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SUMMARY


In medical research, continuous variables are often converted into categorical variables by grouping
values into two or more categories. We consider in detail issues pertaining to creating just two groups,
a common approach in clinical research. We argue that the simplicity achieved is gained at a cost;
dichotomization may create rather than avoid problems, notably a considerable loss of power and
residual confounding. In addition, the use of a data-derived ‘optimal’ cutpoint leads to serious bias. We
illustrate the impact of dichotomization of continuous predictor variables using as a detailed case study
a randomized trial in primary biliary cirrhosis. Dichotomization of continuous data is unnecessary for
statistical analysis and in particular should not be applied to explanatory variables in regression models.
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION


‘Why have researchers continued to ignore methodologists’ advice not to dichotomize their
measures?’ [1]. Measurements of continuous variables are made in all branches of medicine,
aiding in the diagnosis and treatment of patients. In medical research, such continuous
variables are often converted into categorical variables by grouping values into two or more
categories. It seems that the usual approach in clinical and psychological research is to
dichotomize continuous variables, whereas in epidemiological studies it is customary to cre-
ate several categories, often four or �ve, allowing investigation of a possible dose–response
relation.
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Although dichotomization is often done, its practice and implications have often been ig-
nored in texts on medical statistics. In this paper we consider in detail the consequences
of converting continuous data to two groups. We believe that dichotomization of continuous
data is unnecessary for statistical analysis, and for most statisticians is not a natural way of
analysing continuous data. It is done to make the analysis and interpretation of results simple.
Furthermore, clinical decision-making often requires two classes, such as normal=abnormal,
cancerous=benign, treat=do not treat, and so on. Although necessary and sensible in clinical
settings, in a research context such simplicity is gained at a high cost, and may well create
problems rather than solve them. As noted by Weinberg [2], ‘alternative methods that make
full use of the information at hand should indeed be preferred, where they make sense’. Such
approaches include di�erent types of splines, and fractional polynomials [3, 4].
In this paper, we discuss the impact of dichotomization of continuous predictor variables


and present a detailed case study to illustrate the issues.


2. DICHOTOMIZING CONTINUOUS VARIABLES


Dichotomization is widespread in clinical studies [5], but the reasons for its popularity are
largely a matter for speculation. There is to be a general need in clinical practice to
label individuals as having or not having an attribute (such as ‘hypertensive’, ‘obese’, ‘high’
PSA), often preliminary to determining diagnostic or therapeutic procedures. Unfortunately,
this attitude perhaps a�ects the way in which research is done. However, a similar liking for
reducing data to two groups has been observed in other �elds including psychology [6] and
marketing [7].
As it is so common, many researchers may feel that this is in some sense the recommended


approach. They may be inexperienced in analysing continuous variables, and may be unaware
of the considerable range of suitable methods of analysis. Also, they may simply prefer more
familiar and easier analyses. Additionally, among those who are more comfortable with regres-
sion there may be concerns about assuming a linear relation between the explanatory variable
and the outcome. Such an automatic assumption may be wrong, and is neither necessary nor
desirable.


2.1. Perceived advantages of dichotomizing


Various perceived advantages of dichotomizing continuous explanatory variables have been
advanced, but they generally cannot be supported on statistical grounds [6]. The most common
argument seems to be simplicity. Forcing all individuals into two groups is widely perceived to
greatly simplify statistical analysis and lead to easy interpretation and presentation of results.
A binary split leads to a comparison of groups of individuals with high or low values of the
measurement, leading in the simplest case to a t test or �2 test and an estimate of the di�erence
between the groups (with its con�dence interval). In the context of a regression model with
multiple explanatory variables the advantage is not as clear, although the regression coe�cient
(or odds ratio) for a binary variable may be felt easier to understand than that for a change
in one unit of a continuous variable. Likewise the analysis of a single binary variable is much
easier than that of a multi-category variable, which necessitates the creation of several dummy
variables and for which there are several possible coding options and analysis strategies. Such
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relative simplicity may be illusory, however. Even if there are good reasons to suppose that
there is an underlying grouping, dichotomization at the median will not reveal it [6].
MacCallum et al. [6] considered various other weak or false arguments that may be put


forward in support of dichotomization. For example, investigators may argue that because the
analysis of a dichotomized variable is conservative, if a signi�cant relation is found we can
expect that the underlying relation is a strong one. They may also argue that dichotomization
makes sense when the measurement is recorded imprecisely, and would provide a more reliable
measure. This argument is incorrect—dichotomization will reduce the correlation with the
(unknown) true values [6].
Not only are many of the perceived advantages illusory, dichotomization comes at a cost,


as discussed in the next section.


2.2. Disadvantages of dichotomizing


The disadvantages of grouping a predictor have been considered by many authors, includ-
ing References [6–11]. Grouping may be seen as introducing an extreme form of rounding,
with an inevitable loss of information and power. When a normally distributed predictor is
dichotomized at the median, the asymptotic e�ciency relative to an ungrouped analysis is
65 per cent [12]. Dichotomizing is e�ectively equivalent to losing a third of the data, with a
serious loss of power to detect real relationships. If the predictor is exponentially distributed,
the loss associated with dichotomization at the median is even larger (e�ciency is only
48 per cent [12]). Discarding a high proportion of the data is regrettable when many research
studies are too small and hence underpowered. It seems likely that many who do this are
unaware of the implications [6]. Furthermore, dichotomization may increase the probability of
false positive results [11].
When the true risk increases (or decreases) monotonically with the level of the variable


of interest, the apparent spread of risk will increase with the number of groups used. With
just two groups one may seriously underestimate the extent of variation in risk; see Reference
[13, p. 92] and Figure 5 below. Put di�erently, when individuals are divided into just two cat-
egories, considerable variability may be subsumed within each group. Faraggi and Simon [14]
demonstrate a substantial loss of power when a cutpoint model is used to estimate what is in
fact a continuous relationship between a covariate and risk. Furthermore, the cutpoint model
is unrealistic, with individuals close to but on opposite sides of the cutpoint characterized
as having very di�erent rather than very similar outcome. We would expect the underlying
relation with outcome to be smooth but not necessarily linear, and usually but not necessarily
monotonic. Using two groups makes it impossible to detect any non-linearity in the relation
between the variable and outcome.
Lastly, if regression is being used to adjust for the e�ect of a confounding variable,


dichotomization of that variable will lead to residual confounding compared with adjust-
ment for the underlying continuous variable [15–17]. Further issues arise when more than
one explanatory variable is dichotomized. Both of these issues are discussed below.


2.3. Choice of cutpoint for dichotomization


Several approaches are possible for determining the cutpoint. For a few variables there are
recognized cutpoints which are widely used (e.g. ¿25 kg=m2 to de�ne ‘overweight’ based
on body mass index). For some variables, such as age, it is usual to take a ‘round number’,


Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:127–141







130 P. ROYSTON, D. G. ALTMAN AND W. SAUERBREI


an elusive concept which in this context usually means a multiple of �ve or 10. Another
possibility is to use the upper limit of the reference interval in healthy individuals. Otherwise
the cutpoint used in previous studies may be adopted.
In the absence of a prior cutpoint the most common approach is to take the sample median.


However, using the sample median implies that di�erent studies will take di�erent cutpoints
so that their results cannot easily be compared. For example, in prognostic studies in breast
cancer, Altman et al. [9] found 19 di�erent cutpoints used in the literature to dichotomize
S-phase fraction. The median cutpoint was used in 10 studies. The range of the cutpoints was
2.6–12.5 per cent cells in S-phase, whereas the range of 5 ‘optimal’ cutpoints (discussed in
the next section) was 6.7–15.0 per cent. (Incidentally, we note that moving the cutpoint to a
higher value leads to higher mean values of the variable in both groups.)


2.4. ‘Optimal’ cutpoints


The arbitrariness of the choice of cutpoint may lead to the idea of trying more than one value
and choosing that which, in some sense, gives the most satisfactory result. Taken to extremes,
this approach leads to trying every possible cutpoint and choosing the value which minimizes
the P-value (or perhaps maximizes an estimate such as the odds ratio [18]). In practice, the
search may be restricted to, say, the central 80 or 90 per cent of observations [9, 19]. The
cutpoint giving the minimum P-value is often termed ‘optimal’, but it is optimal only in a
narrow sense, and is unlikely to be optimal beyond the sample analysed [9].
Because of the multiple testing the overall type I error rate will be very high, being around


25–50 per cent rather than the nominal 5 per cent [9, 19–21]. Also, the cutpoint chosen
will have a wide con�dence interval and will not be clinically meaningful. Crucially, the
di�erence in outcome between the two groups will be over-estimated, perhaps considerably,
and the con�dence interval will be too narrow. It is possible to correct the P-value for multiple
testing [9, 19–21]. In addition, di�erent types of shrinkage factor can be applied to correct
for the bias and con�dence intervals with the desired coverage can be derived by bootstrap
resampling [22, 23]. However, it is not clear which shrinkage factor is best, and the approach
is complex and little used so far.
Almost all studies using optimal cutpoints derive the cutpoint using univariate analysis


and then use the resulting binary variable in multivariable analysis. Unless adjustment is
made the results will be severely misleading [9]. Mazumdar et al. [24] extend the method of
searching for a cutpoint for one speci�c predictor by adjusting in a multivariable model for
other predictors known to be important. In particular, if a model reduction algorithm is used,
the dichotomized predictor may lead to other, more in�uential variables being displaced. This
data-dependent approach to analysis should be avoided. The strategy has been used frequently
in oncological research.


