for the

confounder 1, which should give us an incorrect effect estimate. In the second

one, we do adjust for the confounder 1 via stratification.

1. We compare the mean outcome in the 9600 individuals who were treated

at both times (rows 6 and 8 of Table 20.1) with that in the 4800 individ-

uals who were untreated at both times (rows 1 and 3). The respective

averages are E [ |0 = 1 1 = 1] = 547, and E [ |0 = 0 1 = 0] =
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68. The associational difference is 547−68 = −133 which, if interpretedE [ |0 = 1 1 = 1]
3200
9600

× 76 + 6400
9600

× 44 = 547
E [ |0 = 0 1 = 0]
2400
4800

× 84 + 2400
4800

× 52 = 680

causally, would mean that not being treated at either time is better than

being treated at both times. This analysis gives the wrong answer–a

non-null difference–because E [ |0 = 0 1 = 1] is not a valid esti-

mator of E [ 01 ]. Adjustment for the confounder 1 is needed.

2. We adjust for 1 via stratification. That is, we compare the mean

outcome in individuals who were treated with that in individuals who

were untreated at both times, within levels of 1. For example, take

the stratum 1 = 0. The mean outcome in the treated at both times,

E [ |0 = 1 1 = 0 1 = 1], is 76 (row 6). The mean outcome in the un-
treated at both times, E [ |0 = 0 1 = 0 1 = 0], is 84 (row 1). The
associational difference is 76 − 84 = −8 which, if interpreted causally,
would mean that, in the stratum 1 = 0, not being treated at either

time is better than being treated at both times. Similarly, the differ-

ence E [ |0 = 1 1 = 1 1 = 1] − E [ |0 = 0 1 = 1 1 = 0] in the
stratum 1 = 1 is also −8.Note that, because the effect is

−8 in both strata of 1, it is not
possible that a weighted average

of the stratum-specific effects will

yield the correct value 0.

What? We said that the effect estimate should be 0, not −8. How is

it possible that the analysis adjusted for the confounder also gives a wrong

answer? This estimate reflects the bias of traditional methods to adjust for

confounding when there is treatment-confounder feedback. The next section

explains why the bias arises.

20.3 Why traditional methods fail

Table 20.1 shows data from a sequentially randomized trial with treatment-

confounder feedback, as represented by the causal diagram in Figure 20.3. Even

though no data on the unmeasured variable 1 (immunosuppression level) is

available, all three identifiability conditions hold: 1 is not needed if we have

data on the confounder 1. Therefore, as discussed in Chapter 19, we should

be able to correctly estimate causal effects involving any static or dynamic

treatment strategies. And yet our analyses in the previous section did not

yield the correct answer, whether or not we adjusted for 1.

The problem was that we did not use the correct method to adjust for con-

founding. Stratification is a commonly used method to adjust for confounding,

but it cannot handle treatment-confounder feedback. Stratification means esti-

mating the association between treatment and outcome in subsets–strata–of

the study population defined by the confounders–1 in our example. Because

the variable 1 can take only two values–1 if the CD4 cell count is low, and

0 otherwise–there are two such strata in our example. To estimate the causal

effect in those with 1 = , we selected (i.e., conditioned or stratified on) the

subset of the population with value 1 = .

Figure 20.5

But stratification can have unintended effects when the association measure

is computed within levels of a variable 1 that is caused by prior treatment 0.

Indeed Figure 20.5 shows that conditioning on 1–a collider–opens the path

0 −→ 1 ←− 1 −→  . That is, stratification induces a noncausal associa-

tion between the treatment 0 at time 0 and the unmeasured variable 1, and

therefore between 0 and the outcome  , within levels of 1. Among those

with low CD4 count (1 = 1), being on treatment (0 = 1) becomes a marker

for severe immunosuppression (high value of 1); among those with a high level
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Confounders on the causal pathway. Conditioning on confounders 1 which are affected by previous treatment can

create selection bias even if the confounder is not on a causal pathway between treatment and outcome. In fact, no

such causal pathway exists in Figures 20.5 and 20.6.

On the other hand, in Figure 20.7 the confounder 1 for subsequent treatment 1 lies on a causal pathway from

earlier treatment 0 to outcome  , i.e., the path 0 −→ 1 −→  . Were the potential for selection bias not present

in Figure 20.7 (e.g., were 1 not a common cause of 1 and  ), the associational differences within strata of 1 could

be an unbiased estimate of the direct effect of 0 on  not through 1, but still would not be an unbiased estimate of

the overall effect of ̄ on  , because the effect of 0 mediated through 1 is not included.

It is sometimes said that variables on a causal pathway between treatment and outcome cannot be considered as

confounders, because adjusting for those variables will result in a biased effect estimate. However, this characterization

of confounders is inaccurate for time-varying treatments. Figure 20.7 shows that a confounder for subsequent treatment

1 can be on a causal pathway between past treatment 0 and the outcome. As for whether adjustment for confounders

on a causal pathway induces bias for the effect of a treatment strategy, that depends on the choice of adjustment method.

Stratification will indeed induce bias; g-methods will not.

of CD4 (1 = 0), being off treatment (0 = 0) becomes a marker for milder

immunosuppression (low value of 1). Thus, the side effect of stratification is

to induce an association between treatment 0 and outcome  .

Figure 20.6

In other words, stratification eliminates confounding for 1 at the cost of

introducing selection bias for 0. The associational differences

E [ |0 = 1 1 =  1 = 1]− E [ |0 = 0 1 =  1 = 0]

may be different from 0 even if, as in our example, treatment has no effect on

the outcome of any individuals at any time. This bias arises from choosing

a subset of the study population by selecting on a variable 1 affected by (a

Figure 20.7

component 0 of) the time-varying treatment. The net bias depends on the

relative magnitude of the confounding that is eliminated and the selection bias

that is created.

Technically speaking, the bias of traditional methods will occur not only

when the confounders are affected by prior treatment (in randomized experi-

ments or observational studies), but also when the confounders share an un-

measured cause  with prior treatment (in observational studies). In the

observational study depicted in Figure 20.6, conditioning on the collider 1
opens the path 0 ←−0 −→ 1 ←− 1 −→  . For this reason, we referred

to both settings in Figures 20.3 and 20.4–which cannot be distinguished using

the observed data–as examples of treatment-confounder feedback.

The causal diagrams that we have considered to describe the bias of tra-

ditional methods are all very simple. They only represent settings in which

treatment does not have a causal effect on the outcome. However, conditioning

on a confounder in the presence of treatment-confounder feedback also induces

bias when treatment has a non-null effect, as in Figure 20.7. The presence of

arrows from 0, 1, or 1 to  does not change the fact that conditioning

on 1 creates an association between 0 and  that does not have a causal

interpretation (see also Fine Point 20.2). Also, our causal diagrams had only

two time points and a limited number of nodes, but the bias of traditional

methods will also arise from high-dimensional data with multiple time points

and variables. In fact, the presence of time-varying confounders affected by

previous treatment at multiple times increases the possibility of a large bias.
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In general, valid estimation of the effect of treatment strategies is only

possible when the joint effect of the treatment components  can be estimated

simultaneously and without bias. As we have just seen, this may be impossible

to achieve using stratification, even when data on all time-varying confounders

are available.

20.4 Why traditional methods cannot be fixed

We showed that stratification cannot be used as a confounding adjustment

method when there is treatment-confounder feedback. But what about other

traditional methods? For example, we could have used parametric outcome

regression, rather than nonparametric stratification, to adjust for confounding.

Would outcome regression succeed where plain stratification failed?

This question is particularly important for settings with high-dimensional

data, because in high-dimensional settings we will be unable to conduct a

simple stratified analysis like we did in the previous section. In Table 20.1,

treatment  occurs at two months  = 0 1, which means that there are

only 22 static treatment strategies ̄. But when the treatment  occurs at

multiple points  = 0 1, we will not be able to present a table with all the

combinations of treatment values. If, as is not infrequent in practice,  is ofThe number of data combinations

is even greater because there are

multiple confounders  measured

at each time point .

the order of 100, then there are 2100 static treatment strategies ̄, a staggering

number that far exceeds the sample size of any study. The total number of

treatment strategies is much greater when we consider dynamic strategies as

well.

As we have been arguing since Chapter 11, we will need modeling to es-

timate average causal effects involving E [ ̄] when there are many possible

treatment strategies ̄. To do so, we will need to hypothesize a dose-response

function for the effect of treatment history ̄ on the mean outcome  . One

possibility would be to assume that the effect of treatment strategies ̄ in-

creases linearly as a function of the cumulative treatment under each strategy.

Under this assumption, all strategies that assign treatment for exactly three

months have the same effect, regardless of the period when those three months

of treatment occur, e.g., the first 3 months of follow-up, the last 3 months of

follow-up, etc. The price paid for modelling is yet another threat to the valid-

ity of our estimates due to possible model misspecification of the dose-response

function.

Unfortunately, regression modeling does not remove the bias of traditional

methods in the presence of treatment-confounder feedback, as we now show.

For the data in Table 20.1, let us define cumulative treatment 
¡
̄
¢
=

0 + 1, which can take 3 values: 0 (if the individuals remains untreated at

both times), 1 (if the subject is treated at time 1 only or at time 2 only),

and 2 (if the subject is treated at both times). The treatment strategies of

interest can then be expressed as “always treat”  (̄) = 2, and “never treat”

 (̄) = 0, and the average causal effect as E
£
 (̄)=2

¤ − E £ (̄)=0
¤
.

Again, any valid method should estimate that the value of this difference is 0.

Under the assumption that the mean outcome E
£
 |̄ 1

¤
depends linearly

on the covariate 
¡
̄
¢
, we could fit the outcome regression model

E
£
 |̄ 1

¤
= 0 + 1

¡
̄
¢
+ 21

The associational difference E
£
 | ¡̄¢ = 2 1¤−E £ | ¡̄¢ = 0 1¤ is

equal to 1×2. (The model correctly assumes that the difference is the same in
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the strata 1 = 1 and 1 = 0.) Therefore some might want to interpret 1× 2
as the average causal effect of “always treat” versus “never treat” within levels

of the covariate 1. But such causal interpretation is unwarranted because,

as Figure 20.5 shows, conditioning on 1 induces an association between 0,

a component of treatment 
¡
̄
¢
, and the outcome  . This implies that

1–and therefore the associational difference of means–is non-zero even ifWe invite readers to check for

themselves that 1 is not zero by fit-

ting this outcome regression model

to the data in Table 20.1.

the true causal effect is zero. A similar argument can be applied to matching.

G-methods are needed to appropriately adjust for time-varying confounders in

the presence of treatment-confounder feedback.

20.5 Adjusting for past treatment

One more thing before we discuss g-methods. For simplicity, we have so far

described treatment-confounder feedback under simplified causal diagrams in

which past treatment does not directly affect subsequent treatment. That is,

the causal diagrams in Figures 20.3 and 20.4 did not include an arrow from 0
to 1. We now consider the more general case in which past treatment may

Figure 20.8

Figure 20.9

directly affect subsequent treatment.

As an example, suppose doctors in our HIV study use information on past

treatment history ̄−1 when making a decision about whether to prescribe
treatment  at time . To represent this situation, we add an arrow from 0
to 1 to the causal diagrams in Figures 20.3 and 20.4, as depicted in Figures

20.8 and 20.9.

The causal diagrams in Figures 20.8 and 20.9 show that, in the presence of

treatment-confounder feedback, conditioning on 1 is insufficient to block all

backdoor paths between treatment 1 and outcome  . Indeed conditioning

on 1 opens the path 1 ← 0 → 1 ← 1 →  in Figure 20.8, and the

path 1 ← 0 ← 0 → 1 ← 1 →  in Figure 20.9. Of course, regardless

of whether treatment-confounder feedback exists, conditioning on past treat-

ment history is always required when past treatment has a non-null effect on

the outcome, as in the causal diagram of Figure 20.10. Under this diagram,

Figure 20.10

treatment 0 is a confounder of the effect of treatment 1.

Therefore, sequential exchangeability at time  generally requires condition-

ing on treatment history ̄−1 before ; conditioning only on the covariates 
is not enough. That is why, in this and in the previous chapter, all the con-

ditional independence statements representing sequential exchangeability were

conditional on treatment history.

Past treatment plays an important role in the estimation of effects of time-

fixed treatments too. Suppose we are interested in estimating the effect of

the time-fixed treatment 1–as opposed to the effect of a treatment strat-

egy involving both 0 and 1–on  . (Sometimes the effect of 1 is re-

ferred to as the short-term effect of the time-varying treatment ̄.) Then

lack of adjustment for past treatment 0 will generally result in selection

bias if there is treatment-confounder feedback, and in confounding if past

treatment 0 directly affects the outcome  . In other words, the difference

E [ |1 = 1 1]−E [ |1 = 0 1] would not be zero even if treatment 1 had
no effect on any individual’s outcome  , as in Figures 20.8-20.10. In practice,

when making causal inferences about time-fixed treatments, bias may arise in

analyses that compare current users (1 = 1) versus nonusers (1 = 0) of

treatment. To avoid the bias, one can adjust for prior treatment history or

restrict the analysis to individuals with a particular treatment history. This
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is the idea behind “new-user designs” for time-fixed treatments: restrict the

analysis to individuals who had not used treatment in the past.