2.5. Twofold cross-validation method


To evaluate the signi�cance level and the hazard ratio (HR) associated with an ‘optimal’
cutpoint, Faraggi and Simon [14] suggested an approach based on twofold cross-validation.
The main feature is that the cutpoint used to classify an observation is ‘optimally’ selected
from a subset that excludes the observation. The algorithm may be summarized as follows.
The data set is divided at random into two approximately equal subsets. The ‘optimal’ cut-
point is determined within each subset and is used to dichotomize observations in the other
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subset. With this procedure, three usually di�erent ‘optimal’ cutpoints are estimated. The
approach de�nes a single dichotomization for all patients and is used for calculating the HR
and P-value. The ‘optimal’ cutpoint from the original data is retained for later use.
Mazumdar et al. [24] stressed that if the underlying clinical setting is truly multivariable,


the cutpoint search should incorporate other important variables. The same point was made
earlier by Faraggi and Simon [14]. In epidemiological language, one should adjust for such
variables in some way. However, Mazumdar et al. [24] give no suggestions or comments
on how to determine the adjustment model. Mazumdar et al.’s proposed modi�cation of the
Faraggi–Simon method is to search for the three cutpoints as before, but adjusting for these
other variables. Assuming in a simulation study that other correlated variables in�uence the
outcome, they show that their modi�cation improves power and reduces bias in the estimated
HR and the cutpoint when the true model has a cutpoint.
We will exemplify some properties and di�culties of this recent approach in an example


data set.


2.6. Impact of dichotomizing more than one explanatory variable


In practice, there is often more than one continuous explanatory variable in a regression
analysis. The e�ect of dichotomization of two X variables will depend on the correlation
coe�cients between them and the response (Y ), and cannot easily be predicted. Under some
conditions, the inclusion of two dichotomized correlated variables can lead to a spurious
relation between an X variable and Y [1, 6]. It is especially likely to occur when the partial
correlation between one X variable and Y is close to zero. Also, this scenario can lead to
spuriously signi�cant interactions between X variables [1].
These �ndings suggest that regression models with two or more dichotomized continuous


explanatory variables could be seriously misleading, both in respect of which variables are
signi�cant in the model, and perhaps also with respect to the overall predictive ability. If
some of the cutpoints were selected using a data-dependent method, problems would worsen.


3. ILLUSTRATIVE ANALYSES


3.1. PBC data set


We use for illustration data from a randomized controlled trial in patients with primary bil-
iary cirrhosis [25]. Between 1971 and 1977, 248 patients were randomized to receive either
azathioprine or placebo with follow up until 1983. After removing 41 (17 per cent) of cases
with missing values or no patient follow-up, data on 207 patients (105 deaths) in the PBC
data set were available for analysis. We considered as candidate predictors the covariates
age, albumin, bilirubin, central cholestasis, and cirrhosis. Age, albumin and bilirubin were
continuous measurements and the other two were binary. The data were analysed by Cox
regression.


3.2. Multivariable analysis of continuous and categorical predictors


To build a model involving a mix of continuous and binary predictors, we used the multivari-
able fractional polynomial (MFP) algorithm [4, 26]. In brief, the aim is to keep continuous
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predictors continuous in the model. To do this successfully, potentially non-linear relationships
must be accommodated. One approach is by using fractional polynomial functions. Univari-
ate fractional polynomial models (see Reference [27] for a short introduction) were extended
Reference [26] to allow simultaneous estimation of fractional polynomial functions of sev-
eral continuous covariates. The user must prespecify the maximum complexity (degree) of
fractional polynomial for each continuous predictor (usually 2), and the nominal signi�cance
level for testing variables and functions (often 0.05). The algorithm removes unin�uential
predictors by applying backward elimination at the prede�ned signi�cance level. It proceeds
cyclically. The signi�cance and functional form of each continuous predictor in turn are
determined univariately, adjusting for all continuous and categorical predictors currently in
the model. Convergence occurs when no further changes to selected variables and their frac-
tional polynomial transformations take place. Convergence typically requires two to three
cycles.


3.3. Multivariable analysis of the PBC data


For comparison with cutpoint approaches, we developed a multivariable prognostic model
for the PBC data by applying the MFP procedure just outlined. We took a second-degree
fractional polynomial as the most complex permitted function, and selected variables and
functions of continuous variables by using a nominal P-value of 0.05. All models were ad-
justed for randomized treatment. The Cox model selected by the MFP procedure comprised
cirrhosis, central cholestasis, age (untransformed), and log bilirubin. Albumin was not statisti-
cally signi�cant when tested in the form of its best-�tting second degree fractional polynomial
function, and was eliminated. At the �nal cycle of the algorithm, the test of a second degree
fractional polynomial for bilirubin versus a linear function had �2 = 27:9 on 3 degrees of
freedom (d.f.) (P¡ 0:001), clear evidence that a straight line was not an adequate �t for this
variable. The test of a �rst degree fractional polynomial versus the second degree function had
�2 = 0:1 on 2 d.f. (P=0:9), showing that the simpler (logarithmic) function was acceptable.


3.4. ‘Optimal’ cutpoint for age


We �rst consider deriving an ‘optimal’ cutpoint for age. The model �2 was found for each
candidate cutpoint in the central 90 per cent of observations ranging from 41 to 69 years, �rst
univariately, then adjusting for the other factors (cirrhosis, central cholestasis, log bilirubin
and treatment) from the MFP model. We de�ne a binary variable representing dichotomization
of X at X ∗ as 0 if X 6 X ∗ and 1 otherwise.
The top left panel of Figure 1 shows that the ‘optimal’ cutpoint in a univariate analysis is


at 45 years, with a �2 of about 10. After adjusting for three variables and treatment (Figure 1,
top right panel) the ‘optimal’ cutpoint shifts to 65 years and has a �2 value of about 20. The
�2 values are very unstable and are not conventionally signi�cant for several cutpoints. Note
that 52 years is nearly as good as the ‘optimal’ cutpoint in the adjusted analysis. The estimated
HR �uctuates widely across cutpoints, particularly in the adjusted analysis (Figure 1, bottom
right panel). When the cutpoint on age is large, the risk for patients classi�ed as ‘old’ is
much increased, but only a few patients fall into such a subgroup. For example for a cutpoint
of 65 years, only 14.5 per cent of patients would fall into the ‘old’ group.
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Figure 1. Derivation of the ‘optimal’ cutpoint for age, unadjusted (left panels) and adjusted for three
other prognostic factors and treatment (right panels). Upper panels show the �2, the lower and upper
horizontal lines denoting the critical values of the �2 distribution on 1 d.f. for testing signi�cance at
the 5 and 1 per cent levels, respectively. Lower panels show the HR for comparing ‘old’ with ‘young’


age by using dichotomization at the di�erent ages shown.


3.5. Evaluation of the twofold cross-validation method


We applied Mazumdar et al.’s [24] extension of Faraggi and Simon’s [14] twofold cross-
validation procedure in 50 replicates to estimate the log HR and its 95 per cent con�dence
interval, adjusting for three prognostic variables and treatment. A di�erent random number seed
was used each time. The results are plotted ordered by the HR in Figure 2. The estimated HR
has a large variance between replicates and a positively skew distribution, making it unclear
how large the in�uence of age is. The median HR is 1.8, and this may be compared with the
value of 4.2 for the ‘optimal’ cutpoint (see Figure 1, bottom right panel).
Figure 3 compares the cutpoints obtained in the two subsets across the 50 replications.


About one half of the paired cutpoints are identical. Ignoring the arbitrary ordering between
‘�rst’ and ‘second’ cutpoints, most (41=50) of the paired cutpoints are very di�erent, with one
cutpoint, in the lower group, around 52 years and the other around 65 years. In only 1=50
replications was the same cutpoint (65 years) chosen in both halves. It is questionable whether
estimates of HRs and P-values based on dichotomizations from such di�erent cutpoints in the
two halves have any merit.
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Figure 2. Ranked estimated HR for age in 50 replicate runs of the twofold cross-validation procedure,
with 95 per cent con�dence intervals.


Figure 3. Pairs of ‘optimal’ cutpoints for age in random halves of the PBC data, adjusting for
three prognostic variables and treatment. The area of each circle is proportional to the number of


coincident observations plotted there.
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3.6. Derivation of risk groups


There is no obvious reason to produce a prognostic model with one or more categorized
continuous variables when the resulting linear predictor will still take many values. However,
there is a real point in creating risk groups from such a model—not least, as an aid to
making clinical decisions about therapy. Accordingly, we prefer �rst to derive a continuous
risk score from a model in which all relevant covariates are kept continuous, and then to
apply categorization at the �nal step. Patients are divided into several groups for clinical
application by applying cutpoints to the risk score. Royston and Sauerbrei [28] suggest an
approach to choosing a ‘reasonable’ number of risk groups loosely based on the idea that
the HR between neighbouring groups should be statistically signi�cantly di�erent from 1. In
the present example, it turns out that four groups is the maximum that may be entertained
to maintain such separation of the hazard between neighbouring groups. Figure 4 shows
Kaplan–Meier survival curves for four groups with equal numbers of events in each, derived
from a risk score calculated from the MFP model. The patients separate nicely into low,
low intermediate, high intermediate and high risk groups, the probability of surviving 3 years
ranging from about 25 to 90 per cent.


3.7. Adjustment of a treatment e�ect


The PBC data originate from a randomized controlled trial of azathioprine versus placebo.
In PBC, serum bilirubin concentration is a powerful predictor of survival time, and even
slight imbalance in this factor between randomized groups could induce bias in the estimated
treatment e�ect. There was indeed a small imbalance between the groups in log bilirubin
of 0.23 SD units. Estimating the treatment e�ect within a multivariable model is the usual
approach to adjusting for the imbalance. We assessed the robustness of the estimated treatment
e�ect to alternative ways of modelling the prognostic e�ect of bilirubin. Table I shows the


Figure 4. Prognostic groups for PBC data based on categorizing the risk score from the MFP model.
Groups 1–4 contain 103, 39, 36 and 29 patients, respectively, with 26, 26, 27 and 26 events (deaths).
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Table I. Estimated treatment e�ect in PBC data using di�erent confounder models.


Model no. Adjustment for bilirubin HR for treatment 95 per cent CI P-value for treatment


1 None 0.83 0.57, 1.22 0.348
2 Median cutpoint 0.76 0.51, 1.12 0.170
3 ‘Optimal’ cutpoint 0.72 0.49, 1.06 0.094
4 Four groups 0.67 0.45, 0.99 0.046
5 Eight groups 0.58 0.38, 0.87 0.009
6 Linear 0.61 0.41, 0.91 0.015
7 Quadratic 0.58 0.39, 0.86 0.007
8 FP1 0.61 0.41, 0.90 0.014
9 FP2 0.60 0.40, 0.89 0.011
10 Spline with 4 e.d.f. 0.59 0.39, 0.87 0.008
11 Multivariable (MFP) 0.61 0.41, 0.90 0.014


The strong prognostic factor bilirubin is handled di�erently in each model, whereas identical adjustment for
age, cirrhosis and central cholestasis is applied. See text for details.


results of the investigation with 11 di�erent adjustment models. In model 1 no adjustment is
applied. In models 2–10, adjustment is done for age (linear), cirrhosis and central cholestasis
together with various transformations of bilirubin: median cutpoint (32mmol=l), ‘optimal’
univariate cutpoint (45mmol=l), four and eight equal-sized groups, linear, quadratic, FP1, FP2
and spline functions. In model 11, adjustment is by a multivariable model derived by the MFP
approach. The notation ‘FPm’ denotes a fractional polynomial function of degree m, i.e. with
m terms. The best FP1 and FP2 models for bilirubin were �1 ln X and �1X 0:5 +�2X 0:5 ln X ,
respectively. The spline model was a generalized additive model (GAM) [3] using a cubic
smoothing spline for bilirubin with four equivalent d.f. Model 1, with no adjustment, gives
the smallest estimated treatment e�ect. Models 2–4, with adjustment using categorization
models, give HRs for comparing treatments rather closer to 1 than models 5–11, which have
adjustment for bilirubin with many (8) groups or on a continuous scale. The treatment e�ects
agree closely between models 5 and 11, even when the misspeci�ed linear function is used for
bilirubin. Both cutpoint adjustment models perform quite poorly. Even four groups (model
4) are not enough to abolish the e�ect of the imbalance in bilirubin. The large di�erences
between the unadjusted model and the ‘successfully’ adjusted models 5–11 indicate that this
study is a rather extreme example of a trial in which randomization did not completely balance
the two treatment groups with respect to disease severity. The e�ect is analogous to residual
confounding in epidemiological studies [15–17]. The unadjusted treatment e�ect has a P-value
of 0.35, whereas the adjusted e�ects for models 5–11 have P-values of around 0.01.


3.8. Loss of information due to dichotomization


We compared the information content and ability to discriminate outcomes between three
models for the PBC data. All models included the two continuous and two binary prognostic
factors identi�ed by the MFP procedure, and treatment. In model 1 both age and bilirubin were
dichotomized at the median. In model 2 ‘optimal’ cutpoints, determined univariately, replaced
median cutpoints. Model 3 was an MFP model with all continuous variables retained as
continuous (see Section 3.3). Table II shows the model �2 statistic (calculated from di�erences
in twice the log partial likelihood), c-index, D measure of separation [28] and its associated
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Table II. Quantifying the loss of information in two cutpoint models for the PBC data, compared
with model 3 in which continuous variables were retained as continuous.


Model 1 Model 2 Model 3
Measure Median cutpoint ‘Optimal’ cutpoint Continuous


Model �2 94.6 99.2 136.8
c-index 0.778 0.774 0.814
D 1.91 2.02 2.55
R2D 0.465 0.494 0.608


Figure 5. Functional form of the e�ect of bilirubin on the relative hazard according to the ‘op-
timal’ cutpoint of 45mmol=l (determined univariately) and three continuous models (adjusted for
three other prognostic factors and treatment). Functions are standardized such that the HR is
1 at the mean bilirubin (61.9mmol=l). The short vertical lines on the horizontal axis indicate


the values of bilirubin measurements.


R2D measure of explained variation. The increase in model �
2 for the continuous model 3


compared with both cutpoint models is ¿37, and the variance explained by model 3 is much
higher. The c-index does not show the di�erences between models so clearly. The loss of
information due to dichotomization is slightly less with ‘optimal’ cutpoints. The estimated
treatment e�ect within models 1–3 is 0.74, 0.76 and 0.61, respectively.


3.9. Functional form


It is of interest to compare a cutpoint model for bilirubin with the continuous functions
estimated by methods retaining continuous predictors as continuous. Figure 5 compares the
univariate ‘optimal’ cutpoint (45mmol=l) with linear and spline functions, and the function
(here, log) selected by MFP. Clearly, the e�ect of bilirubin according to the cutpoint model
is unrealistic. Also, the associated HR of 4.2 seems greatly to underestimate the range of
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hazards seen with the continuous functions. Furthermore, none of the estimated continuous
functions o�ers any justi�cation for the data-driven choice of 45 mmol=l as a cutpoint. For
most values of bilirubin above the mean, the straight line model probably underestimates the
hazard. The MFP and spline models generally agree closely, but the spline model suggests a
biologically implausible reduction in hazard for very high values of bilirubin.


4. DISCUSSION


It is well recognized in the methodological literature that dichotomization of continuous vari-
ables introduces major problems in the analysis and interpretation of models derived in a
data-dependent fashion. Nevertheless, dichotomization of continuous variables is widespread
in clinical research. Problems include loss of information, reduction in power, uncertainty in
de�ning the cutpoint, arriving at a biologically implausible step function as the estimate of
a dose–response function, and the impossibility of detecting a non-monotonic dose–response
relation. Uncertainty in how to select a ‘sensible’ cutpoint to group a continuous variable into
two classes has led researchers to use either the median or an ‘optimal’ cutpoint. The latter
approach gives a highly in�ated type 1 error probability, together with biased parameter esti-
mates and variances that are too small [9, 11]. Although some remedies for these di�culties
have been developed [9, 21–23], none of the authors of these papers actually recommends
the use of ‘optimal’ cutpoints with their proposed corrections. In general, the situation seems
hardly to have improved since the advice in 1993 of Maxwell and Delaney [1] to avoid
dichotomization, quoted at the beginning of this paper.
Faraggi and Simon [14] put forward a method in which ‘optimal’ cutpoints are determined


in three samples (overall and in two subsamples). The cutpoint determined in the overall
sample is meant to be used in general applications. These authors showed by simulation that
a realistic P-value and a nearly unbiased estimate of the HR are obtained by twofold cross-
validation. ‘Optimal’ cutpoints are found separately in each subset, and the cutpoint from
one subset is then used to classify patients in the other subset. Because the cutpoint used to
dichotomize the patients in a given subset is determined independently of these patients, the
P-values and HR estimates from dichotomized data in the overall sample are claimed to be
approximately valid. Unfortunately, this ingenious idea for coping with problems in statistical
analysis introduces fresh di�culties in interpretation and general use. In 41=50 replicate runs
of the procedure in the PBC study, we obtained an ‘optimal’ cutpoint for age in one subset of
about 52 years and a corresponding value of around 65 years in the other. A patient aged 60
would be classi�ed as ‘young’ in one subset and ‘old’ in the other. The ‘optimal’ cutpoint in
the overall sample is 65, but the �2 value for the cutpoint 52 is nearly as large (20.3 versus
20.7).
Recently, Mazumdar et al. [24] extended Faraggi and Simon’s approach by �nding the