The requirement to adjust for past treatment has additional bias impli-

cations when past treatment is mismeasured. As discussed in Section 9.3, a

mismeasured confounder may result in effect estimates that are biased, either

upwards or downwards. In our HIV example, suppose investigators did not

have access to the study participants’ medical records. Rather, to ascertain

prior treatment, investigators had to ask participants via a questionnaire. Since

not all participants provided an accurate recollection of their treatment his-

tory, treatment 0 was measured with error. Investigators had data on the

mismeasured variable ∗0 rather than on the variable 0. To depict this set-
ting in Figures 20.8-20.10, we add an arrow from the true treatment 0 to

the mismeasured treatment ∗0, which shows that conditioning on ∗0 cannot
block the biasing paths between 1 and  that go through 0. Investigators

will then conclude that there is an association between 1 to  , even after

adjusting for ∗0 and 1, despite the lack of an effect on 1 on  . Therefore,

when treatment is time-varying, we find that, contrary to a widespread belief,

mismeasurement of treatment–even if the measurement error is independent

and non-differential–may cause bias under the null. This bias arises because

past treatment is a confounder for the effect of subsequent treatment, even

if past treatment has no causal effect on the outcome. Furthermore, under

the alternative, this imperfect bias adjustment may result in an exaggerated

estimate of the effect.
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Chapter 21
G-METHODS FOR TIME-VARYING TREATMENTS

In the previous chapter we described a dataset with a time-varying treatment and treatment-confounder feedback.

We showed that, when applied to this dataset, traditional methods for confounding adjustment could not correctly

adjust for confounding. Even though the time-varying treatment had a zero causal effect on the outcome, traditional

adjustment methods yielded effect estimates that were different from the null.

This chapter describes the solution to the bias of traditional methods in the presence of treatment-confounder

feedback: the use of g-methods–the g-formula, IP weighting, g-estimation, and their doubly-robust generalizations.

Using the same dataset as in the previous chapter, here we show that the three g-methods yield the correct (null)

effect estimate. For time-fixed treatments, we described the g-formula in Chapter 13, IP weighting of marginal

structural models in Chapter 12, and g-estimation of structural nested models in Chapter 15. Here we introduce

each of the three g-methods for the comparison of static treatment strategies under the identifiability conditions

described in Chapter 19: sequential exchangeability, positivity, and consistency.

21.1 The g-formula for time-varying treatments

Consider again the data from the sequentially randomized experiment in Table

20.1 which, for convenience, we reproduce again here as Table 21.1. Suppose

Table 21.1

 0 1 1 Mean 

2400 0 0 0 84

1600 0 0 1 84

2400 0 1 0 52

9600 0 1 1 52

4800 1 0 0 76

3200 1 0 1 76

1600 1 1 0 44

6400 1 1 1 44

we are only interested in the effect of the time-fixed treatment 1. That is,

suppose we want to contrast the mean counterfactual outcomes E
£
 1=1

¤
and

E
£
 1=0

¤
. In Parts I and II we have showed that, under the identifiabil-

ity conditions, each of the means E [ 1 ] is a weighted average of the mean

outcome E [ |1 = 1 1 = 1] conditional on the (time-fixed) treatment and

confounders. Specifically, E [ 1 ] equals the weighted averageX
1

E [ |1 = 1 1 = 1]  (1) , where  (1) = Pr [1 = 1] 

This weighted average is the g-formula. Under conditional exchangeability

given the time-fixed confounders 1, the g-formula is the mean outcome stan-

dardized to the distribution of the confounders in the study population.

But, in the sequentially randomized experiment of Table 21.1, the treat-

ment  = (0 1) is time-varying and, as we saw in the previous chapter,

there is treatment-confounder feedback. That means that traditional adjust-

ment methods cannot be relied on to unbiasedly estimate the causal effect of

time-varying treatment . For example, traditional methods may not provide

valid estimates of the mean outcome under “always treat” E
£
 0=11=1

¤
and

the mean outcome under “never treat” E
£
 0=01=0

¤
even in a sequentially

randomized experiment in which sequential exchangeability holds. In contrast,

the g-formula can be used to calculate the counterfactual means E [ 01 ] in

a sequentially randomized experiment. To do so, the above expression of the

g-formula for time-fixed treatments needs to be generalized.

The g-formula for E [ 01 ] under the identifiability conditions (described

in Chapter 19) will still be a weighted average, but now it will be a weighted
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average of the mean outcome E [ |0 = 0 1 = 1 1 = 1] conditional on

the time-varying treatment and confounders required to achieve sequential ex-

changeability. Specifically, the g-formulaX
1

E [ |0 = 0 1 = 1 1 = 1]  (1|0)

equals E [ 01 ] under (static) sequential exchangeability for  01 . That is,

for a time-varying treatment, the g-formula estimator of the counterfactual

mean outcome under the identifiability conditions is the mean outcome stan-

dardized to the distribution of the confounders in the study population, with

every factor in the expression conditional on past treatment and covariate his-

tory. This conditioning on prior history is not necessary in the time-fixed case

in which both treatment and confounders are measured at a single time point.

Note that the g-formula is only computable (i.e., well-defined) if, for any

value 1 such that  (1|0) 6= 0, there are individuals in the population with

(0 = 0 1 = 1 1 = 1). This is equivalent to the definition of positivity

given in Technical Point 19.2 and a generalization for time-varying treatments

of the discussion of positivity in Technical Point 3.1.

In a study with 2 time points, the

g-formula for “never treat” is

E [ |0 = 0 1 = 0 1 = 0]×
Pr [1 = 0|0 = 0]+
E [ |0 = 0 1 = 0 1 = 1]×
Pr [1 = 1|0 = 0]

Let us apply the g-formula to estimate the causal effect E
£
 0=11=1

¤ −
E
£
 0=01=0

¤
from the sequentially randomized experiment of Table 21.1.

The g-formula estimate for the mean E
£
 0=01=0

¤
is 84×025+52×075 = 60.

The g-formula estimate for the mean E
£
 0=11=1

¤
is 76×050+44×050 = 60.

Therefore the estimate of the causal effect E
£
 0=11=1

¤− E £ 0=01=0
¤
is

0, as expected. The g-formula succeeds where traditional methods failed.

Figure 21.1

Another way to think of the g-formula is as a simulation. Under sequential

exchangeability for  and ̄ jointly, the g-formula simulates the counterfac-

tual outcome  ̄ and covariate history ̄̄ that would have been observed if

everybody in the study population had followed treatment strategy ̄. In other

words, the g-formula simulates (identifies) the joint distribution of the coun-

terfactuals
¡
 ̄ ̄̄

¢
under strategy . To see this, first consider the causally-

structured tree graph in Figure 21.1, which is an alternative representation of

the data in Table 21.1. Under the aforementioned identifiability condition, the
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g-formula can be viewed as a procedure to build a new tree in which all indi-

viduals follow strategy ̄. For example, the causally-structured tree graph in

Figure 21.2 shows the counterfactual population that would have been observed

if all individuals have followed the strategy “always treat” (0 = 1 1 = 1).

Figure 21.2

To simulate this counterfactual population we (i) assign probability 1 to

receiving treatment 0 = 1 and 1 = 1 at times  = 0 and  = 1, respectively,Under sequential exchangeabil-

ity, Pr [1 = 1|0 = 0] =

Pr
£
=01 = 1

¤
and

E [ |0 = 0 1 = 1 1 = 1] =

E [ 01 |01 = 1].

Thus the g-formula isP
1
E [ 01 |01 = 1]

Pr
£
=01 = 1

¤
, which equals

E [ 01 |01 = 1] as required.

and (ii) assign the same probability Pr [1 = 1|0 = 0] and the same mean

E [ |0 = 0 1 = 1 1 = 1] as in the original study population.

Two important points. First, the value of the g-formula depends on what,

if anything, has been included in . As an example, suppose we do not collect

data on 1 because we believe, incorrectly, that our study is represented by

a causal diagram like the one in Figure 20.8 after removing the arrow from

1 to 1. Thus we believe 1 is not a confounder and hence not necessary

for identification. Then the g-formula in the absence of data on 1 becomes

E [ |0 = 0 1 = 1] because there is no covariate history to adjust for. How-

ever, because our study is actually represented by the causal graph in Figure

20.8. (under which treatment assignment 1 is affected by 1), the g-formula

that fails to include 1 no longer has a causal interpretation.Under any of the causal diagrams

shown in this book, the g-formula

that includes all the unmeasured

variables–such as  and–is al-

ways correct. Unfortunately, the

unmeasured variables are by defin-

ition unavailable to the investiga-

tors.

Second, even when the g-formula has a causal interpretation, each of its

components may lack a causal interpretation. As an example, consider the

causal diagram in Figure 20.9 under which only static sequential exchangeabil-

ity holds. The g-formula that includes 1 correctly identifies the mean of 
.

Remarkably, regardless of whether we add arrows from 0 and 1 to  , the g-

formula continues to have a causal interpretation as E [ ̄], even though neither

of its components–E [ |0 = 0 1 = 1 1 = 1] and Pr [1 = 1|0 = 0]–

has any causal interpretation at all. That is, Pr [1 = 1|0 = 0] 6= Pr
£
=01 = 1

¤
and E [ |0 = 0 1 = 1 1 = 1] 6= E [ 01 |01 = 1]. The last two in-

equalities will be equalities in a sequential randomized trial like the one repre-

sented in Figures 20.1 and 20.2.

Now let us generalize the g-formula to high-dimensional settings with mul-

tiples times . The g-formula isThe g-formula for time-varying

treatments was first described by

Robins (1986, 1987). X
̄

E
£
 |̄ = ̄ ̄ = ̄

¤ Y
=0


¡
|̄−1 ̄−1

¢
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Fine Point 21.1

Treatment and covariate history. When describing g-methods, we often refer to the treatment and covariate history

that is required to achieve sequential exchangeability. For the g-formula, we say of its components is conditional on

prior treatment and covariate history. For example, the factor corresponding to the probability of a discrete confounder

2 at time  = 2


¡
2|1 = ̄1 1 = ̄1

¢
= Pr [2 = 2|0 = 0 1 = 1 0 = 0 1 = 1]

is conditional on treatment and confounders at prior times 0 and 1; the factor at time  = 3 is conditional on treatment

and confounders at times 0, 1, and 2, and so on.

However, the term “history” is not totally accurate because, as explained in Fine Point 7.2, confounders can

theoretically be in the future of treatment. Conversely, as explained along with Figure 7.4, adjusting for some variables

in the past of treatment may introduce selection bias (sometimes referred to as M-bias). Therefore, the causally

relevant “history” at time  needs to be understood as the set of treatment and confounders that are needed to achieve

conditional exchangeability for treatment . Usually, those confounders  will be in the past of treatment  so, for

convenience, we will keep using the term “history” throughout the book.

where the sum is over all possible ̄-histories (̄−1 is the history through time
−1). Under sequential exchangeability for  ̄ given

¡
̄ ̄

¢
at each time ,

this expression equals the counterfactual mean E [ ̄] under treatment strategy

̄. Fine Point 21.1 presents a more nuanced definition of the term “history”.

Technical Point 21.1 shows a more general expression for the g-formula, which

can be used to compute densities, not just means.

In practice, however, the components of the g-formula cannot be directly

computed if the data are high-dimensional, as is expected in observational stud-

ies with multiple confounders or time points. The quantities E
£
 |̄ = ̄ ̄ = ̄

¤
and 

¡
|̄−1 ̄−1

¢
will need to be estimated. For example, we can fit a lin-

ear regression model to estimate the conditional means E
£
 |̄ = ̄ ̄ = ̄

¤
of

the outcome variable at the end of follow-up, and logistic regression mod-

els to estimate the distribution of the discrete confounders  at each time

 6= 0 (the distribution of 0 can be estimated without models as described

in Section 13.3). The estimates from these models, bE £ |̄ = ̄ ̄ = ̄
¤
andb ¡|̄−1 ̄−1¢, will then be plugged in into the g-formula. Since Chapter

13, we have referred to this estimator as the plug-in g-formula and, when the

estimates used in the plug-in g-formula are based on parametric models, we

have referred to the plug-in g-formula as the parametric g-formula.

For simplicity, this chapter presents a version of the g-formula under deter-

ministic static strategies only. However, the g-formula can be used to compute

the mean of the outcome under any treatment strategy: deterministic or ran-

dom, static or dynamic. Let us define  
¡
|̄−1 ̄

¢
as the conditional prob-

ability of treatment  at time  if the treatment strategy (or intervention) of

interest had been implemented in the population. Then, the general expression

of the g-formula is

X
̄

E
£
 |̄ = ̄ ̄ = ̄

¤ Y
=0


¡
|̄−1 ̄−1

¢ Y
=0

 
¡
|̄−1 ̄

¢


Under a deterministic treatment strategy,  
¡
|̄−1 ̄

¢
is always 1 and

therefore does not need to be specified. For example, under the strategy

“always treat” or ̄ = (1 1 1), the probability  
¡
1|̄−1 ̄

¢
= 1 at all
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Technical Point 21.1

The g-formula density for static strategies. The g-formula density for
¡


¢
evaluated at

¡
 ̄
¢
for a strategy ̄ is


¡
|̄ ̄¢ Y

=0


¡
|̄−1 ̄−1

¢
The g-formula density for  is simply the marginal density of  under the g-formula density for

¡


¢
:Z


¡
|̄ ̄¢ Y

=0


¡
|̄−1 ̄−1

¢


where the integral notation
R
is used–instead of the sum notation

P
–to accommodate settings in which  represents

a vector of variables and some of the variables in the vector are continuous.

Given observed data  =
¡
̄   

¢
where  is the set of all measured variables other than treatment ̄ and

outcome  , the inputs of the g-formula are (i) a treatment strategy ̄, (ii) a causal DAG representing the observed data

(and their unmeasured common causes), (iii) a subset  of  for which we wish to adjust, and (iv) a choice of a total

ordering of , ̄, and  consistent with the topology of the DAG, i.e., an ordering such that each variable comes after

its ancestors. The vector  consists of all variables in  after −1 and before  in the ordering. The chosen ordering

will usually, but not always, be temporal. See Fine Point 21.1 and Pearl and Robins (1995) for additional subtleties

that are beyond the scope of this book. When sequential exchangeability for  ̄ and positivity holds for the chosen

ordering, the g-formula density for  equals the density of  that would have been observed in the study population if all

individuals had followed strategy ̄. Otherwise, the g-formula can still be computed, but it lacks a causal interpretation.

Note that the g-formula density for  under treatment strategy ̄ differs from the joint distribution


¡
| = ̄  = ̄

¢ Y
=0


¡
|−1 = ̄−1 −1 = ̄−1

¢ Y
=0


¡
|−1 = ̄−1  = ̄

¢
only in that each factor 

¡
|−1 = ̄−1  = ̄

¢
is eliminated. Note that each of the remaining factors are

evaluated at  = ̄ consistent with strategy ̄.

. However, under other types of treatment strategies,  
¡
|̄−1 ̄

¢
is

not 1 at all  and therefore needs to be included in the g-formula. Forcode: The gfoRmula R pack-

age (Lin et al. 2019) is available

through CRAN. The GFORMULA

SAS macro is available through

GitHub. See the book’s web site.

example, under the random static strategy “independently at each time ,

treat individuals with probability 03 and do not treat with probability 07”,

 
¡
1|̄−1 ̄

¢
= 03. Our publicly available software implements this general

form of the g-formula and therefore can accommodate any treatment strategy.

21.2 IP weighting for time-varying treatments

Suppose we are only interested in the effect of the time-fixed treatment 1
in Table 21.1. We then want to contrast the counterfactual mean outcomes

E
£
 1=1

¤
and E

£
 1=0

¤
. As we have seen in Chapter 12, under the iden-

tifiability conditions, each of the counterfactual means E [ 1 ] is the mean

E [ |1 = 1] in the pseudo-population created by the subject-specific non-

stabilized weights 1 = 1 (1|1) or the stabilized weights 1 =

 (1)  (1|1). The denominator of the IP weights is, informally, an individ-
ual’s probability of receiving the treatment value that he or she received, condi-
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tional on the individual’s confounder values. One can estimate E [ |1 = 1]

from the observed study data by the average of  among subjects with 1 = 1
in the pseudo-population.

When treatment and confounders are time-varying, these IP weights for

time-fixed treatments need to be generalized. For a time-varying treatment

 = (0 1) and time-varying covariates ̄ = (0 1) at two time points, the

nonstabilized IP weights are

 ̄ =
1

 (0|0) ×
1

 (1|0 0 1) =
1Y

=0

1


¡
|̄−1 ̄

¢
and the stabilized IP weights are


̄

=
 (0)

 (0|0) ×
 (1|0)

 (1|0 0 1) =
1Y

=0


¡
|̄−1

¢

¡
|̄−1 ̄

¢
where −1is 0 by definition. The denominator of the IP weights for a time-
varying treatment is, informally, an individual’s probability of receiving the

treatment history that he or she received, conditional on the individual’s co-

variate history.

Suppose we want to contrast the counterfactual mean outcomes E
£
 0=11=1

¤
and E

£
 0=01=0

¤
. Under the identifiability assumptions for static strategies,

each counterfactual mean E [ 01 ] is the mean E [ |0 = 0 1 = 1] in

the pseudo-population created by the nonstabilized weights  ̄ or the stabi-

lized weights  ̄. The IP weighted estimator of each counterfactual mean

is the average of  among individuals with  = (0 1) in the pseudo-

population.

Let us apply IP weighting to the data from Table 21.1. The causally-

structured tree in Figure 21.3 is the tree graph in Figure 21.1 with additional

columns for the nonstabilized IP weights  ̄ and the number of individuals

in the corresponding pseudo-population  for each treatment and covariate

history. The pseudo-population has a size of 128 000, that is, the 32 000

individuals in the original population multiplied by 4, the number of static

strategies. Because there is no 0 in this study, the denominator of the IP

weights simplifies to  (0)  (1|0 1).
The IP weighted estimator for the counterfactual mean E

£
 0=01=0

¤
is

the mean E [ |0 = 0 1 = 0] in the pseudo-population, which we estimate
as the average outcome among the 32 000 individuals with (0 = 0 1 = 0) in

the pseudo-population. From the tree in Figure 21.3, the estimate is 84× 8000
32000

+The same estimate of 0 is ob-

tained when using stabilized IP

weights  ̄ in Figure 21.3

(check for yourself). How-

ever, Pr
£
 = 1|̄−1 ̄

¤
is

12 in the nonstabilized pseudo-

population and Pr
£
 = 1|̄−1

¤
in the stabilized pseudo-population.

52× 24000
32000

= 60. Similarly, the IP weighted estimate of E
£
 0=11=1

¤
is also

60. Therefore the estimate of the causal effect E
£
 0=11=1

¤−E £ 0=01=0
¤

is 0, as expected. IP weighting, like the g-formula, succeeds where traditional

methods failed.

Note that our nonparametric estimates of E [ 01 ] based on the g-formula

are precisely equal to those based on IP weighting. This equality has nothing

to do with causal inference. That is, even if the identifiability conditions did

not hold–so neither the g-formula nor IP weighting estimates have a causal

interpretation–both approaches would yield the same mean in the population.
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Figure 21.3

Let us generalize IP weighting to high-dimensional settings with multiple

times  = 0 1. The general form of the nonstabilized IP weights is


̄

=

Y
=0

1


¡
|̄−1 ̄

¢
and the general form of the stabilized IP weights is

 ̄ =

Y
=0


¡
|̄−1

¢

¡
|̄−1 ̄

¢
When the identifiability conditions hold, these IP weights create a pseudo-

population in which (i) the mean of  ̄ is identical to that in the actual popu-

lation, but (ii) like on Figure 19.1, the randomization probabilities at each time

 are constant (nonstabilized weights) or depend at most on past treatment

history (stabilized weights). Hence the average causal effect E [ ̄] − E
h
 ̄0

i
is E

£
 | = ̄

¤−E £ | = ̄0
¤
because unconditional sequential exchange-

ability holds in both pseudo-populations.

In a true sequentially randomized trial, the quantities 
¡
|̄−1 ̄

¢
are

known by design. Therefore we can use them to compute nonstabilized IP

weights and the estimates of E [ ̄] and E [ ̄]−E
h
 ̄0

i
are guaranteed to be

unbiased. In contrast, in observational studies, the quantities 
¡
|̄−1 ̄

¢
will need to be estimated from the data. When the data are high-dimensional,

we can, for example, fit a logistic regression model to estimate the condi-

tional probability of a dichotomous treatment Pr
£
 = 1|̄−1 ̄

¤
at each

time . The estimates b ¡|̄−1 ̄
¢
from these models will then replaceIn practice, the most common ap-

proach is to fit a single model for

Pr
£
 = 1|̄−1 ̄

¤
rather than

a separate model at each time .

The model includes a function of

time –often referred to as a time-

varying intercept–as a covariate.


¡
|̄−1 ̄

¢
in  ̄. If the estimates b ¡|̄−1 ̄

¢
are based on a mis-

specified logistic model for the Pr
£
 = 1|̄−1 ̄

¤
, the resulting estimates

of E [ ̄] and E [ ̄] − E
h
 ̄0

i
will be biased. For stabilized weights  ̄

we must also obtain an estimate of b ¡|̄−1
¢
for the numerator. Even

if this estimate is based on a misspecified model, the estimates of E [ ̄] and

E [ ̄]−E
h
 ̄0

i
remain unbiased, although the distribution of treatment in the

stabilized pseudo-population will differ from that in the observed population.
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Suppose that we obtain two estimates of E [ ̄], one using the parametric

g-formula and another one using IP weights estimated via parametric models,

and that the two estimates differ by more than can be reasonably explained

by sampling variability (the sampling variability of the difference of the es-

timates can be quantified by bootstrapping). We can then conclude that theThere is no logical guarantee of no

model misspecification even when

the estimates from both paramet-

ric approaches are similar, as they

may both be biased in the same di-

rection.

parametric models used for the g-formula or the parametric models used for IP

weighting (or both) are misspecified. This conclusion is always true, regardless

of whether the identifiability assumptions hold. An implication is that one

should always estimate E [ ̄] using both methods and, if the estimates differ

significantly, reexamine all the models and modify them where necessary. In

the next section, we describe how doubly-robust estimators can help deal with

model misspecification.

Also, as we discussed in the previous section, it is not infrequent that the

number of unknown quantities E [ ̄] far exceeds the sample size. Thus we

need to specify a model that combines information from many strategies to

help estimate a given E [ ̄]. For example, we can hypothesize that the effect

of treatment history ̄ on the mean outcome increases linearly as a function of

the cumulative treatment  (̄) =
P
=0

 under strategy ̄. This hypothesis

is encoded in the marginal structural mean modelThis marginal structural model is

unsaturated. Remember, saturated

models have an equal number of

unknowns on both sides of the

equation.

E
£
 ̄
¤
= 0 + 1 (̄)

for all , which is a more general version of the marginal structural mean model

for time-fixed treatments discussed in Chapter 12. There are 2 different

unknown quantities on the left hand side of model, one for each of the 2

different strategies ̄, but only 2 unknown parameters 0 and 1 on the right

hand side. The parameter 1 measures the average causal effect of the time-

varying treatment ̄. The average causal effect E [ ̄]− E
h
 ̄=0

i
is equal to

1 ×  (̄).

As discussed in Chapter 12, to estimate the parameters of the marginal

structural model, we fit the ordinary linear regression model

E
£
 |¤ = 0 + 1

¡

¢

in the pseudo-population, that is, we use weighted least squares with weights

being estimates of either  ̄ or ̄. Under the identifiability conditions, the

estimate of the associational parameter 1 is consistent for the causal parame-

ter 1. As described in Chapter 12, the variance of b1–and thus of the contrast
E [ ̄] − E

h
 ̄=0

i
–can be estimated by the nonparametric bootstrap or by

computing its analytic variance (which requires additional statistical analysis

and programming). We can also construct a conservative 95% confidence in-

terval by using the robust variance estimator of b1, which is directly outputted
by most statistical software packages. For a non-saturated marginal structural

model the width of the intervals will typically be narrower when the model is

fit with the weights  ̄ than with the weights  ̄, so the  ̄ weights are

preferred.

Of course, the estimates of E [ ̄] will be incorrect if the marginal struc-

tural mean model is misspecified, that is, if the mean counterfactual outcome

depends on the treatment strategy through a function of the time-varying treat-

ment other than cumulative treatment  (̄) (say, cumulative treatment only

in the final 5 months
P

=−5
) or depends nonlinearly (say, quadratically) on
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Technical Point 21.2

The g-null paradox. When using the parametric g-formula, model misspecification will result in biased estimates of

E [ ̄], even if the identifiability conditions hold. Suppose there is treatment-confounder feedback and the sharp null

hypothesis of no effect of treatment on  is true, that is,

 ̄ −  ̄0 = 0 with probability 1 for all ̄0 and ̄.

Then the value of the g-formula for E [ ̄] is the same for any strategy ̄, even though E
£
 |̄ = ̄ ̄ = ̄

¤
and 

¡
|̄−1 ̄−1

¢
both depend on ̄. Now suppose we use standard non-saturated parametric models

E
£
 |̄ = ̄ ̄ = ̄; 

¤
and 

¡
|̄−1 ̄−1;

¢
based on distinct (i.e., variation-independent) parameters  and  to

estimate the components of the g-formula. Then Robins and Wasserman (1997) showed that, when  has any discrete

components, these models cannot all be correctly specified because the estimated value of the g-formula for E [ ̄]

will generally depend on ̄. As a consequence, inference based on the estimated g-formula might theoretically result

in the sharp null hypothesis being falsely rejected, even in a sequentially randomized experiment. This phenomenon is

referred to as the null paradox of the estimated g-formula for time-varying treatments. See Cox and Wermuth (1999) for

additional discussion. Fortunately, the g-null paradox has not prevented the parametric g-formula to estimate null effects

in practice, presumably because the bias induced by the paradox is small compared with typical random variability.

In contrast, and as described in Chapters 12 and 14, neither IP weighting of marginal structural mean models nor

g-estimation of structural nested mean models suffer from the null paradox in a sequentially randomized experiment

where the treatment probabilities are known by design. These methods preserve the null because the models are correctly

specified no matter what functional form we choose for treatment. For example, the marginal structural mean model

E [ ̄] = 0+1 (̄) is correctly specified under the null because, in that case, 1 = 0 and E [
̄] would not depend

on the function of ̄. Also, any structural nested mean model 
¡
−1  

¢
is also correctly specified under the null

with  = 0 being the true parameter value and 
¡
−1  

¢
= 0, regardless of the function of past treatment and

covariate history.

cumulative treatment. However, if we fit the model

E
£
 |¤ = 0 + 1

¡

¢
+ 2−5

¡

¢
+ 3

¡

¢2

with weights  ̄ or  ̄, a Wald test on two degrees of freedom of the joint

hypothesis 2 = 3 = 0 is a test of the null hypothesis that our marginal struc-This test will generally have good

statistical power against the partic-

ular directions of misspecification

mentioned above, especially if the

weights  ̄ are used.

tural model is correctly specified. That is, IP weighting of marginal structural

models is not subject to the g-null paradox described in Technical Point 21.2.

In practice, one might choose to use a marginal structural model that includes

different summaries of treatment history  as covariates, and that uses flexible

functions like, say, cubic splines.

Finally, as we discussed in Section 12.5, we can use a marginal structural

model to explore effect modification by a subset  of the covariates in 0.