‘optimal’ cutpoint for a variable of interest in a multivariable setting with adjustment for
other factors. Assuming an underlying cutpoint model and a multivariate correlation structure
between several continuous variables, they showed by simulation that the power was increased
and estimates of the HR and the cutpoint were less biased when compared with the univariate
approach. They also compared it with a split-sample approach. In the latter, an ‘optimal’
cutpoint is determined in a 50 per cent random subsample and used to classify patients in
the complementary half. Compared with cross-validation, the split-sample method had lower
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power and more biased estimates of the HR and cutpoint. The �ndings are as expected, since
in the split-sample method, the sample size for the estimates and tests is reduced by half
(see Reference [29] for further arguments against such an approach). Unfortunately, Mazumdar
et al. [24] do not mention how to de�ne the multivariable model. In an example in which
identi�cation of a group of patients at high risk of relapse from prostate cancer was required,
they note that the search for a cutpoint for lactate dehydrogenase (LDH) gave di�erent results
in the univariate and multivariable settings. In the penultimate sentence of their paper, they
stress that ‘to incorporate the new markers in the decision-making process, categorization
of these variables is essential’. We feel that this statement contradicts their own simulation
results in which they demonstrate a substantial loss of power when a cutpoint model is used
in cases where a smooth relationship exists between a continuous covariate and the outcome.
Instead of dichotomizing a continuous variable, we prefer to obtain a prognostic index by


methodology which combines selection of variables with selection of functions for continuous
variables [4, 26]. As stated in an editorial [2] in an epidemiological journal a decade ago, ‘these
elegant approaches [fractional polynomials and splines] merit a larger role in epidemiology.’
Clinical researchers should in general avoid dichotomization at the model-building stage and
adopt more powerful methods. In our analysis of the data from the PBC study, we compared
several di�erent approaches to creating a prognostic index. Explained variation was smallest
for the model based on the median cutpoint, 6 per cent higher for the index derived with
the ‘optimal’ cutpoint and 31 per cent higher for the MFP model. Although these �gures
will be slight over-estimates because no allowance has been made for data-dependent model-
building, the advantage of using full information is obvious. We agree that medical decision-
making often requires categorization of data, e.g. to de�ne a high-risk group of patients for
a clinical trial, as in Reference [24] example. However, categorization should be applied
to the prognostic index, not to the original prognostic variables. Not to do so risks a loss
of discrimination through ine�cient use of the full information available with a continuous
prognostic index.
By estimating the treatment e�ect in the PBC data within di�erent adjustment models, we


showed that the method used to adjust for an unbalanced, strongly prognostic variable can in-
�uence the result. Adjustment for bilirubin dichotomized at the median cutpoint does not fully
correct for imbalance. Epidemiologists would state that there was residual confounding. Use
of more groups or the full information from the continuous variable further reduces residual
confounding and results in larger estimates of the treatment e�ect. This �nding agrees with
simulation studies in the epidemiological literature on the ability to reduce residual confound-
ing by categorized variables [15, 17, 30]. Brenner and Blettner [17] state that ‘inclusion of the
confounder as a single linear term often provides satisfactory control for confounding even
in situations in which the model assumptions are clearly violated. In contrast, categorization
of the confounder may often lead to serious residual confounding if the number of categories
is small.’ The most extreme situation of two categories seems to have been abandoned in
epidemiological studies.
For model building with continuous data, software is available for methods such as mul-


tivariable fractional polynomials [31, 32] and GAMs (e.g. in S-plus and R). Royston and
Sauerbrei [33] demonstrated in a detailed resampling study that over-�tting and the resulting
instability need not be a serious issue with MFP models. Even the use of conventional polyno-
mials would in general improve on dichotomization. These methods should replace analyses
using dichotomized continuous variables. Preference for one particular approach should be
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guided by parsimony, an important criterion for selecting the simplest adequate descriptor of
a functional form [2].
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SUMMARY


This paper demonstrates an in�ation of the type I error rate that occurs when testing the statistical
signi�cance of a continuous risk factor after adjusting for a correlated continuous confounding variable
that has been divided into a categorical variable. We used Monte Carlo simulation methods to assess the
in�ation of the type I error rate when testing the statistical signi�cance of a risk factor after adjusting
for a continuous confounding variable that has been divided into categories. We found that the in�ation
of the type I error rate increases with increasing sample size, as the correlation between the risk factor
and the confounding variable increases, and with a decrease in the number of categories into which
the confounder is divided. Even when the confounder is divided in a �ve-level categorical variable, the
in�ation of the type I error rate remained high when both the sample size and the correlation between
the risk factor and the confounder were high. Copyright ? 2004 John Wiley & Sons, Ltd.


KEY WORDS: logistic regression; type I error rate; categorical variables; measurement error;
confounding; epidemiologic methods


INTRODUCTION


Investigators in epidemiology and clinical research are frequently interested in determining the
association between risk factors and dichotomous outcomes after adjusting for confounders. A
confounder is de�ned to be a variable that is a risk factor for the outcome under consideration
and that it is associated with the principal risk factor under examination [1]. Risk factors and
confounders can be either continuous (e.g. age, income, number of cigarettes smoked per day,
blood pressure, heart rate, body mass index) or categorical (e.g. gender, ethnicity, exposure
to a speci�c medication or agent, history of heart disease). Investigators frequently collapse
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underlying continuous variables into discrete categorical variables for use as independent pre-
dictor variables in regression models. This paper shows that attempting to ‘control’ for such
categorized confounding variables in a logistic regression can result in an in�ated type I error
rate when testing for risk factors.
Suppose one is testing for the signi�cance of a potential risk factor, controlling for a


confounder. In reality, the risk factor is related to the outcome only because of its correlation
with the confounder. An appropriate test of the risk factor, controlling for the confounder,
should be signi�cant only 5 per cent of the time. However, if the confounder is categorized,
the test of the risk factor can be signi�cant considerably more often. That is the primary
message of the present paper.
It is known that dichotomizing a continuous confounder in either ordinary linear regression


[2] or in logistic regression [3] can result in biased estimation. Although there is a connection
between biased estimation and increased type I error rate, all the discussions of residual
confounding that we have seen leave the connection implicit.
In this paper, we have concentrated on hypothesis testing rather than estimation. We did this


because we believe that many biomedical and epidemiologic researchers inhabit a world where
statistical signi�cance is a necessary condition for publication and other public discussion of
trends in their data. Thus, they are very concerned with possible in�ation of the type I
error rate, because it represents an avenue by which random noise may achieve the status of
scienti�c fact. Bias in estimation, on the other hand, may be perceived as a technical issue
related to sampling from large, �ctitious populations.
We have also con�ned our attention in this paper to logistic regression. This is because so


many outcomes in biomedical and epidemiologic research are binary rather than continuous
(disease recurred or did not; patient lived or died; etc.). We discuss the case of continuous
outcomes in other papers that are published [4], in press [5] or in preparation.
Why would a continuous independent variable be re-coded into categories? Clearly, infor-


mation is discarded when this is done [6], and investigators are often encouraged to emphasize
continuous variables over categorical ones [7]. Exceptions to this rule include sensitive vari-
ables such as income [8], and alcohol [9], tobacco consumption [10] or drug use [11]. Inves-
tigators frequently convert variables initially collected as continuous variables into categorical
variables by grouping patients into two or more groups. One justi�cation for this procedure is
that it avoids having to specify the nature of the relationship between the predictor variable
and the outcome of interest.
However, there are several drawbacks to this approach [6]. In addition to the loss of


information mentioned above, the results of the analysis can vary depending on the cutpoints
that are used. Indeed, a search for an optimal cutpoint results in an over-estimation of the
statistical signi�cance of the association between the risk factor and the outcome [6, 12, 13].
The purpose of the current study was to use Monte Carlo methods to assess the in�ation


of the type I error rate when the statistical signi�cance of a continuous risk factor is assessed
using a logistic regression analysis that adjusts for a categorization of a correlated confounding
continuous variable. Our intent was also to explore design factors that might amplify or reduce
this e�ect. Here, the existing literature provides some guidance.
Cochran [14] explored the use of subclassi�cation to eliminate the bias when comparing


the means of an outcome between two groups. It was shown that dividing a continuous
confounder into 2, 3, 4, 5, and 6 subclasses eliminated approximately 64, 79, 86, 90 and 92
per cent of the bias in the estimate of the di�erence in the means of the outcome between
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the two groups, respectively. Therefore, we explore the e�ect of number of categories when
a continuous confounder is categorized.
Becher [3] studied the presence of residual confounding in logistic regression analyses when


a continuous confounder was divided into a categorical variable. Using simulations, it was
shown that as the correlation between the continuous confounder and the continuous risk
factor increased, the degree of residual confounding increased. We would expect the type I
error rate to be similarly a�ected, and so the degree of correlation between confounder and
risk factor is a factor in our study.
Earlier work by the authors has shown that if two predictor variables are correlated with


one another, and if the �rst predictor variable is subject to a ceiling e�ect (a ceiling e�ect is
said to occur when, rather than observing the true variable X , one observes X ′, where X ′=X
if X¡c and X ′= c otherwise [4, 5]), and if the outcome of interest is associated with only
the �rst predictor variable, then a conventional linear model that ignores the ceiling e�ect to
which the �rst variable is subject, will result in an in�ation of the type I error rate when
testing the statistical signi�cance of the second independent variable [4]. Furthermore, the
in�ation of the type I error rate will increase with increasing sample size. This is in contrast
to what happens in other domains, where increasing sample size ameliorates the e�ect of
incorrect distributional assumptions. Consequently, sample size is an important factor in the
present study.
The paper is divided into three sections. In the �rst section, we describe the Monte


Carlo simulations that were performed. In the second section, we summarize our �ndings
from the Monte Carlo simulations. In third section, we discuss our �ndings and present our
conclusions.


METHODS


Monte Carlo simulations were used to assess the impact of reducing a continuous confound-
ing variable into a categorical variable on the assessment of the statistical signi�cance of a
continuous risk factor that is actually unrelated to a binary outcome of interest.
We designed our Monte Carlo simulations so as to simulate a cohort study. In the Monte


Carlo simulations we assumed a sample size of N . Furthermore, we assumed that two nor-
mally distributed independent variables were correlated with one another, with correlation
coe�cient �. The �rst normally distributed variable, about which we wish to make infer-
ences, will be termed the risk factor. The second normally distributed variable will be termed
the confounder. We wish to estimate the statistical signi�cance of the association between
the risk factor the outcome of interest, which was a binary outcome (such as diseased=not-
diseased, dead/alive, etc.). However, in the scenarios that we examined, only the confounding
variable was associated with the outcome of interest. Data were generated as follows:


1.
(X1i
X2i


) ∼MVN((0
0


)
;
( 1
�


�
1


))
, for i=1; 2; : : : ; N .