For example, for a dichotomous baseline variable  , we would elaborate our

marginal structural mean model as

E
£
 ̄| ¤ = 0 + 1 (̄) + 2 + 3 (̄)

The parameters of this model can be estimated by fitting the ordinary linear

regression model E
£
 |  ¤ = 0+1

¡

¢
+2 +3 

¡

¢
by weighted

least squares with IP weights ̄ or, better,  ̄ ( ) =

Y
=0


¡
|̄−1 

¢

¡
|̄−1 ̄

¢ .
In the presence of treatment-confounder feedback,  can only include baseline

variables. If  had components of  for   0 then the parameters 1and 3
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could be different from 0 even if treatment had no effect on the mean outcome

at any time.

We now describe a doubly robust estimator of marginal structural mean

models.

21.3 A doubly robust estimator for time-varying treatments

Part II briefly mentioned doubly robust methods that combine IP weighting

and the g-formula. As we know, IP weighting requires a correct model for treat-

ment  conditional on the confounders , and the g-formula requires a correct

model for the outcome  conditional on treatment  and the confounders .

Doubly robust methods require a correct model for either treatment  or out-

come  . If at least one of the two models is correct (and one need not know

which of the two models is correct), a doubly robust estimator consistently

estimates the causal effect. Technical Point 13.2 described a doubly robust es-Doubly robust estimators give us

two chances to get it right when,

as in most observational studies,

there are many confounders and

non-saturated models are required.

timator for the average causal effect of a time-fixed treatment  on an outcome

 . In this section, we first review this doubly robust estimator for time-fixed

treatments and then extend it to time-varying treatments.

Suppose we are only interested in the effect of a time-fixed treatment ,

that is, the difference of counterfactual means E
£
 1=1

¤ − E £ 1=0
¤
, under

exchangeability, positivity, and consistency in a setting with many confounders

. One possibility is to fit an outcome model for E[ | =   = ] and then

standardize (parametric g-formula); another possibility is to fit a treatment

model for Pr[ = 1|] and then use it to compute weights  = 1 (|)
(IP weighting). A doubly robust method estimates both models and combines

them. The doubly robust procedure has three steps.

The first step is to use the predicted values cPr [ = 1|] from the treat-

ment model to compute the IP weight estimates ̂. The second step is to

compute the predicted values bE [ | =   =  ] from a modified outcome

model that includes the covariate , where  = ̂ if  = 1 and  = −̂The use of the “clever covariate”

 to achieve double robustness

was first proposed by Bang and

Robins (2005) for both time-fixed

and time-varying treatments.

if  = 0. The third step is to standardize the mean of the predicted valuebE [ | =   =  ] under  = 1 and under  = 0. The difference of the

standardized mean outcomes is a doubly robust estimator of the causal effect

E
£
 1=1

¤ − E £ 1=0
¤
. That is, under the identifiability conditions, this es-

timator validly estimates the average causal effect if either the model for the

treatment or for the outcome is correct.

Let us now extend this doubly robust estimator to settings with time-

varying treatments in which we are interested in comparing the counterfactual

means E [ ̄] and E
h
 ̄0

i
under two treatment strategies ̄ and ̄0. The doubly

robust procedure to estimate E [ ̄] for a time-varying treatment follows the

same 3 steps as the procedure to estimate E [ ] for a time-fixed treatment.

However, as we will see, the second step is a bit more involved because it

requires the fitting of sequential regression models. Next we describe how

to obtain a doubly robust estimator of E [ ̄] under the treatment strategy

“always treated”.

The first step requires fitting a regression model for Pr
£
 = 1|̄−1 ̄

¤
and then use the predicted values from this model to estimate the time-varying

IP weights ̄ =
Q

=0
1

(|̄−1̄)
at each time, where 

¡
|̄−1 ̄

¢
=

Pr
£
 = 1|̄−1 ̄

¤
for person-times with  = 1 and 

¡
|̄−1 ̄

¢
=

Pr
£
 = 0|̄−1 ̄

¤
for person-times with  = 0. That is, for each indi-
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vidual, we estimate a different weight for each time point rather than a single

weight at the end of follow-up as in the previous section. For example, if we

fit the parametric model Pr
£
 = 1|̄−1 ̄

¤
= 0+1−1+2, then,

in our example of Table 21.1 with two time points, the predicted values arecPr £1 = 1|0 ̄1¤ = ̂01 + ̂10 + ̂21 and cPr [0 = 1|0] = ̂00 + ̂20
(because −1 ≡ 0). We then compute the time-varying IP weight estimates
̂ ̄ =

Q
=0

1

̂(|̄−1̄)
. In addition, we also compute the modified IP

weight ̂ ̄−1=1 = ̂ ̄−1 × 1

̂(=1|̄−1̄) in which the treatment

value at time  is set to the corresponding treatment value under the strategy

“always treated”. We have reached the end of Step 1.

The second step requires fitting a separate outcome regression model at each

time , starting from the last time  and going down towards  = 0. This

sequence of regression models has two peculiarities. First, the time-varying IP

weight estimate ̂ ̄ is included as a covariate. Second, the outcome of the

model is  only at the last time . At all other times , the outcome of theBecause doubly robust estimation

for time-varying treatments relies

on a sequential outcome regression,

we need to fit the regression models

at each time  sequentially rather

than simultaneously.

model is a variable ̂+1 that is generated by the previous regression at time

+ 1.

For example, suppose we decide to fit the regression model

E
h
̂+1|̄ ̄

i
= 0 + 1

¡


¢
+ 2 + 4̂




where treatment history ̄ is summarized by cumulative treatment as in the

marginal structural mean model of the previous section, and covariate history

̄ is summarized by its most recent value . To define the variable ̂+1,

let us consider the simple case with 2 time points only, i.e., with  = 1.

(Technical Point 21.3 provides the general definition for multiple times.)

Start by fitting the model E
h
̂2|̄1 ̄1

i
= E

£
 |̄1 ̄1

¤
= 01+1

¡
1
¢
+

21 + 3̂
̄1 with ̂2 =  . Use the parameter estimates ̂ to calculate

the predicted value from this model with 1 set to 1, as it should be un-

der the strategy “always treated”, which implies that ̂ ̄1 needs to be re-

placed by ̂01=1. The predicted value for each individual  is therefore

̂1 = ̂01 + ̂1 × 2 + ̂21 + ̂3̂
01=1
 . This predicted value ̂1 is the new

outcome variable to be used in the next regression model. Now fit the model

E
h
̂1|0 0

i
= 00+ 10+ 20+ 3̂

0 and calculate again the predicted

value with 0 set to 1, which is ̂0 = ̂01 + ̂1 × 1 + ̂20 + ̂3̂
0=1
 for

individual . We have reached the end of Step 2 as there are no more time

points.

The third step is to standardize the mean of ̂0, which we do by simply com-

puting its average across all individuals. This average bE ĥ0i is a valid doubly
robust estimator of the counterfactual mean E

£
 0=11=1

¤
. That is, under

conditional exchangeability and positivity given ̄, this estimator validly es-

timates the average causal effect if one of the three following statements holds:

(i) the treatment model is correct at all times, (ii) the outcome model is cor-

rect at all times, or (iii) the treatment model is correct for time 0 to  and

the outcome model is correct for times  + 1 to , for any   . This last + 1 robustness was described by

Molina et al. (2017). statement is known as  + 1 robustness.

To estimate the counterfactual mean E
£
 0=01=0

¤
under the treatment

strategy “never treated”, repeat the above steps using (0 = 0 1 = 0). The

difference of means of ̂0 computed under each strategy is a doubly robust

estimator of the average causal effect E
£
 0=11=1

¤− E £ 0=01=0
¤
.
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Technical Point 21.3

A doubly robust estimator of E
£
 
¤
for time-varying treatments. Suppose we are interested in estimating the

counterfactual mean E
£
 
¤
under treatment strategy ̄ = (0 1 ) assuming that sequential exchangeability and

positivity hold at all times  = 0 1. Bang and Robins (2005) proposed a recursive method. For a dichotomous

treatment and continuous outcome, the method can be implemented as follows:

1. Fit a logistic model 
¡
̄−1 ̄;

¢
for Pr

£
 = 1|̄−1 ̄

¤
with data pooled over all times  = 0 1

and all individuals. Obtain the MLE ̂ of the vector parameter . For each person-time, compute both the

usual time-varying IP weight estimate ̂ ̄ =
Q

=0
1

̂(|̄−1̄;̂)
, and the modified IP weight ̂ ̄−1 =

̂ ̄−1
̂(|̄−1̄;̂) for the value  in the strategy of interest, with −1 ≡ 0 by definition.

2. Set ̂+1 =  ̄ =  . Recursively, for  =  − 1  0,

(a) specify and fit a parametric linear regression model 
¡
̄ ̄; 

¢
, with ̂ ̄ as a covariate, for the condi-

tional expectation E
h
̂+1|̄ ̄

i
. Obtain the MLE ̂ of the vector parameter .

(b) set ̂
̄−1
 ≡ ̂ as the predicted value ̂

³
̄−1  ̄; ̂

´
computed using the covariate

̂ ̄−1 rather than ̂ ̄ .

3. Estimate bE £ 
¤
= E

h
̂0

i
.

If either the model 
¡
̄−1 ̄;

¢
or the model 

¡
̄ ̄; 

¢
are correctly specified, then E

h
̂0

i
is consistent

for E
£
 
¤
. Confidence intervals can be obtained using the nonparametric bootstrap. Note that, when ̂ ̄ is not

used as a covariate, this sequential regression procedure is an alternative, non-doubly robust procedure to estimate the

parametric g-formula.

This doubly robust estimator for average causal effects is ready for use invan der Laan and Gruber (2012)

proposed an extension of this dou-

bly robust estimator that includes

a data adaptive procedure. They

called their method longitudinal

targeted minimum loss-based esti-

mation (TMLE).

practice, though its widespread implementation has been historically hampered

by computational constraints and lack of user-friendly software, especially for

hazard-based survival analysis. We anticipate that, in the near future, doubly

(or multiply) robust estimators will become more common when studying the

effect of complex treatment strategies on failure time outcomes. See Fine Point

21.2 for a description of the different representations of the g-formula and their

connections to the above doubly robust estimator.

21.4 G-estimation for time-varying treatments

If we were only interested in the effect of the time-fixed treatment 1 in Table

21.1, in Chapter 14 we described structural nested mean models for the con-

ditional causal effect of a time-fixed treatment within levels of the covariates.

Those models had a single equation because there was a single time point  = 0.

The extension to time-varying treatments requires that the model specifies as

many equations as time points in the data. For the time-varying treatment

 = (0 1) at two time points in Table 21.1, we can specify a (saturated)
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Fine Point 21.2

Representations of the the g-formula. The g-formula can be mathematically represented in several ways. These

different representations of the g-formula are nonparametrically equivalent but lead to different estimators in practice.

Throughout this book we have emphasized a representation of the g-formula that is the generalized version of standard-

ization (in the epidemiologic jargon). That is, the g-formula for a mean outcome is
P

 E [ | =   = ]  () for a

time-fixed treatment and, as described in this chapter,
P

̄ E
£
 |̄ = ̄ ̄ = ̄

¤ Q
=0


¡
|̄−1 ̄−1

¢
for a time-varying

treatment. Because a plug-in estimator based on this representation of the g-formula requires estimates of the join

density of the confounders
Q
=0


¡
|̄−1 ̄−1

¢
over time, we refer to it as a joint density modeling estimator of the

g-formula.

An alternative representation of the g-formula is a conditional expectation. For a time-fixed treatment, we im-

plicitly used this g-formula representation E [E [ | =   = ]] in Section 13.3. For a time-varying treatment, the

representation is an iterated conditional expectation (ICE) that can be recursively defined. A plug-in estimator based on

the ICE representation of the g-formula requires the fitting of sequential predictive algorithms (e.g., regression models).

The ICE estimator is described in Section 21.3 and Technical Point 21.3, where we combine it with the estimation of

IP weights to construct doubly (or  + 1) robust estimators.

Another equivalent representation of the g-formula is IP weighting. In fact, as shown in Technical Point 2.3 for

time-fixed treatments, the standardized mean and the IP weighted mean are equal under positivity. The same is true for

time-varying treatments (Robins, 1986; Young et al, 2014). As described in this chapter, an estimator based on the IP

weighting representation of the g-formula requires the estimation of the conditional density of treatment over time given

past treatment and covariate history. We refer to these estimators as IP weighted estimators rather than as g-formula

estimators.

structural nested mean model with two equations

For time  = 0: E
£
 01=0 −  0=01=0

¤
= 00

For time  = 1: E
£
 01 −  01=0|01 = 1 0 = 0

¤
=

1 (11 + 121 + 130 + 1401)

The second equation models the effect of treatment at time  = 1 withinEffect of 1 when 0 is set to 0:

• 11 in individuals with

0=01 = 0

• 11 + 12 in those with

0=01 = 1

Effect of 1 when 0 is set to 1 :

• 11 + 13 in those with

0=11 = 0

• 11+13+14 in those with

0=11 = 1

By consistency, 01 = 1.

each of the 4 treatment and covariate histories defined by (0 1). This com-

ponent of the model is saturated because the 4 parameters 1 in the second

equation parameterize the effect of 1 on  within the 4 possible levels of

past treatment and covariate history. The first equation models the effect of

treatment at time  = 0 when treatment at time  = 1 is set to zero. This

component of the model is also saturated because it has one parameter 0 to

estimate the effect within the only possible history (there is no prior treatment

or covariates, so everybody has the same history).

The two equations of the structural nested model are the reason why the

model is referred to as nested. The first equation models the effect of receiving

treatment at time 0 and never again after time 0, the second equation models

the effect of receiving treatment at time 1 and never again after time 1, and

so on if we had more time points.

Let us use g-estimation to estimate the parameters of our structural nested

model with  = 1. We follow the same approach as in Chapter 14. We start

by considering the additive rank-preserving structural nested model for each
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individual 


00
 = 

00
 + 00


01
 = 

00
 + 111 + 121

0
1 + 1310 + 1410

0
1

(We represent 
0=01=0
 by 

00
 to simplify the notation.)

The first equation is a rank-preserving model because the effect 0 is exactly

the same for every individual. Thus if 
00
 for subject  exceeds 

00
 for subject

, the same ranking of  and  will hold for  10–the model preserves ranks

across strategies. Also, under equation 2, if 
10
 for subject  exceeds 

10
 for

subject , we can only be certain that 
11
 for subject  also exceeds 

11
 for

subject , if both have the same values of 0=11 . Because the preservation of

the ranking is conditional on local factors (i.e., the value 0=11 ), we refer to

the second equation as a conditionally, or locally, rank-preserving model.

As discussed in Chapter 14, rank preservation is biologically implausible

because of individual heterogeneity in unmeasured genetic and environmen-

tal risks. That is why our primary interest is in the structural nested mean

model, which is totally agnostic as to whether or not there is effect hetero-

geneity across individuals. However, provided the strengthened identifiabilityThe proof can be found in Robins

(1994). Note that to fit an unsatu-

rated structural nested mean model

by g-estimation, positivity is not re-

quired.

conditions hold, g-estimates of  from the rank-preserving model are consistent

for the parameters  of the mean model, even if the rank-preserving model is

misspecified.

The first step in g-estimation is linking the model to the observed data,

as we did in Chapter 14 for a time-fixed treatment. To do so, note that, by

consistency, the counterfactual outcome  01 is equal to the observed out-

come  for individuals who happen to be treated with treatment values 0 and

1. Formally, 
01 =  01 =  for individuals with (0 = 0 1 = 1).

Table 21.2

0 1 1 Mean 1 ()

0 0 0 84

0 0 1 84− 11
0 1 0 52

0 1 1 52− 11 − 12
1 0 0 76

1 0 1 76− 
†
11 − 

†
13

1 1 0 44

1 1 1 44− 11 − 12
−13 − 14

Table 21.3
0 1 1 Mean 0 ()

0 0 0 84

0 0 1 84

0 1 0 52

0 1 1 52

1 0 0 76− 0
1 0 1 76− 0
1 1 0 44− 0
1 1 1 44− 0

Similarly  00 =  00 for individuals with (0 = 0 1 = 0), and 01 = 1
for individuals with 0 = 0. Now we can rewrite the structural nested model

in terms of the observed data as

 00 =  − (111 + 1211 + 1310 + 14101)

 00 =  00 − 00

(we are omitting the individual index  to simplify the notation).

The second step in g-estimation is to use the observed data to compute

the candidate counterfactuals 1

¡
†
¢
and 0

¡
†
¢
. To do so, we use the

structural nested model with the true value  of the parameter replaced by

some value †:

1

¡
†
¢
=  −

³

†
111 + 

†
1211 + 

†
1310 + 

†
14101

´
0

¡
†
¢
= 1

¡
†
¢− 

†
00

As in Chapter 14, the goal is to find the value † of the parameters that is equal
to the true value . When † = , the candidate counterfactual

¡
†
¢
equals

the true counterfactual  −10 . We can now use sequential exchangeability

to conduct g-estimation at each time point. Fine Point 21.3 describes how to g-

estimate the parameters  of our saturated structural nested model. It turns

out that all parameters of the structural nested model are 0, which implies

that all counterfactual means E [ ] under any static or dynamic strategy 

are equal to 60. This result agrees with those obtained by the g-formula and

by IP weighting. G-estimation, like the g-formula and IP weighting, succeeds

where traditional methods failed.
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Fine Point 21.3

G-estimation with a saturated structural nested model. Sequential exchangeability at  = 1 implies that, within

any of the four joint strata of (0 1), the mean of 
00 among individuals with 1 = 1 is equal to the mean among

individuals with 1 = 0. Therefore, the means of 1

¡
†
¢
must also be equal when † = .

Consider first the stratum (0 1) = (0 0). From data rows 1 and 2 in Table 21.2, we find that the mean of

1 () is 84 when 1 = 0 and 84 − 11 when 1 = 1. Hence 11 = 0. Next we equate the means of 1 () in

data rows 3 and 4 corresponding to stratum (0 1) = (0 1) to obtain 52 = 52 − 11 − 12. Since 11 = 0, we

conclude 12 = 0. Continuing we equate the means of 1 () in data rows 5 and 6 to obtain 76 = 76 − 11 − 13.

Since 11 = 12 = 0, we conclude 13 = 0. Finally, equating the means of 1 () in data rows 7 and 8, we obtain

44 = 44− 11 − 12 − 13 − 14 so 14 = 0 as well.

To estimate 0, we first substitute the values 11, 12, 13, and 14 into the expression for the mean of 0 () in

Table 21.2. In this example, all parameters were equal to 0, so the mean of 0 () was equal to the mean of the observed

outcome  . We then use the first equation of the structural equation model to compute the mean of 0 () for each

data row in the table by subtracting 00 from the mean of 1 (), as shown in Table 21.3. Sequential exchangeability

 00⊥⊥0 at time  = 0 implies that the means of 0 () among the 16 000 subjects with 0 = 1 and the 16 000

subjects with 0 = 0 are identical. The mean of 0 () is 84× 025 + 52× 075 = 60 among individuals with 0 = 0,
(76− 0) × 05 + (44− 0) × 05 = 60 − 0 among individuals with 0 = 1. Hence 0 = 0. We have completed

g-estimation.

In practice, however, we will encounter observational studies with multiple

times  and multiple covariates  at each time. In general, a structural nested

mean model has as many equations as time points  = 0 1. The general

form of structural nested mean models is therefore the following: For each time

 = 0 1

E
h
 −10+1 −  −10 |−1 =  −1 = −1

i
= 

¡
−1  

¢
where

¡
−1  0+1

¢
is a static strategy that assigns treatment −1 between

times 0 and −1, treatment  at time , and treatment 0 from time  = 1 until
the end of follow-up . The strategies

¡
−1  0+1

¢
and (−1 0) differThe function 

¡
−1  

¢
satis-

fies 
¡
−1  0

¢
= 0 so  = 0

under the null hypothesis of no ef-

fect of treatment.

only in that the former has treatment  at  while the latter has treatment 0

at time .

That is, a structural nested mean model is a model for the effect on the

mean of  of a last blip of treatment of magnitude  at , as a function


¡
−1  

¢
of past treatment and covariate history

¡
−1 

¢
. See Tech-

nical Point 21.4 for the relationship between structural nested models and

marginal structural models.

In our example with  = 1, 0
¡
−1 0 

¢
is just 0 (0 and −1 can both

be taken to be identically 0) and 1
¡
0 1 

¢
is 11 + 121 + 130 + 1401.

The candidate counterfactuals for models with several time points , can be

compactly defined as



¡
†
¢
=  −

X
=


¡
−1  †

¢
With multiple time points or covariates, we will need to fit an unsatu-

rated structural nested mean model. For example, we might hypothesize that

the function 
¡
−1  

¢
is the same for . The simplest model would be


¡
−1  

¢
= 1, which assumes that the effect of a last blip of treatment
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Technical Point 21.4

Relation between marginal structural models and structural nested models (Part II). We can now generalize the

results in Fine Point 14.1 to time-varying treatments. A structural nested mean model is a semiparametric marginal

structural mean model if and only if, for all
¡
−1  

¢
,


¡
−1  

¢
=  (−1 )

Specifically, it is a semiparametric marginal structural mean model with the functional form

E
£
 
¤
= E

h
 0

i
+

X
=0


¡
−1  

¢


where E
h
 0

i
is left unspecified. However, such a structural nested mean model is not simply a marginal structural

mean model, because it also imposes the additional strong assumption that effect modification by past covariate history

is absent. In contrast, a marginal structural model is agnostic as to whether there is effect modification by time-varying

covariates.

If we specify a structural nested mean model  (−1 ), then we can estimate  either by g-estimation or IP
weighting. However the most efficient g-estimator will be more efficient than the most efficient IP weighted estimator

when the structural nested mean model (and thus the marginal structural mean model) is correctly specified, because

g-estimation uses the additional assumption of no effect modification by past covariates to increase efficiency.

In contrast, suppose the marginal structural mean model is correct but the structural nested mean model is incorrect

because 
¡
−1  

¢ 6=  (−1 ). Then the g-estimates of  and E
£
 
¤
will be biased, while the IP weighted

estimates remain unbiased. Thus we have a classic variance-bias trade off. Given the marginal structural model,

g-estimation can increase efficiency if 
¡
−1  

¢
=  (−1 ), but introduces bias otherwise.

is the same for all times . Other options are 1+2, which assumes that the

effect varies linearly with the time  of treatment, and 1 + 2 + 3−1 +
4 + 5−1, which allows the effect to be modified by past treatment and
covariate history.

To describe g-estimation for structural nested mean models with multiple

time points, suppose the nonsaturated model is 
¡
−1  

¢
= 1. The

corresponding rank-preserving model entails 

¡
†
¢
=  −

X
=


†, which

can be computed from the observed data for any value †. We will then choose
values  and  that are much smaller and larger, respectively, than any

substantively plausible value of , and will compute for each individual the

value of 

¡
†
¢
for each † on a grid from  to , say   +

01  + 02  .

Then, for each value of †, we will fit a pooled logistic regression model

logit Pr
£
 = 1|

¡
†
¢
  −1

¤
= 0 + 1

¡
†
¢
+ 2

for the probability of treatment at time  for  = 0 . Here  =



¡
 −1

¢
is a vector of covariates calculated from an individual’s covari-

ate and treatment data
¡
 −1

¢
, 2 is a row vector of unknown parameters,

and each person contributes  + 1 observations. Under the assumptions of

sequential exchangeability and consistency, the g-estimate of , and therefore

of , is the value † that results in the estimate of 1 that is closest to 0.
The procedure described above is the generalization to time-varying treat-
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Technical Point 21.5

A closed form estimator for linear structural nested mean models. When, as in all the examples we have discussed,


¡
−1  

¢
=  is linear in  with  = 

¡
̄ ̄−1

¢
being a vector of known functions, then, given the

model logit Pr
£
 = 1| −1

¤
= , there is an explicit closed form expression for b given by

b =
⎧⎨⎩
==X
=1=0

 (b)



⎫⎬⎭
−1⎧⎨⎩

==X
=1=0

 (b)

⎫⎬⎭
with  (b) = £

 − expit
¡b

¢¤
,  =

P==
=1= , and the choice of  = 

¡
̄ ̄−1

¢
affects

efficiency but not consistency. See Robins (1994) for the optimal choice of .

In fact, when 
¡
−1  

¢
is linear in , we can obtain a closed-form doubly robust estimator e of  by specifying

a working model  = 
¡
̄ ̄−1

¢
for E

£
 () |̄ ̄−1

¤
= E

h
 −10 |̄ ̄−1

i
and defining

µ ee
¶
=

⎧⎨⎩
==X
=1=0

µ
 (b)



¶¡





¢⎫⎬⎭
−1⎧⎨⎩

==X
=1=0



µ
 (b)



¶⎫⎬⎭
Specifically e will be a consistently asymptotically normal estimator of  if ei-

ther the model  for E
h
 −10 |̄ ̄−1

i
is correct or the model for

logit Pr
£
 = 1| −1

¤
is correct.

ments of the g-estimation procedure described in Chapter 14. For simplicity, weThe limits of the 95% confidence

interval for  are the limits of the

set of values † that result in a P-
value 005 when testing for 1 =

0.

considered a structural nested model with a single parameter 1, which implies

that the effect does not vary over time  or by treatment and covariate history.

Suppose now that the parameter  is a vector. To be concrete suppose we con-

sider the model with 
¡
−1  

¢
= 0+1+2−1+3+4−1 so

 is 5-dimensional and  is 1-dimensional. Now to estimate 5 parameters one

requires 5 additional covariates in the treatment model. For example, we could

fit the model logit Pr
£
 = 1|

¡
†
¢
  −1

¤
=

0 +

¡
†
¢
(1 + 2 + 3−1 + 4 + 5−1) + 6

The particular choice of covariates does not affect the consistency of the point

estimate of , but it determines the width of its confidence interval.

The g-estimation procedure then requires a search over a 5-dimensional

grid, one dimension for each component  of . So if we had 20 grid points

for each component we would have 205 different values of  on our 5 dimen-A 95% joint confidence interval for

 are the set of values for which

the 5 degree-of-freedom score test

does not reject at the 5% level.

A less computationally demanding

approach is to compute a univari-

ate 95% Wald confidence interval

as b ± 196 times its standard er-
ror.

sional grid. The g-estimate b is the  for which the 5 degree of freedom score

test that all 5 (1 2 3 4 5) are precisely zero. However, when the dimen-

sion of  is greater than 2, finding the g-estimate b by a grid search may be
computationally prohibitive. Fortunately, there is a closed form estimator of

 that does not require a grid search when, as in all examples discussed in this

section, the structural nested mean model is linear. See Technical Point 21.5,

which also describes a doubly robust form of the estimator.

After g-estimation of the parameters of the structural nested mean model,

the last step is the estimation of the counterfactual mean E [ ] under the

strategies  of interest. If there is no effect modification by past covariate
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Technical Point 21.6

Estimation of E [ ] after g-estimation of a structural nested mean model. Suppose the identifiability assumptions

hold, one has obtained a doubly robust g-estimate e of a structural nested mean model  ¡−1  ¢ and one wishes
to estimate E [ ] under a dynamic strategy . To do so, one can use the following steps of a Monte Carlo algorithm:

1. Estimate the mean response E
h
 0

i
had treatment always been withheld by the sample average of 0

³e´ over
the  study subjects. Call the estimate bE h 0

i
.