2. logit(pi)=�0 + �1X1i + �2X2i, for i=1; 2; : : : ; N .
3. Yi ∼Bernoulli(pi), for i=1; 2; : : : ; N .


Thus, for each of N subjects, we generated two independent predictor variables and an ob-
served binary outcome. We examined the following relationships between the confounder, the
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Figure 1. Linear scenarios.


risk factor and the likelihood of the outcome:


1. �0 = 0; �1 = 0, and �2 = 3:0 (full-range scenario 1).
2. �0 = 0; �1 = 0, and �2 = 1:0 (full-range scenario 2).
3. �0 = 0; �1 = 0, and �2 = 0:5 (mid-range scenario).
4. �0 =−2:9; �1 = 0, and �2 = 0:5 (rare scenario 1).
5. �0 =−2:9; �1 = 0, and �2 = 1:0 (rare scenario 2).


These �ve scenarios are illustrated in Figure 1. For the two full-range scenarios, the probability
of the outcome is allowed to range from very low to very high, with the �rst full-range
scenario allowing for more extreme probabilities. For the two rare scenarios, the probability
of the outcome is low for the majority of subjects. Finally, for the mid-range scenario, the
probability of the outcome is moderate for the large majority of subjects. The �rst full range
scenario shall be considered the primary analysis, while the remaining four scenarios shall be
considered secondary analyses.
Data were generated such that for any �xed level of the confounder (X2), the likelihood


of the outcome of interest was independent of the risk factor of interest (X1), and positively
associated with the confounding variable (X2). Furthermore, the two independent variables
were generated such that they were correlated with one another, with correlation coe�cient
�. Thus X2 satis�es the de�nition of a confounder for the risk factor X1 [1].
Once data had been randomly generated using the above data-generating process, the con-


founding variable was changed from a continuous variable to a categorical variable. This was
done in four di�erent fashions. First, it was changed to a binary variable using the median.
Hence, the �rst category contained the 50 per cent of the subjects whose value of X2 lay at
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or below the median value for X2, while the second category contained those subjects whose
value of X2 lay above the median value for X2. Second, it was reduced to a three-level cate-
gorical variable by using the observed tertiles of the independent variable X2. Hence, the �rst
category contained those subjects whose value of X2 lay at or below the 33rd percentile of
the distribution of X2, while the second category contained those subjects whose value of X2
lay above the 33rd percentile and at or below the 66th percentile of the distribution of X2.
Third, it was reduced to a four-level categorical variable using the quartiles of the observed
independent variable X2. Fourth, it was reduced to a �ve-level categorical variable using the
quintiles of the observed independent variable X2.
We then �t �ve separate logistic regression models to the randomly generated data. First,


we �t a regression model that contained the two original variables X1 and X2, each treated as
a continuous variable. Second, we �t a regression model that contained X1 (the risk factor)
as a continuous variable and X2 (the confounder) as a two-level categorical variable. Third,
we �t a regression model that contained X1 as a continuous variable and X2 (the confounder)
as a three-level categorical variable. Fourth, we �t a regression model that contained X1 as a
continuous variable and X2 (the confounder) as a four-level categorical variable. Fifth, we �t
a regression model that contained X1 as a continuous variable and X2 (the confounder) as a
�ve-level categorical variable. When X2 was changed to a k-level categorical variable, k − 1
indicator variables were created to represent the lower k − 1 levels of the variable.
For each of the �ve logistic regression models �t to the randomly generated data, we


performed the standard likelihood ratio test of the null hypothesis: H0 :�1 = 0, testing the risk
factor controlling for the confounder. This process was repeated 1000 times. For each of the
�ve scenarios (X2 as a continuous variable, and X2 as a 2-, 3-, 4-, and 5-level categorical
variable), we then determined the proportion of times that H0 :�1 = 0 was rejected at the
�=0:05 level.
The Monte Carlo simulations used a full factorial design in which the following factors were


allowed to vary: the sample size (N ), the correlation coe�cient between the two independent,
normally distributed variables (�), and the number of categories into which X2 was categorized.
One might think of the last factor as a ‘within-subject’ factor.
In the �rst full-range scenario, which was considered the primary analysis, the sample size


was allowed to take on the following values: 100, 500, 1000, and 5000. For the remaining
scenarios, the sample size was allowed to take on the following values: 500 and 5000. The
correlation coe�cient was allowed to take on the following values: 0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, and 0.9. Thus, we examined 40 di�erent settings for the �rst full-range
scenario (four sample sizes× 10 correlation coe�cients), and 20 di�erent settings for the other
scenarios. For the �rst full-range scenario, 1000 randomly generated data sets were created for
combination of sample size and correlation, and the �ve di�erent logistic regression models
were �t to the data. For the other scenarios, 500 randomly generated data sets were created
for each combination of sample size and correlation. For the �rst full-range scenario, we
repeated the above analyses, allowing the correlation coe�cients to take on the following
values: 0; −0:1; −0:2; −0:3; −0:4; −0:5; −0:6; −0:7; −0:8, and −0:9. Thus, we could
examine the impact of a negative correlation between the confounder and the risk factor on
the in�ation of the type I error rate. In this set of simulations we used 500 Monte Carlo
simulations in each setting of the factorial design.
The proportion of times that the null hypothesis was rejected is a Monte Carlo assessment of


the actual type I error rate. If the statistical test of signi�cance had its advertised signi�cance
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level, then one would anticipate that, on average, one would reject the null hypothesis in
approximately 5 per cent of the simulations.
The Monte Carlo sample size of 1000 is justi�ed by the following power analysis. If the


true type I error rate is 0.10 or more, then with 1000 simulations, the probability of detecting
it as signi�cantly di�erent from 0.05 is greater than 0.99. We based our power calculations
on a true type I error rate of 0.10 because it represents a fairly serious problem, roughly like
using a one-sided test when a two-sided test is more appropriate. Even with 500 simulations
the probability of detecting it as signi�cantly di�erent from 0.05 is greater than 0.98. Five
hundred Monte Carlo simulations were used for the secondary analyses in order to reduce the
computational burden of the simulations.
The above analyses were repeated with the continuous risk factor divided into a categorical


variable along with the continuous confounder. The continuous risk factor and the continuous
confounder were each divided into categorical variables with the same number of levels. The
median, tertiles, quartiles, and quintiles of the continuous risk factor were used to divide
the risk factor into 2-, 3-, 4-, and 5-level categorical variables, respectively. The statistical
signi�cance of the association between the categorical risk factor and the dichotomous outcome
was assessed using a likelihood ratio test that compared the model with only the confounder
represented as a categorical variable with the model containing both the confounder and the
risk factor, both represented as a categorical variable.
Finally, we examined the impact of dividing the continuous confounding variable into


a categorical variable when the log-odds of the outcome was a quadratic function of the
continuous confounder. We used the following data-generating process:


1.
(X1i
X2i


) ∼MVN((0
0


)
;
( 1
�


�
1


))
, for i=1; 2; : : : ; N .


2. logit(pi)=�0 + �1X1i + �2X2i + �3X 22i, for i=1; 2; : : : ; N .
3. Yi ∼Bernoulli(pi), for i=1; 2; : : : ; N .


The regression coe�cients were �xed as follows:


1. �0 =−1:4; �1 = 0; �2 = 1:0, and �3 = 1:0 (quadratic scenario 1).
2. �0 =−1:0; �1 = 0; �2 = 1:0, and �3 = 0:5 (quadratic scenario 2).


These two models are illustrated in Figure 2.
Thus, we are allowing for a U-shaped relationship between the confounder and the log-odds


of the dichotomous outcome, as has been observed for the association between body mass
index or alcohol consumption and all cause mortality [15, 16]. Sample size and the correlation
between the two continuous variables were allowed to vary as in the above simulations for
the above secondary analyses. Five hundred Monte Carlo simulations were used for each
combination of sample size and correlation. We examined the impact of controlling for the
confounder X2 as a 2-, 3-, 4-, and 5-level categorical variable. The categorical variables were
de�ned as above, using the median, tertiles, quartiles, and quintiles respectively.


RESULTS


Figures 3 and 4 show plots of the estimated type I error rate for testing the statistical signi�-
cance of the risk factor versus the correlation between the two independent variables for each
model and for each sample size in the �rst full range scenario (the primary analysis). Several


Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:1159–1178







CATEGORIZING CONTINUOUS VARIABLES IN LOGISTIC REGRESSION METHODS 1165


X2


P
ro


ba
bi


lit
y 


of
 o


ut
co


m
e


−2 −1 0 1 2


0.0


0.2


0.4


0.6


0.8


1.0


Quadratic scenario 1
Quadratic scenario 2


Figure 2. Quadratic scenarios.


Correlation between two independent variables


T
yp


e 
I E


rr
or


 R
at


e


0.0 0.2 0.4 0.6 0.8


0.2


0.4


0.6


0.8


1.0


Confounder continuous
Confounder 2−level
Confounder 3−level
Confounder 4−level
Confounder 5−level


Correlation between two independent variables


T
yp


e 
I E


rr
or


 R
at


e


0.0


0.0


0.2 0.4 0.6 0.8


0.2


0.4


0.6


0.8


1.0


(a) (b)


Figure 3. Observed type I error rate (confounder categorized): (a) sample size 100;
and (b) sample size 500.


important trends are apparent. First, when the continuous confounding variable was divided
into a categorical variable, the type I error rate for testing the statistical signi�cance of the
association between the continuous risk factor and the outcome increased as the correlation
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Figure 4. Observed type I error rate (confounder categorized): (a) sample
size 1000; and (b) sample size 5000.


between the risk factor and the confounder increased. Second, for a given correlation and
number of levels in the categorization of the confounder, the type I error rate increased with
increasing sample size. Third, for a given sample size and correlation coe�cient, the type
I error rate increased as the number of levels into which the confounder was categorized
decreased. When the sample size was large (5000) and the confounder was categorized into a
binary variable and the correlation coe�cient was at least 0.3, the type I error rate approached
100 per cent. Even when the confounder was treated as a �ve-level categorical variable, the
type I error rate was still higher than 20 per cent when the sample size was 5000 and the
correlation between the two predictors was at least 0.5.
When the analysis was repeated with both the continuous risk factor and the continuous


confounder divided into categorical variables, similar results were obtained. Figures 5 and 6
contain the type I error rates plotted against the correlation between the two variables for each
of the four sample sizes for the �rst full-range scenario (the primary analysis). The type I
error rate increased with increasing sample size, and as the correlation between the risk factor
and the confounder increased, and with a decrease in the number of categories into which the
confounder was divided.
If one compares Figure 3 with Figure 5, and Figure 4 with Figure 6 one notes that the


in�ation in the type I error rate was less when both variables were divided into categorical
variables than when only the confounder was divided into a categorical variable. We suspect
that categorizing the risk factor resulted in diminished power to detect the residual confounding
that occurred when the confounder was categorized [17, 18].
The primary analysis was repeated with negative correlations between the two indepen-


dent variables. Similar results to those observed above were observed. The type I error rate
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Figure 5. Observed type I error rate (both variables categorized):
(a) sample size 100; and (b) sample size 500.
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Figure 6. Observed type I error rate (both variables categorized): (a) sample
size 1000; and (b) sample size 5000.
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Figure 7. Full range scenario 2 (confounder categorized).


increased as the correlation increased in absolute value. Results are not presented, however,
the �gures were mirror images of Figures 3–6.
The results for the second full-range scenario, the mid-range scenario, and the two rare


scenarios are presented in Figures 7–14, respectively. Similar trends to the primary analysis
were observed. In all settings, in�ation in the type I error rate increased with increasing
sample size, as the correlation between the two independent variables increased, and as the
number of categories into which the confounder was divided decreased.
If one compares the results for the two full-range scenarios one observes that the in�ation


of the type I error rate is greater in the �rst full-range scenario than in the second full-range
scenario, both when only the confounder is categorized and when both variables are cate-
gorized. In examining Figure 1, one notes that the �rst full-range scenario includes extreme
levels of probability, while the second full-range scenario excludes either extreme of probabil-
ity (it has a more restricted range). Similarly, in comparing the second full-range scenario and
the mid-range scenario, one observes a similar phenomenon. The magnitude of the in�ation
of the type I error rate is greater for the second full-range scenario than for the mid-range
scenario. In examining Figure 1, one observes that the second full-range scenario takes on
a greater range of probabilities than does the mid-range scenario. A similar phenomenon is
observed in comparing the results for the mid-range scenario and the �rst rare scenario. Sim-
ilarly, in�ation of the type I error rate is greater in the second rare scenario than in the �rst
rare scenario. Again, in the second rare scenario, the range of probabilities observed under
the model is greater than that observed for the �rst rare scenario. The one exception to this
pattern is observed in comparing the mid-range scenario with the second rare scenario. Thus,
in nine out of 10 possible comparisons, one observes a greater in�ation of the type I error
rate in the scenario in which the larger range of probabilities is observed.
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Figure 8. Full range scenario 2 (both variables categorized).
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Figure 9. Mid-range scenario (confounder categorized).


In our �nal set of simulations we allowed the log-odds of the outcome to be a quadratic
function of the continuous confounder. Figures 15–18 contain plots of the observed type I
error rate versus the degree of correlation between the risk factor and the confounder for the
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Figure 10. Mid-range scenario (both variables categorized).
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Figure 11. Rare scenario 1 (confounder categorized).


two quadratic scenarios examined. In the �rst quadratic scenario, substantial in�ation of the
type I error rate was observed when the sample size was 5000 and the confounder was divided
into either a two- or three-level categorical variable, or when the sample size was 500 and the
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Figure 12. Rare scenario 1 (both variables categorized).
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Figure 13. Rare scenario 2 (confounder categorized).


confounder was divided into a two-level categorical variable. In all other settings there was at
most minor in�ation of the type I error rate as the correlation between the two independent
variables increased. However, when both independent variables were divided into categorical
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Figure 14. Rare scenario 2 (both variables categorized).
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Figure 15. Quadratic scenario 1 (confounder categorized).


variables, the in�ation of the type I error rate increased substantially. In the second quadratic
scenario, greater in�ation of the type I error rate was observed than in the �rst quadratic
scenario.
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Figure 16. Quadratic scenario 1 (both variables categorized).
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Figure 17. Quadratic scenario 2 (confounder categorized).


Finally, in each scenario, we computed exact 95 per cent con�dence intervals for the
estimated type I error rate for each combination of sample size and correlation coe�cient.
Exact con�dence intervals were calculated using the method proposed by Miettinen [19]. We
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Figure 18. Quadratic scenario 2 (both variables categorized).


Table I. Widths of con�dence intervals for estimated type I error rates.


Scenario Minimum First quartile Median Third quartile Maximum


Confounder categorized
Full range scenario 1 0.007 0.031 0.036 0.051 0.063
Full range scenario 2 0.011 0.043 0.056 0.076 0.089
Mid-range scenario 0.011 0.042 0.052 0.075 0.089
Rare scenario 1 0.028 0.042 0.047 0.061 0.089
Rare scenario 2 0.023 0.044 0.056 0.077 0.089
Quadratic scenario 1 0.011 0.039 0.044 0.053 0.089
Quadratic scenario 2 0.011 0.042 0.053 0.073 0.089


Both variables categorized
Full range scenario 1 0.006 0.031 0.036 0.048 0.063
Full range scenario 2 0.014 0.041 0.052 0.072 0.089
Mid-range scenario 0.036 0.042 0.048 0.066 0.089
Rare scenario 1 0.034 0.042 0.045 0.051 0.088
Rare scenario 2 0.023 0.045 0.052 0.073 0.089
Quadratic scenario 1 0.011 0.041 0.051 0.071 0.089
Quadratic scenario 2 0.011 0.042 0.051 0.070 0.089


then summarized the widths of the 95 per cent con�dence intervals within each scenario using
the minimum, �rst and third quartiles, the median, and the maximum. Results are reported in
Table I. Note that 95 per cent con�dence intervals were not computed when the estimated
type I error rate was 1, as Miettinen’s formula does not apply in this setting.
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DISCUSSION


Investigators in epidemiology and clinical research are frequently interested in assessing the
statistical signi�cance of the association between continuous risk factors and adverse events.
Researchers commonly categorize continuous variables prior to entering them into logistic
regression models. However, categorizing continuous variables can have unintended conse-
quences. We undertook the current study to examine the in�ation in the type I error rate
when assessing the statistical signi�cance of a continuous risk factor after adjusting for a
correlated, continuous confounding variable that was treated as a categorical variable in a
logistic regression analysis. We demonstrated in�ation in the type I error rate for testing
the statistical signi�cance of the association between the continuous risk factor and the out-
come. Furthermore, the in�ation of the type I error rate increased with increasing sample size,
with increasing correlation between the continuous risk factor and the continuous confounder,
and as the number of levels into which the continuous confounder was divided decreased.
The same phenomenon was observed when both the risk factor and the confounder were
divided into categorical variables, albeit with a less dramatic increase in the type I error
rate.
The literature contains many examples in which a continuous confounding variable has been


divided into categories for use in a logistic regression model. A brief search of several leading
epidemiology journals produced numerous examples. Alcohol consumption was categorized in
a logistic regression model that adjusted for smoking habits, ca�eine intake among other
variables [20]. Similarly, consumption of tea, deca�einated co�ee and cola were each divided
into three-level categorical variables in a regression model that adjusted for age, smoking and
drinking of regular co�ee [21]. A recent study showed that physical activity reduces the risk of
subsequent depression in an analysis that adjusted for age, number of chronic conditions, body
mass index and alcohol consumption, when all of these possible confounders were treated as
categorical variables [22].
Despite the frequency with which continuous variables are categorized prior to entry in a