2. Fit a parametric model for 
¡
|̄−1 ̄−1

¢
to the data, pooled over persons and times, and let b ¡|̄−1 ̄−1¢

denote the estimate of 
¡
|̄−1 ̄−1

¢
under the model.

3. Do for  = 1   ,

(a) Draw 0 from b (0).
(b) Recursively for  = 1  draw  from b ¡|̄−1 ̄−1¢ with ̄−1 = −1

¡
−1

¢
, the treatment

history corresponding to the strategy .

(c) Let b∆ =

=X
=0



³
−1   e´ be the  Monte Carlo estimate of   −  0 , where  =


¡
−1

¢
.

4. Let bE [ ] = bE h 0

i
+

=X
=1

b∆ be the estimate of bE [ ] 

If the model for 
¡
|̄−1 ̄−1

¢
, the structural nested mean model 

¡
−1  

¢
, and either the model for treat-

ment Pr
£
 = 1| −1

¤
or the model for E

h
 −10 |̄ ̄−1

i
are correctly specified, then bE [ ] is consistent

for E [ ]. Confidence intervals can be obtained using the nonparametric bootstrap.

Note that 

³
−1  e´ will converge to 0 if the estimate e is consistent for  = 0. Thus b∆ will converge

to zero and bE [ ] to bE h 0

i
even if the model for 

¡
|̄−1 ̄−1

¢
is incorrect. That is, the structural nested

mean model preserves the null if the identifiability conditions hold and we either know (as in a sequentially randomized

experiment) Pr
£
 = 1| −1

¤
or have a correct model for either Pr

£
 = 1| −1

¤
or E

h
 −10 |̄ ̄−1

i
.

history, e.g.,


¡
−1  

¢
=  (−1 ) = 1 + 2 + 3−1 + 4−2 + 5−1−2

then E
£
 
¤
under a static strategy  is estimated as

bE £ 
¤
= bE h 0

i
+

X
=0



³
−1 e´

On the other hand, if the structural nested mean model includes terms for 
or we want to estimate E [ ] under a dynamic strategy , then we need to

simulate the  using the algorithm described in Technical Point 21.6.
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21.5 Censoring is a time-varying treatment

Throughout this chapter we have used an example in which there is no cen-You may want to re-read Section

12.6 for a refresher on censoring. soring: the outcomes of all individuals in Table 21.1 are known. In practice,

however, we will often encounter situations in which some individuals are lost to

follow-up and therefore their outcome values are unknown or (right-)censored.

We have discussed censoring and methods to handle it in Part II of the book.

In Chapter 8, we showed that censoring may introduce selection bias, even

under the null. In Chapter 12, we discussed how we are generally interested in

the causal effect if nobody in the study population had been censored.

However, in Part II we only considered a greatly simplified version of cen-Conditioning on being uncensored

( = 0) induces selection bias un-

der the null when  is either a col-

lider on a pathway between treat-

ment  and the outcome  , or the

descendant of one such collider.

soring under which did not specify when individuals were censored during the

follow-up. That is, we considered censoring  as a time-fixed variable. A more

realistic view of censoring is as a time-varying variable 1 2 +1, where

 is an indicator that takes value 0 if the individual remains uncensored at

time  and takes value 1 otherwise. Censoring is a monotonic type of missing

data, that is, if an individual’s  = 0 then all previous censoring indicators

are also zero (1 = 0 2 = 0 = 0). Also, by definition, 0 = 0 for all

individuals in a study; otherwise they would have not been included in the

study.

If an individual is censored at time , i.e., when  = 1, then treatments,

confounders, and outcomes measured after time  are unobserved. Therefore,

the analysis becomes necessarily restricted to uncensored person-times, i.e.,

those with  = 0. For example, the g-formula for the counterfactual mean

outcome E [ ̄] from section 21.1 needs to be rewritten as

X
̄

E
£
 |̄ = ̄ ̄ = 0̄ ̄ = ̄

¤ Y
=0


¡
|̄−1 −1 = 0 ̄−1

¢


with all the terms being conditional on remaining uncensored.

Suppose the identifiability conditions hold with treatment  replaced by

( ) at all times . Then it is easy to show that the above expression

corresponds to the g-formula for the counterfactual mean outcome E
£
 ̄̄=0̄

¤
under the joint treatment (̄ ̄ = 0̄), that is, the mean outcome that would

have been observed if all individuals have received treatment strategy ̄ and

no individual had been lost to follow-up.

The counterfactual mean E
£
 ̄̄=0̄

¤
can also be estimated via IP weighting

of a structural mean model when the identifiability conditions hold for theThe use of the superscript ̄ = 0̄

makes it explicit the causal contrast

that many have in mind when they

refer to the causal effect of treat-

ment ̄, even if they choose not to

use the superscript ̄ = 0̄.

joint treatment
¡
̄ ̄

¢
. To estimate this mean, we might fit, for example, the

outcome regression model

E
£
 | ̄ = 0̄¤ = 0 + 1

¡

¢

to the pseudo-population created by the nonstabilized IP weights  ̄ × ̄

where

 ̄ =

+1Y
=1

1

Pr
¡
 = 0|̄−1 −1 = 0 ̄

¢
We estimate the denominator of the weights by fitting a logistic regression

model for Pr
¡
 = 0|̄−1 −1 = 0 ̄

¢
.

In the pseudo-population created by the nonstabilized IP weights, the

censored individuals are replaced by copies of uncensored individuals with



276 G-methods for time-varying treatments

the same values of treatment and covariate history. Therefore the pseudo-

population has the same size as the original study population before censoring,

that is, before any losses to follow-up occur. The nonstabilized IP weights

abolish censoring in the pseudo-population.

Or we can use the pseudo-population created by the stabilized IP weights

 ̄ ×  ̄ , where

 ̄ =

+1Y
=1

Pr
¡
 = 0|̄−1 −1 = 0

¢
Pr
¡
 = 0|̄−1 −1 = 0 ̄

¢
We estimate the denominator and numerator of the IP weights via two separate

models for Pr
¡
 = 0|̄−1 −1 = 0 ̄

¢
and Pr

¡
 = 0|̄−1 −1 = 0

¢
,

respectively.

The pseudo-population created by the stabilized IP weights is of the same

size as the original study population after censoring, that is, the proportionRemember:

The estimated IP weights  ̄

have mean 1 when the model for

Pr
¡
 = 0|̄−1 −1 = 0 ̄

¢
is correctly specified.

of censored individuals in the pseudo-population is identical to that in the

study population at each time . The stabilized weights do not eliminate

censoring in the pseudo-population, they make censoring occur at random at

each time  with respect to the measured covariate history ̄. That is, there

is selection but no selection bias. Regardless of the type of IP weights used,

in the pseudo-population there are no arrows from  into future  for  

. Importantly, under the exchangeability conditions for the joint treatment¡
̄ ̄

¢
, IP weighting can unbiasedly estimate the joint effect of

¡
̄ ̄

¢
even

when some components of ̄ are affected by prior treatment.

Finally, when using g-estimation of structural nested models, we first need

to adjust for selection bias due to censoring by IP weighting. In practice,

this means that we first estimate nonstabilized IP weights  ̄ for censoring

to create a pseudo-population in which nobody is censored, and then apply

g-estimation to the pseudo-population.



Chapter 22
TARGET TRIAL EMULATION

As discussed in Part I, causal inference from observational data can be viewed as an attempt to emulate a hypo-

thetical randomized trial, which we refer to as the target trial. Since we now have all the tools that are needed

to tackle causal inferences with time-varying treatments, this chapter generalizes the concept of the target trial

to sustained treatment strategies and outlines a unified framework for causal inference, regardless of whether the

data arose from a randomized experimental or an observational study.

This chapter also describes a taxonomy of causal effects that may be of interest when emulating a target trial,

including intention-to-treat and per-protocol effects. Valid estimation of those causal effects generally requires

data on time-varying prognostic factors and treatments, as well as appropriate adjustment for those time-varying

factors using g-methods. It is precisely the development of g-methods that makes the concepts discussed here

something more than a formal exercise: if data are available, the effects of interest can now be validly estimated.

22.1 The target trial (revisited)

To fix ideas, consider a randomized trial to estimate the effect of antiretroviral

therapy on the 5-year risk of death among HIV-positive individuals. Eligible

participants–over 18 years of age, no AIDS, no previous used of antiretroviral

therapy–are randomly assigned to either treatment strategy  or treatment

strategy 0 at the start of follow-up  = 0 (baseline). Their follow-up starts

at the time of assignment and ends at death, loss to follow-up, or 60 months

after baseline, whichever occurs earlier. Of course, as in any trial, not all

participants adhere to the treatment strategies defined in the trial protocol.

That is, there are deviations from protocol.

Our trial is a pragmatic trial. In particular, the participants and their

treating physicians are aware of the treatment they receive (i.e., the treatment

assignment is not blinded), nobody receives a placebo (i.e., both strategies

 and 0 involve either active treatments or no treatment), and participants
are monitored as frequently and intensely as regular patients outside of the

study. A pragmatic trial is preferable when the goal is quantifying the effects

of treatment strategies under realistic conditions, including that physicians and

participants are aware of their care received by the latter.

If conducting this pragmatic randomized trial were not possible, we may

attempt to emulate it through the analysis of existing observational data. We

then refer to the trial as the target trial for our observational analysis.See Hernán and Robins (2016) for

more details about the characteris-

tics of the target trial.

Specifying the protocol of the target trial is a useful device to clarify the

causal question of interest that we wish our observational analysis to answer.

At the very least, we need to specify the following key components of the

protocol: eligibility criteria, start and end of follow-up, treatment strategies,

outcomes of interest, causal contrast, and data analysis plan. Note that a

precise specification of the protocol of the target trial may require some explo-

ration of the available data. For example, only after having determined that

the data included information on HIV diagnosis, we can reasonably propose to

emulate a target trial of HIV-positive individuals.
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Technical Point 22.1

Controlled direct effects. Consider the average causal effect of a treatment  on an outcome  when an intermediate

variable–or mediator– is set to a particular value. We refer to this quantity as the direct effect of  on  not

through . If the mediator  could take two values (0 or 1), then we can define the direct effect of  on  when  is

set to 1 and the direct effect of  on  when  is set to 0. On the additive scale, these two direct effects are defined

by the counterfactual differences E
£
 =1=1

¤− E £ =0=1
¤
and E

£
 =1=0

¤− E £ =0=0
¤
, respectively. These

direct effects, which are often referred to as controlled direct effects, could, in principle, be identified by conducting an

experiment with sequential randomization for both treatment  and mediator , or by emulating such target experiment

using observational data. (Technical Point 22.2 describes other types of direct effects for which no target experiment

exists.)

Suppose we conduct a randomized experiment in which participants are randomly assigned at baseline to either

treatment  = 1 or  = 0 and one month after baseline to either treatment  = 1 or  = 0. Thus all individuals will

be placed in one of four groups: ( = 1  = 1), ( = 1  = 0), ( = 0  = 1), or ( = 0  = 0). The outcome

of interest  is measured at 3 months in all individuals (for simplicity, suppose no individuals were lost to follow-up or

died). This study design allows us to consistently estimate the controlled direct effects because the randomization of

both  and  ensures that the counterfactual quantities E
£
 

¤
= Pr

£
  = 1

¤
are consistently estimated by the

observed risks Pr [ = 1| =  = ].

The controlled direct effects can also be validly estimated in observational studies as long as the identifiability

conditions of consistency, positivity, and exchangeability hold for both  and . A precise characterization of these

identifiability conditions was actually provided in Chapter 19 because a controlled direct effect is just a particular case

of a contrast of treatment strategies sustained over time. To see so, simply replace  and  by 0 and 1 in the above

expressions. More generally, both the treatment  and the mediator  can be time-varying themselves.

We introduced the concept of the target trial in Chapter 3. However,The acronym PICO (Population,

Intervention, Comparator, Out-

come) has been proposed to sum-

marize some of the components of

the target trial (Richardson et al.

1995).

Parts I and II only referred to simplistic target trials that compared time-fixed

treatments. We are now ready to discuss realistic target trials that compare

sustained treatment strategies like 1 “take therapy continuously during the

follow-up, unless a contraindication or toxicity arises” and 0 “refrain from

taking therapy during the follow-up”. The next section defines causal effects

of interest in (real and emulated) randomized trials concerned with sustained

treatment strategies. Additional contrasts of sustained strategies–referred to

as direct effects–are described in Technical Point 22.1.

22.2 Causal effects in randomized trials

Let us review three types of causal effects that may be of interest in a random-

ized trial. To do so, we need some familiar notation. Let  take value 1 if the

individual receives therapy at time  and 0 otherwise, and  take value 0 if

the individual remains uncensored at time  and 1 otherwise, for  = 0 1 2

with  = 59. Our trial will assign eligible individuals to either the strategy

1 “receive treatment  = 1 continuously during the follow-up unless a con-

traindication or toxicity arises” or the strategy 0 “receive treatment  = 0

continuously during the follow-up”. The assignment indicator  takes value 1

if the individual is assigned to 1 and 0 if assigned to 0.

In the previous chapters of Part III, we were interested in the causal effect of

treatment on an outcome  measured at the end of follow-up. Here we extend

our description to causal effects on a failure time outcome. That is, the goal of
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Technical Point 22.2

Natural direct effects and principal stratum direct effects. Besides the controlled direct effects described in

Technical Point 22.1, there exist other definitions of the average direct effect of a treatment  on an outcome  when

a potential mediator  is set to a particular value.

The natural direct effect of  on  not through  is the average causal effect of  on  if the value of  had been

set to the value that  would have taken if  had been set to 0, that is, if  had been set to the value =0 (which is 1

for some individuals and 0 for others). The natural direct effect, defined by the contrast E
h
 =1=0

i
−E

h
 =0=0

i
,

is a cross-world quantity because it requires to consider a counterfactual outcome simultaneously indexed by both  = 1

and  = 0. Therefore, the natural direct effect cannot be identified in a randomized experiment, not even in principle,

and the magnitude of the natural direct effect estimates from observational data cannot be verified. Despite the scientific

impossibility of confirming these estimates, natural direct effects are often the goal of causal mediation analyses. This is

probably because, under strong assumptions, total treatment effects can be decomposed into natural direct and indirect

effects. Natural direct effects were introduced by Robins and Greenland (1992), which referred to them as pure direct

effects; Pearl (2001) renamed them as natural direct effects. For a review, see the book by VanderWeele (2015).

The principal stratum direct effect of  on  if the value of  had been set to  is the average causal ef-

fect of  on  in the subset of the population whose value of  would have been equal to  regardless of the

value of , that is, in the subset of the population with =0 = =1 = . Then the principal stratum direct

effect is defined by the contrast E
£
 =1|=0 = =1 = 

¤ − E £ =0|=0 = =1 = 
¤
, which is equal to

E
£
 =1|=0 = =1 = 

¤ − E £ =0 = 1|=0 = =1 = 
¤
. Note that, unlike the other types of direct effects,

principal stratum direct effects do not involve joint counterfactuals  , just the counterfactuals   in a subset of the

population so, in that sense, they are the total (rather than direct) effect of treatment in that subset of the population.

Principal stratum direct effects have little scientific relevance when  affects  in almost all individuals, because then

they apply to the very small subset of the population with =0 = =1. In practice,  is often coarsened (typically

into a binary indicator) to increase the size of the principal stratum, but coarsening itself may make the principal stratum

direct effect less scientifically relevant. Principal stratum direct effects were introduced by Robins (1986) and popular-

ized by Rubin (2004). Frangakis and Rubin (2002) used the concept of principal stratum as a tool to handle competing

events.

our trial is to estimate the causal effect on survival (see Technical Point 22.3).

Let  be an indicator for death (1: yes, 0: no) by month  = 1 2 + 1.

First, let us consider the effect of assignment to the treatment strategy,

regardless of treatment actually received. This effect, commonly known as theChapter 9 introduced the concepts

of intention-to-treat effect and per-

protocol effect for time-fixed treat-

ments.

intention-to-treat effect, is defined by a contrast of the outcome distribution

under the interventions:

• be assigned to strategy 1 at baseline and remain under study until the

end of follow-up

• be assigned to strategy 0 at baseline and remain under study until the

end of follow-up

The intention-to-treat effect at time  can then be expressed as the contrast

of the counterfactual risks of death Pr
h

=1̄=0̄
 = 1

i
− Pr

h

=0̄=0̄
 = 1

i
under assignment to strategy 1 ( = 1) versus 0 ( = 0) if nobody had been

lost to follow-up through time  (̄ = 0̄).

In some randomized trials, assignment to and initiation of the treatment

strategies occur simultaneously. That is, all individuals assigned to strategy 1
start to receive treatment at time 0, regardless of whether they continue taking

it after baseline, and no individuals assigned to strategy 0 receive treatment at

time 0, regardless of whether they start taking it after baseline. In those cases,
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the intention-to-treat effect is not only the effect of assignment but also the ef-

fect of initiation of treatment, e.g., Pr
h

0=1̄=0̄
 = 1

i
−Pr

h

0=0̄=0̄
 = 1

i
.

The intention-to-treat effect is agnostic about any treatment decisions made

after baseline, including discontinuation or initiation of the treatments of inter-

est, use of non-approved concomitant treatments, or any other deviations from

protocol. This agnosticism implies that the magnitude of the intention-to-treat

effect may heavily depend on the particular patterns of deviation from protocol

that occur during the conduct of each trial. Two studies with the same pro-

tocol but conducted in different settings may have different intention-to-treat

effect estimates with neither of them being biased.

Second, let us consider the effect of receiving the interventions as specified

in the study protocol. We refer to this effect as the per-protocol effect. The

per-protocol effect is defined by a contrast of the outcome distribution under

the interventions:

• receive treatment strategy 1 continuously between baseline  = 0 and

end of follow-up

• receive treatment strategy 0 continuously between baseline  = 0 and

end of follow-up

The per-protocol effect at time  can then be expressed as the contrast of the

counterfactual risks of death Pr
h

1̄=0̄
 = 1

i
−Pr

h

0̄=0̄
 = 1

i
under full

adherence to strategy 1 versus 0 if nobody had been lost to follow-up through

time  (̄ = 0̄).

Sensible trial protocols will not mandate that treatment be continued no

matter what happens to the individual. For example, our strategy 1 of contin-

uous treatment mandates treatment discontinuation when a contraindication

or toxicity arises. That is, the per-protocol effect generally involves the com-

parison of dynamic strategies (“do this, if happens then do this other thing”)

rather than static strategies (“do this, no matter what happens”). Remember

that we already made this point in Fine Point 19.2.

Sometimes the study protocol is not explicit about the dynamic nature of

the treatment strategies. For example, the protocol may simplify the descrip-

tion of strategy 1 as “receive treatment  = 1 continuously during the follow-

up” without explicitly stating that the therapy must be discontinued “when

a contraindication or toxicity arises”. This simplified description of strategy

1 may lead to misunderstandings. Specifically, an individual assigned to 1
who discontinues therapy because of toxicity should not be labeled as someone

who is not adhering to strategy 1. In fact, that person is perfectly adhering

to strategy 1 as (it should have been) stated in the protocol. When doingIdeally, to avoid confusions about

what should or should not be

deemed as nonadherence through-

out the follow-up, the protocol

would fully specify the treatment

strategies of interest. Then the

per-protocol effect would be well-

defined (Hernán and Robins, 2017).

otherwise is not an option in the real world, discontinuation of the originally

assigned treatment or initiation of other treatments cannot possibly be consid-

ered a deviation from protocol. Because the per-protocol effect is defined by

a contrast of realistic strategies, it is particularly relevant for causal inference

research which seeks to provide evidence for decisions in the real world.

In fact, the per-protocol effect is often the implicit target of inference. For

example, often investigators question the fidelity of the interventions imple-

mented in the study to the interventions described in the protocol, and say

that there is “bias”. This language indicates that the investigators are really

interested in comparing the interventions implemented during the follow-up

as specified in the protocol (i.e., the per-protocol effect) and not in the ef-

fect of assignment to the interventions at baseline (i.e., the intention-to-treat
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effect) because nonadherence after baseline cannot possibly bias the effect of

assignment at baseline.

Finally, let us consider the effect of receiving interventions other than the

ones specified in the study protocol. Suppose that, while our trial is being

conducted, a consensus started to emerge that strategy 0 “receive treatment

 = 0 continuously during the follow-up” is inferior to strategy 1. Therefore

some physicians began to recommend initiation of therapy when the clinical

course worsened, e.g., when the CD4 cell count () first dropped below 200

cells/L. As a result, many individuals in the trial who were assigned to strat-

egy 0 actually followed the modified strategy 00 “receive treatment  = 0

continuously during the follow-up but, after   200, switch to treatment

 = 1”. The contrast of outcome distributions under the interventions

• receive treatment strategy 1 continuously between baseline  = 0 and

end of follow-up

• receive treatment strategy 00 continuously between baseline  = 0 and

end of follow-up

corresponds to neither the intention-to-treat effect nor the original per-protocol

effect. Rather, it is a question about the per-protocol effect in a hypothetical

trial in which individuals are randomized to either strategy 1 or 
0
0.

This example illustrates how causal effects of interest that do not corre-

spond to the original per-protocol effect can be conceptualized as per-protocol

effects in target trials that can be emulated using the randomized trial data.

Interestingly, if the strategies of interest differ from those in the actual trial, it

is actually disadvantageous to have all participants in the actual trial adhere

to the strategies specified in the protocol. Specifically, complete adherence im-

plies that the trial data cannot be used to emulate a target trial with a different

protocol (because no individuals followed the protocol of the target trial in the

actual data). For example, a randomized trial with full adherence in which

HIV-positive individuals are assigned to different CD4 cell count thresholds

at which to initiate antiretroviral therapy is of little use to emulate a trial in

which individuals are assigned to either continuous treatment or no treatment,

and vice versa. It is precisely the noncompliance that allows us to use the data

from a given randomized trial to emulate other randomized trials that answer

different, perhaps more relevant, causal questions.

22.3 Causal effects in observational analyses that emulate a target trial

The causal effects described above for randomized trials can be analogously

defined for observational analyses that emulate a target trial.

The observational analog of the intention-to-treat effect is defined by a

contrast of the outcome distribution under the hypothetical interventions

• initiate treatment 0 = 1 at baseline and remain under study until the
end of follow-up

• initiate treatment 0 = 0 at baseline and remain under study until the
end of follow-up

This observational analog of the intention-to-treat effect at time  can then be

expressed as the contrast of the counterfactual risks of death Pr
h

0=1̄=0̄
 = 1

i
−
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Technical Point 22.3

Survival analysis with time-varying treatments. Chapter 17 describes g-methods to estimate the effect of point

interventions on failure time outcomes. Chapter 21 describes g-methods to estimate the effect of sustained treatment

strategies on non-failure time outcomes. In practice, we often need to use g-methods to estimate the effect of sustained

strategies on failure time outcomes. To do so, we need to combine the approaches described in Chapters 17 and 21.

Below we sketch two approaches, based on the g-formula and on IP weighting, to estimate the counterfactual risk

Pr
£
̄
+1 = 1

¤
under treatment strategy ̄ if sequential exchangeability, positivity, and consistency hold. We assume

no censoring for simplicity.

The risk Pr
£
̄
+1 = 1

¤
is identified by the g-formula

X
̄

X
=0

Pr
£
+1 = 0|̄ = ̄  ̄ = ̄  = 0

¤
Y

=0

©
Pr
£
 = 0|̄−1 = ̄−1 ̄−1 = ̄−1−1 = 0

¤

¡
|̄−1 ̄−1 = 0

¢ª


A plug-in g-formula estimate can then be obtained by fitting models for the discrete-time hazards

Pr
£
+1 = 1|̄ = ̄ ̄ = ̄ = 0

¤
and for the conditional density 

¡
|̄−1 ̄−1 = 0

¢
of the confounders

in  over time. For example, as described in Chapter 17, a pooled logistic model can be used to adequately approximate

the hazards. For details and an application of the method, see Young et al. (2011).

An alternative is to fit a pooled logistic model for the hazards in which each individual receives the time-varying

nonstabilized IP weight


̄

 =

Y
=0

1


¡
|̄−1 ̄

¢
or its corresponding stabilized IP weight at each time . The parameters of that model estimate the parameters of a

marginal structural pooled logistic model (Robins 1998). For details and an application of the method, see Hernán et

al. (2001).

Pr
h

0=0̄=0̄
 = 1

i
. That is, it corresponds to the intention-to-treat effect in

a target trial in which assignment to and initiation of the strategies occurs

simultaneously.

The observational analog of the intention-to-treat effect differs slightly from

the intention-to-treat effect in trials in which some individuals assigned to a

particular strategy may never initiate it. In our example, we would estimate an

observational analog of the intention-to-treat effect by comparing individuals

who do and do not initiate antiretroviral therapy at baseline. This observa-

tional effect differs from the intention-to-treat effect of a target trial in which

some individuals assigned to 1 do not take any dose of treatment. Yet a hy-

pothetical intervention on initiation, as opposed to assignment, of treatment

preserves a key feature of the intention-to-treat effect: interventions are defined

solely by events occurring at baseline.

The observational analog of the per-protocol effect is defined identically as

that for the target trial. In randomized trials we differentiated between the

original per-protocol effect and the per-protocol effects in alternative target

trials. In observational studies this difference is unnecessary because, in the

absence of a pre-specified protocol, each per-protocol effect corresponds to a

particular target trial. In general, we can only use observational data to emu-

late target trials whose intended interventions are actually followed by at least
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some individuals in the study. In some settings, however, investigators may be

willing to use modeling, e.g., dose-response structural models, to extrapolate

beyond the interventions that are atually present in the data.

An advantage of defining the causal effects in observational studies in ref-

erence to those in the target trial is that we are then forced to be explicit

about the strategies that are compared. Once we adopt this viewpoint, it isExample: The highly publicized dis-

crepancy between the estimates of

the effect of postmenopausal hor-

mone therapy on heart disease in

observational studies and a ran-

domized trial was partly due to

use of a comparison of “current

users” vs. “never users” in the ob-

servational studies (Hernán et al.,

2008). This comparison is rarely,

if ever, used in randomized tri-

als because a contrast of “preva-

lent users” versus “non-users”, with

prevalent user status changing over

the follow-up, does not generally

correspond to the contrast of two

interventions. Further, such a con-

trast may be particularly sensitive

to selection bias.

obvious that certain comparisons cannot be translated into a contrast between

hypothetical interventions and therefore should be avoided, at least when the

goal of the analysis is to help decision makers. Revisit Sections 3.5 and 3.6 if

necessary.

Another advantage of an explicit definition of causal effects in observational

studies is clarity. As discussed in Fine Point 9.4, there is a widespread view that

the intention-to-treat effect measures the effectiveness of treatment (loosely

defined: the effect of treatment that would be observed under realistic condi-

tions), whereas the per-protocol effect measures efficacy (loosely defined: the

effect of treatment that would be observed under perfect conditions). This view

is especially problematic when interested in sustained treatment strategies: it

is often difficult to argue that a per-protocol effect of sustained strategies in

a realistic setting measures efficacy, or that the intention-to-treat effect in the

presence of uncertainty about the benefits (or harms) of treatment measures

the effectiveness after those benefits (or harms) are proven. As a result, the

labels “effectiveness” and “efficacy” are ambiguous in settings with sustained

strategies over long periods. An explicit definition of the treatment strategies

that define the causal effect of interest is more informative because decision

makers need information about the effect of well-defined causal interventions.