logistic regression model, there is a paucity of research into the e�ects of this on statistical
signi�cance, and only limited research into the e�ects of this on bias and residual confounding.
It has been shown that when an underlying continuous variable is dichotomized in a multiple
linear regression model, then the estimated regression coe�cients obtained from the model
are incorrect [2]. Furthermore, Becher demonstrated that residual confounding arises when a
continuous confounder is divided into a categorical variable for use in logistic regression [3].
Additionally, Becher provides a general framework for examining residual confounding when
a continuous confounding variable is divided into a categorical variable [3]. Maxwell and De-
laney demonstrated that the use of the median-split (dichotomizing a continuous variable using
the median) resulted in in�ated type I error rate in the setting of a bivariate linear regression
model [23]. Brenner demonstrated that categorization is often inadequate when controlling for
continuous confounders [24, 25] and that control of crudely categorized covariates can result
in misleading estimates of the association between exposure to a risk factor and an outcome
of interest. In this study we have examined the in�ation of the type I error rate that had
been ignored in earlier studies. We have demonstrated that in�ation of the type I error rate
increased with increasing sample size. We hypothesize that the in�ation of the type I error
rate is induced by the residual confounding that occurs when a continuous variable is cate-
gorized. As the sample size increases, the statistical power to detect the residual confounding
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increases. This hypothesis is further supported by the observation that in�ation of the type
I error rate tended to increase as the range of probabilities increased. Increasing the range
of probabilities would result in greater residual confounding when the continuous variable
was categorized. Several authors have discussed the use of ‘optimal’ cutpoints for deriving a
categorical variable from a continuous variable [6, 26]. These studies have generally focused
on how to categorize the risk factor, rather than the confounder. In our study, we did not
attempt to �nd optimal cutpoints, but used pre-de�ned percentiles of the distribution of the
confounding variable in order to create appropriate categorical variables.
We have not examined the impact of categorizing the continuous risk factor on the in�ation


of the type I error rate. If a given variable has no relationship with the outcome variable, then
any transformation of that variable (including categorizing it) would also have no relationship
with the outcome variable. For example, see Theorem 2–10 of Arnold [27], replacing inde-
pendence with conditional independence. Thus, if data were generated such that the outcome
was independent of the risk factor, there would be no in�ation of the type I error rate when
the risk factor was divided into a categorical variable. We limited our examination of logistic
regression to the context of cohort studies. Logistic regression models are also used in the
analysis of case-control studies. The nature of our simulations would need to be modi�ed to
simulate data arising from a case-control study.
Several �exible regression models have been proposed for use with continuous independent


variables. Regression splines (in particular cubic splines) [7], generalized additive models [28]
and fractional polynomials [29] have all been proposed as alternatives to traditional linear re-
gression models in which continuous variables and their powers are entered as independent
variables. Many investigators are reluctant to use these methods due to the di�culty in in-
terpreting the resultant model. However, if the purpose of �tting a regression model is to
adjust for a confounder, then one is not so much interested in the odds ratio or coe�cient
associated with the confounder, but rather that associated with the risk factor under examina-
tion. Therefore, investigators are encouraged to consider a wider range of regression models
when attempting to control for continuous confounding variables in logistic regression anal-
yses. In particular, these alternatives should be considered when the form of the relationship
is unknown. Lack of knowledge about the nature of a relationship should be discouraged as
a justi�cation for categorization.
A clear recommendation that emerges from the present study is not to categorize continuous


independent variables. However, many researchers using secondary data do not have access to
the original, uncategorized data values. Many surveys collect inherently continuous variables
but collapse them into categorical variables for public use. In such cases, when a risk factor
is found to be signi�cantly associated with an outcome, after controlling for a confounder
that has been categorized, the results must be treated with caution. One might seek likelihood
methods that treat the categorized independent variables as interval-censored data. However,
to do this, strong distributional assumptions about the joint distribution of the independent
variables would be necessary.
In conclusion, dividing a continuous confounding variable into a categorical variable for use


in a logistic regression model can result in an in�ation of the type I error rate when testing
whether a continuous risk factor is associated with a dichotomous outcome of interest when
the risk factor is correlated with the confounder. The result holds true if the continuous risk
factor is also divided into a categorical variable, however the e�ect is attenuated. Investigators
are encouraged to treat continuous variables as such, rather than to simply reduce them to
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categorical variables. Failure to do so could result in an in�ated assessment of the statistical
signi�cance of the association between one of the variables and the outcome of interest.
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 SUMMARY


 The relationship between a response variable and one or more continuous covariates is often curved.
 Attempts to represent curvature in single- or multiple-regression models are usually made by means
 of polynomials of the covariates, typically quadratics. However, low order polynomials offer a limited
 family of shapes, and high order polynomials may fit poorly at the extreme values of the covariates.
 We propose an extended family of curves, which we call fractional polynomials, whose power terms
 are restricted to a small predefined set of integer and non-integer values. The powers are selected
 so that conventional polynomials are a subset of the family. Regression models using fractional
 polynomials of the covariates have appeared in the literature in an ad hoc fashion over a long period;
 we provide a unified description and a degree of formalization for them. They are shown to have
 considerable flexibility and are straightforward to fit using standard methods. We suggest an iterative
 algorithm for covariate selection and model fitting when several covariates are available. We give
 six examples of the use of fractional polynomial models in three types of regression analysis: normal
 errors, logistic and Cox regression. The examples all relate to medical data: fetal measurements,
 immunoglobulin concentrations in children, diabetes in children, infertility in women, myelomatosis
 (a type of leukaemia) and leg ulcers.


 Keywords: Curvature; Non-local models; Polynomials; Power transformations; Regression; Smoothing


 1. Introduction


 Applied statisticians and research workers make widespread, even routine, use of linear
 models. Many research studies include the collection and analysis of data on one or
 more continuous covariates. It is our impression that most users of multiple regression
 or analysis of covariance with such data sets include only linear terms in the
 covariate(s). In other words, each covariate X appears in the model as a term of the


 form OX. If curvature in the relationship between the outcome variable and an X
 is suspected, the model may be extended to include a quadratic term. In most
 applications the choice is made between linear and quadratic, with cubic or higher
 order polynomials being used or useful only rarely.


 It has long been recognized that conventional low order polynomials (which offer
 only a few curve shapes) do not always fit the data well. High order polynomials


 tAddress for correspondence: Medical Statistics Unit, Department of Medical Physics, Royal Postgraduate Medical
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 (sometimes even cubics) follow the data more closely but often fit badly at the extremes
 of the observed range of X. A further disadvantage is that polynomials do not have
 asymptotes and cannot fit data where limiting behaviour is expected (McCullagh and
 Nelder, 1989). Various attempts have been made to devise more acceptable models.
 Box and Tidwell (1962) developed an approximate linearization of each variable in
 a multiple-regression model giving E 3,if(Xi), e.g. 25+51nX1 + 100X71 + 6X3/2.
 They concentrated on power transformations of the Xs and showed how to estimate
 the powers iteratively. However, for models with more than one X-variable there
 are considerable difficulties in estimating the powers reliably. We believe that estimation
 of the precise power(s) is unnecessary because the likelihood surface is usually nearly
 flat near the maximum, but in any case Y may not be linear in XP.


 Most of the curves used in the description of human growth are non-linear, but
 a few are linear. For example, in influential early papers on the analysis of longitudinal
 growth studies, Count (1942, 1943) modelled skull growth in white American children
 and the stature of Chinese children from 3 months to 7 years using f% +
 f31X+ (2lnX, where X is age. Wingerd (1970) compared the Count model with
 a conventional quadratic and with Y= 1% + f1X+ 32X12, concluding that models
 with more than two terms are required for such data (Berkey and Reed, 1987). Nelder
 (1966) suggested a system of inverse polynomials of the form X/Y=E23iXi. For
 example, a quadratic model gives X/Y= f% + f1X+ 02X2, which leads to 1/Y=
 ,yo + ylyX+ y2X- 1. Nelder (1966) used the model to describe the relationship between
 plant yield and fertilizer concentration.


 The cubic spline may be seen as the link between conventional polynomials and
 the modern methods of nonparametric smoothing. Splines were originally developed
 in the 1920s for interpolation (Whittaker, 1923). Much later, the smoothing spline
 was developed as a method for fitting curves to data (Reinsch, 1967; Silverman, 1985).
 A knot is placed at each data point and a parameter is used to control the degree
 of smoothing. A simpler variant is the regression spline (Poirer, 1973), which has
 no smoothing parameter and which uses a small number of knots, typically 3-7, whose
 placement is determined either manually or according to a rule of thumb (e.g. that
 of Durrleman and Simon (1989)). Nonparametric scatterplot smoothers are an attempt
 to 'let the data show us the appropriate functional form' (Hastie and Tibshirani (1990),
 p. 1) rather than imposing a limited range of forms on the data. Typically, the smoother
 is constructed at each data point in turn by weighted regression within a neighbourhood
 of the corresponding covariate value. Cheema and Moussa (1992) review the field
 and give example analyses. Perhaps the best known such smoother is Cleveland's
 (1979) lowess (locally weighted scatterplot smoother).


 Nonparametric and spline smoothers are powerful and flexible tools which indeed
 impose few limitations on the functional form. However, the fitting process can be
 computationally intensive and suitable software is not at present widely available.
 Although the methods are successful for describing data, a major drawback is that,
 since they use local models, they do not yield simple equations for prediction. Also,
 we feel that many users do not require such sophistication but do need models which
 are reasonably flexible, easy to understand, parsimonious and, perhaps above all,
 are simple and quick to fit using standard multiple-regression software. The main
 aim of this paper is to suggest and explore such models.