22.4 Time zero

A crucial component of target trial emulation is the determination of the start

of follow-up, also referred to as baseline or time zero, in the observational

analysis. Eligibility criteria need to be met at that point but not later; study

outcomes begin to be counted after that point but not earlier.

In randomized experiments, the time zero for each individual is the time

when they are assigned to a treatment strategy while meeting the eligibil-

ity criteria. For example, in our randomized trial of antiretroviral therapy,

time zero is, the time when the treatment strategies are assigned (the time

of randomization), which usually occurs shortly before, or at the same time

as, treatment is initiated. We do not start the follow-up, say, 2 years before

or after randomization. Starting before randomization would not be reason-

able because the treatment strategies had yet to be assigned at that time and

the eligibility criteria had not been defined, much less met; starting follow-up

after randomization is potentially biased as deaths during the first two years

of the trial would thereby be excluded from the analysis. If treatment had a

short-term effect on mortality, it would be missed. Even more problematic, if

treatment does indeed have a short-term effect, then more susceptible individ-

uals would have died by year 2 in the group assigned to active treatment but

not in the other group. This differential proportion of susceptible individuals

after two years destroys the baseline comparability achieved by randomization

and opens the door to selection bias.

The same rules regarding time zero apply to observational analyses and

randomized trials, and for the same reasons. Generally, the follow-up in the
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observational analysis should start at the time the follow-up would have started

in the target trial. Otherwise the effect estimates may be hard to interpret and

biased because of selection affected by treatment. Nonetheless, how to emulate

the start of follow-up of the target trial is not always obvious. Consider twoFine Point 22.1 describes the han-

dling of strategies that can be ini-

tiated during a grace period after

time zero rather than exactly at

time zero.

main scenarios, depending on how many times the eligibility criteria can be

met throughout an individual’s lifetime:

1. Eligibility criteria can be met at a single time. This is the simplest set-

ting. Follow-up starts at the only time the eligibility criteria are met. For

example, consider a study to compare immediate initiation of antiretro-

viral therapy when the CD4 cell count first drops below 500 cells/L

versus delayed initiation in HIV-positive individuals. The follow-up of

eligible individuals starts the first time their CD4 cell count drops below

500.

2. Eligibility criteria can be met at multiple times. This is the setting

that often leads to confusion. For example, consider a study to compare

initiation versus no initiation of hormone therapy among postmenopausal

women with no history of chronic disease and no use of hormone therapy

during the previous two years. If a woman meets these eligibility criteria

continuously between age 51 and 65, when should her follow-up start?

At age 51, 52, 53. . . ? In the target trial a woman would be eligible to

be recruited at multiple times during her lifetime, i.e., she has multiple

eligible times.

In settings with multiple eligibility times, there are several alternatives to

choose the time zero of each individual among her eligible times. One could

choose as time zero: a) the first eligible time, b) a randomly chosen eligible

time, c) every eligible time, etc. Strategy c) requires emulating multiple nested

target trials, each of them with a different start of follow-up. The number of

nested trials depends on the frequency with which data on treatment and

covariates are collected:

• If fixed schedule for data collection at pre-specified times (e.g., every
two years, like in many epidemiologic cohorts), then emulate a new trial

starting at each pre-specified time.

• If subject-specific schedule for data collection (e.g., electronic medical
records), then choose a fixed time unit (e.g., a day, week or month), and

emulate a new trial starting at each time unit.

From a statistical standpoint, strategy c) can be more efficient than the

previous ones because it uses more of the available data. However, because

individuals may be included in multiple target trials, appropriate adjustment

of the variance of the effect estimate is required. This can be achieved, for

example, via bootstrapping.

22.5 A unified analysis for causal inference

Unifying the causal analysis of randomized and observational studies requires

a common language to describe both types of studies. The concept of the

target trial provides that common language. Aside from baseline randomiza-

tion, there are no other necessary differences between analyses of observational
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Fine Point 22.1

Grace periods. Consider again the study to compare immediate initiation of treatment when CD4 cell count first drops

below 500 cells/L versus delayed initiation. In the real world, antiretroviral therapy cannot be started exactly on the

same day the CD4 cell count is measured. Depending on the health care system, it may take weeks or months until

the requisite clinical and administrative procedures are completed and patients are adequately informed. Therefore,

investigators need to define a grace period (say, 3 months) after time zero during which initiation is still considered to

be immediate. Otherwise the study would be estimating the effect of strategies that do not occur frequently in reality

or that could not be successfully implemented in practice.

A consequence of using a grace period is that an individual’s observed data is consistent with more than one

strategy for the duration of the grace period. For example, in the above study, the introduction of a 3-month grace

period implies that the interventions are redefined as “initiate therapy within 3 months after CD4 cell count first drops

below 500 cells/L” versus “initiate therapy more than 3 months after CD4 cell count first drops below 500 cells/L”.

Therefore an individual who starts therapy in month 3 after baseline has data consistent with both interventions during

months 1 and 2. Had she died during those 2 months, to which arm of the target trial would we have assigned him?

One possibility is to randomly assign him to one of the two arms.

Another possibility is to create two exact copies of this individual–clones–in the data and assign each of the two

clones to a different arm (Cain et al, 2010). Clones are then censored at the time their data stops being consistent with

the arm they were assigned to. For example, if the individual starts therapy in month 3, then the clone assigned to “start

after 3 months” would be censored at that time. The potential bias introduced by this likely informative censoring would

need to be corrected by adjusting for time-varying factors via IP weighting. Importantly, if the individual had died in

month 2, the both clones would have died and therefore the death would have been assigned to both arms. This double

allocation of events prevents the bias that could arise if events occurring during the grace period were systematically

assigned to one of the two arms only.

When using grace periods with cloning and censoring, the intention-to-treat effect cannot be estimated because

almost everyone will contribute a clone to each of the treatment strategies. Because each individual is assigned to all

strategies at baseline, a contrast based on baseline assignment (i.e., an “intention-to-treat analysis”) will compare groups

with essentially identical outcomes. Therefore, analyses with grace period at baseline are geared towards estimating

some form of per-protocol effect.

data that emulate a target trial and of true randomized trials. That is, a

randomized trial can be viewed as a follow-up study with baseline randomiza-

tion and observational longitudinal data as a follow-up study without baseline

randomization.

In fact, only three things distinguish the data from randomized experi-

ments and observational studies. In randomized experiments, (i) no baseline

confounding is expected because of randomization, (ii) the randomization prob-

abilities are known, and (iii) the assignment to a treatment strategy is known

for each individual at baseline. An observational analysis can emulate (i) if

one measures and appropriately adjusts for a sufficient set of covariates, and

(ii) if the model for treatment assignment is correctly specified. Interestingly,

(iii) is not necessary for estimating the per-protocol effect in neither random-Robins (1986) showed that, in a

randomized trial, you can delete the

randomization assignment from the

dataset and still estimate a valid

per-protocol effect if a sufficient set

of confounders was measured.

ized experiments nor observational studies because efficient estimators (that

are functions of the sufficient statistic) do not use this information.

The similarities between follow-up studies with and without baseline ran-

domization are increasingly apparent in the health and social sciences as a

growing number of randomized experiments attempt to estimate the effects of

sustained treatment strategies over long periods in real world settings. These

studies are a far cry from the short experiments in highly controlled settings

that put randomized trials at the top of the hierarchy of study designs in the
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early days of clinical research. Randomized experiments of sustained treatment

strategies over long periods, with their potential for substantial deviations from

protocol (e.g., imperfect adherence to the assigned strategy, loss to follow-up),

are subject to confounding and selection biases that we have learned to asso-

ciate exclusively with observational studies. In particular, when estimating a

per-protocol effect, both randomized trials and observational studies may needTime-varying confounding in obser-

vational studies is a bias with the

same structure as nonrandom non-

compliance in randomized trials.

adjustment for time-varying prognostic factors that predict drop-out (selection

bias) and treatment (confounding).

In view of these similarities, one might expect that randomized experi-

ments and observational studies would be analyzed similarly, except for the

fact that adjustment for baseline confounders is typically necessary in obser-

vational studies. In practice, however, the typical analysis of randomized ex-

periments and observational studies differs radically, which is both perplexing

and, as we argue below, problematic.

A natural question is whether the “intention-to-treat analysis” and the

so-called “per-protocol analysis” commonly used in randomized trials validly

estimate the intention-to-treat effect and per-protocol effect, respectively. In

general, the answer is no. A typical intention-to-treat analysis compares the

distribution of outcomes between randomized groups without any form of ad-

justment for confounding or selection bias. Lack of adjustment for baseline con-

founding is justified by randomization: the randomized groups are exchange-

able because they are expected to have the same risk of the outcome if both

groups had been assigned to the same treatment strategy. No adjustment for

post-randomization confounding (e.g., due to nonadherence) is required be-

cause, again, there cannot be post-randomization confounding for the effect of

baseline assignment.

However, the strategies that define the intention-to-treat effect require that

the individuals remain in the study until their outcome variable can be as-

certained. Thus the intention-to-treat effect estimate may be affected by

post-randomization selection bias if individuals are differentially lost to follow-

up, and prognostic factors influence, or are associated with, loss of follow-

up. Therefore, valid estimation of the intention-to-treat effect may require an

“intention-to-treat analysis” adjusted for post-randomization (time-varying)

prognostic factors to eliminate selection bias from loss to follow-up. When theBecause baseline randomization

cannot ensure exchangeability be-

tween those who are and are not

lost to follow-up after randomiza-

tion, we refer to a naïve intention-

to-treat analysis that does not ad-

just for selection bias as a “pseudo-

intention-to-treat analysis”.

time-varying prognostic factors are affected by prior treatment, an appropriate

adjustment will require the use of g-methods. For example, in a randomized

trial of antiretroviral therapy among HIV patients, the probability of drop-

ping out of the study may be influenced by the onset of symptoms, which is a

consequence of treatment itself.

In addition to the primary “intention-to-treat analysis”, many randomized

trials also report the results of a so-called “per-protocol analysis”. A com-

monly used form of “per-protocol analysis”–also referred to as “on treatment

analysis”–only includes individuals who adhered to the instructions speci-

fied in the study protocol. For point interventions, the analysis includes

only the subset of trial participants who adhered to their assigned baselineThis form of “per-protocol analy-

sis” is a “pseudo-intention-to-treat

analysis” restricted to the subset of

the population who follow the pro-

tocol (the per-protocol population)

with no adjustment for covariates.

intervention–the per-protocol population. Then the analysis compares the

distribution of outcomes between randomized groups in the per-protocol pop-

ulation, typically without any form of adjustment for confounding or selection

bias. For sustained treatment strategies, individuals are censored at the first

time they deviate from the protocol. That is, the remaining per-protocol pop-

ulation at each time is the set of individuals that are still adhering to the

protocol.

This common approach to “per-protocol analysis” is problematic for two
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reasons. First, the analysis, like an “intention-to-treat analysis”, needs to

consider postrandomization selection bias due to differential loss to follow-up.

Second, by restricting to the per-protocol population, the analysis partly dis-

regards the randomized groups and therefore the benefits of randomization:

the subset of individuals who remain on protocol under one strategy may not

be comparable with the subset on protocol under another strategy. That is,

a “per-protocol analysis” is akin to an observational analysis. Therefore, like

any observational analysis, a “per-protocol analysis” needs to consider bias due

to time-varying prognostic factors that affect the decision to stay on protocol.

When these postrandomization factors are affected by the interventions of in-We often refer to a per-protocol

analysis that does not even attempt

to adjust for confounding as a naive

per-protocol analysis.

terest, then g-methods specifically designed to deal with treatment-confounder

feedback are needed. Instrumental variable estimation (Chapter 16) can some-

times be used to validly estimate per-protocol effects of point interventions

without explicit adjustment for postrandomization factors, but the validity of

these methods depends on having a valid instrument and on strong modeling

assumptions. Some forms of instrumental variable estimation are a particular

case of g-estimation (see Technical Point 16.5).

Analogously to the adjusted analyses for randomized trials, observational

analyses need generally be adjusted for both baseline and time-varying prog-

nostic factors using g-methods. The observational analyses are conducted by

using the above approaches but now applied to the target trial. The goal is to

estimate the observational analog of the intention-to-treat and the per-protocol

effect in the target trial.

In summary, the analysis of randomized trials and observational studies

should be similar. If we feel compelled to adjust for time-varying confound-

ing and selection bias in the analysis of observational studies, we should feel

equally compelled to adjust for post-randomization confounding and selection

bias in the analysis of randomized trials. The only necessary difference between

follow-up studies with and without baseline randomization is, precisely, base-

line randomization. That is, adjustment for baseline confounding will not be

generally required in intention-to-treat analyses of randomized trials. However,

adjustment for post-baseline (time-varying) factors will generally be necessary

for per-protocol analyses of both randomized trials and observational studies.

A unified approach to causal inference for sustained treatment strategies is

possible based on the target trial concept and on g-methods.

Historically, randomized experiments have been considered far superior to

observational studies for the purpose of making causal inferences and aiding

decision-making. Unfortunately, randomized experiments are not always avail-

able because they may be expensive, infeasible, unethical, or simply untimely

to support an urgent decision. Therefore, as much as we may like random-

ization, many decisions will need to be made in the absence of evidence from

randomized trials. When we cannot conduct the randomized experiment that

would answer our causal question, we resort to observational analyses. It is

therefore important to use a sound approach to design and analyze observa-

tional studies. Making the target trial explicit is one step in that direction.

When the goal is to assist decision making, the analysis of existing observa-

tional data need to explicitly emulate a trial and be evaluated with respect to

how well they emulate their target trial.
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