 The plan of the paper is as follows. In Section 2, we describe briefly the types of
 model and the example data that we are considering. In Section 3, we introduce a
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 family of curves, which we call fractional polynomials, whose power terms are
 restricted to a small predefined set of integer and non-integer values. The powers
 are selected so that conventional polynomials are a subset of the family (as also are
 the models of Count, Nelder and Wingerd). We show how to select the required powers
 and discuss model choice. Extensions of the method are considered, particularly to
 the case of multiple predictors. Sections 4-6 describe examples based on six real data
 sets which illustrate the use of the method in three types of regression analysis (normal
 errors, logistic and Cox proportional hazards). Section 7 describes certain plots of
 deviance, which are useful when assessing competing fractional polynomial models.
 Section 8 gives some simulation and bootstrap analyses. Section 9 is an extensive
 discussion.


 2. Context


 2. 1. Models
 We aim to model a trend in a response variable Y in terms of covariate(s) X = (X1,


 Xk). (For notational simplicity, we assume that all the covariates are
 continuous, but this restriction is not necessary and is dropped in Section 3.5.) In
 our examples, we restrict ourselves to generalized linear models (GLMs) and
 proportional hazards regression models (Cox models). Crudely stated, a GLM


 comprises a random variable Y with mean A, a model function -q = 77(X, g3) based on
 X and on a vector g3 of parameters, and a link function g such that g(,t) = -q. Our
 GLM examples are of normal and binomial error models, where the link functions


 are taken as g(ju) = It and g(,t) = ln It/(I - It) respectively. For Cox models, we use the
 standard formulation whereby the hazard function X(t; X) is factored as XO(t) exp 7,
 X0(t) being the base-line hazard function.


 A flexible but tractable model function is the additive predictor- =fo +Efj(Xj),
 wherefo is a constant term andfj (>0) is a function of Xj and a set of parameters
 (Stone, 1985). For example, Hastie and Tibshirani (1986, 1990) use locally linear


 smoothers such as lowess as the functions fj(Xj). The linear predictor in a GLM is
 an additive predictor with fj(Xj)= fjXj for each j. A model incorporating a
 quadratic polynomial in Xj has fj(Xj) = fj1IXj + fj2Xj - If each of the components
 fj(Xj) can be written in the form Ei40ijhi(Xj) (as can all conventional polynomials
 for example), the model function q is then a linear predictor over the extended set
 of covariates hi(Xj). In this paper, we suggest the use of fractional polynomials,
 which are simple non-local functions, as fj(Xj). These functions produce models
 whose additive predictor is linear in the sense just described.


 Fractional polynomials are defined and described in Section 3. Initially we
 concentrate on the case k= 1, that covered by traditional polynomial regression, writing
 f (X) instead of f1 (XI). We deal with the multiple-regression case k> 1 in Section 3.5.


 2.2. Data
 Our analyses of our six example data sets (see Sections 4-6) generally extend those


 of the original researchers. The response variable in the first three data sets is
 (approximately) normally distributed given the covariate(s) and its variance is
 (approximately) independent of the covariate(s), obviating the need for variance
 modelling. The first two data sets are taken from studies to develop X-specific reference
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 centiles for certain physical measurements in humans, X being gestational age in the
 first and age since birth in the second data set. In the third data set, the concentration
 of C-peptide (an insulin-related protein) is predicted from two continuous covariates
 in a study of childhood diabetes. The fourth and fifth data sets exemplify logistic
 regression. The fourth is from a study of in vitro fertilization (IVF) which aimed
 to estimate the serum oestrogen concentration X at which the probability of pregnancy
 was maximal. The fifth is from a clinical trial of two treatments for bone marrow
 cancer; the probability of patient survival is related to several continuous and
 categorical covariates. The final data set (illustrating Cox regression) arises from a
 randomized clinical trial of two treatments for leg ulcers in which one aim was to
 construct a predictive score for the healing time as a function of several covariates.
 Thus examples 1, 2 and 4 have k = 1, whereas examples 3, 5 and 6 have k> 1.


 3. Fractional Polynomials


 3. 1. Definition
 We now describe a family of model functions of a single covariate X, subject to


 the restriction X> 0. We consider non-positive covariates at the end of the section.
 We provisionally define a fractional polynomial of degree m to be the function


 m


 Om (X; ti P) = t + E t;X(pi), 1
 j=1


 where m is a positive integer, p = (Pl, . . Pm) is a real-valued vector of powers with
 Pi < ... <Pm and t = Q01 I, I ..., (m) are real-valued coefficients. The round bracket
 notation signifies the Box-Tidwell transformation,


 X(j =Xpi if pj O,
 IlnX if pj=0,


 as distinct from the more familiar Box-Cox transformation of a response variable
 (Box and Cox, 1964), namely Y(l) = (Y- 1)/X for X ?0, y(O) = ln Y. A conventional


 polynomial of degree m has pj=j for j= 1, . . ., m and im? 0.
 Definition (1) may be extended to the case of equal powers, i.e. m > 1 and pi =pj


 for at least one pair of distinct indices (i, j), 1 < i, j < m. For m = 2, (i, j) = (1, 2) and
 P = (Pl, pl), we have


 ?2(X; t, P) = O + (1 + 2)XCDi), (2)


 a fractional polynomial of degree 1, not 2. However, the limit as P2 tends to Pi of


 o + I1X(P) + 2X(P)(X(P2P) - 1)/(P2 -PI) (3)


 is easily shown to be


 to + 41X(Pl) + t2X(Pi) lnX, (4)


 a three-parameter family of curves. Expression (3) is obtained from the standard form
 02(X; t*, p) = t0* + X(Pl) + ?2*X(P2) by writing t0 =I + +2* and t2 = (P2 -P1) 2*-
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 For m >2 and Pi = . expression (4) may be generalized in an obvious


 way to
 m


 40 + lX1pi) + E (jX(Pd (In X)j-l (5)
 j=2


 For arbitrary powers Pi 6... 6Pm we set Ho(X) = 1, po =0 and combine definition
 (1) with expresssion (5) to obtain an extended definition


 m


 Om(X; t, p)= E tjHj(X), (6)
 j=O


 where for j= 1, . . ., m


 H (X)= XCDj) if pi?XPj-i, (7) J Hj-1(X)lnX if pj=p-11.
 The recurrence relation in equation (7) for Hj(X) in terms of Hj- 1(X) when pj =p1-1
 is a representation of the functional part of expression (5) and makes computer


 evaluation of fractional polynomials straightforward. We may write the Hj(X) as
 a vector function H(X) = (Ho, H1, . . ., Hm).


 Expressions (6) and (7) are our full (and most concise) definition of a fractional
 polynomial of degree m. Depending on the context, for simplicity we shall sometimes


 write Om(X; t, p) as Om(X; p) or as Om(X). Similarly we shall often drop the
 parentheses around numerical values of p, writing for example f1 (X; 0) and
 02(X; 0, 1) rather than the strictly correct but fussy fr1 (X; (0)) and c2(X; (0, 1)).
 As an example of equation (7), k5 (X; 0, 1, 2, 2, 2) has component functions Ho= 1,
 H1 = lnX, H2=-X, H3=X2, H4 =X2 lnX and H5 =X2(In X)2.


 If non-positive values of X can occur, a preliminary transformation of X to ensure
 positivity is needed. One solution is to choose a non-zero origin r <X and to rewrite
 definition (6) as


 m


 Om (X; ti p)= E (jHj (X -. (8)
 j=0


 A common case is when X is a positive random variable (such as a physical quantity),
 but owing to imprecise measurement observed values of X can be 0. A simple choice
 of r is minus the rounding interval of sample values of X.


 3.2. Fractional Polynomials of Degree I and Degree 2
 It is worth considering the families c1 (X; p) and c2(X; p) specifically, for we have


 so far found that models with degree higher than 2 are rarely required in practice.
 Fractional polynomials with m 6 2 offer many potential improvements in fit compared
 with conventional polynomials, and all the examples in this paper have m < 2.


 Although rather simple (a set of straight lines in XP or in ln X), the family
 /1 (X; p), an approximation to the Box-Tidwell transformation, is often useful.
 However, c2(X; p) is much richer. It may be shown that the curves representing
 +2(X; p) can assume four basic shapes, depending on the sign of t,/22 and on
 whether Pi and P2 have the same or different sign. (Zero values of Pi and P2 are
 taken to have positive sign here.) Fig. 1(a) shows examples of each of the four shapes,
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 (-2, 1) (-2, 2)


 (-2, 2)


 (a) (b)


 Fig. 1. Examples Of +2(X; p), (a) for p = (-2, 1), (- 2, 2), (- 2, -2) and (- 2, - 1); (b) a selection
 of 10 curves with p = (- 2, 2) using different coefficient vectors t


 chosen to give some idea of the variety available with only one value of p, (- 2) and
 four values of P2 ( ? 1, ? 2).


 The curves illustrate the region around the minimum or maximum and/or the turning
 point and represent only a portion of the whole curve for X> 0. In Fig. 1(a),


 02(X; -2, 1) resembles an asymmetric quadratic and 02(X; -2, 2) an asymmetric
 cubic; 02(X; -2, -2) and 02(X; -2, - 1) have asymptotes at X= oo with the
 former rising steeply to a maximum and gradually decreasing. Fig. l(b) shows a
 selection of 10 curves available with m = 2 and p = ( - 2, 2), using different values
 of t. The ability to generate a variety of curves some of which have asymptotes or
 which have both a sharply rising or falling portion and a nearly flat part is a particularly
 useful feature of +2(X; p).


 3.3. Fractional Polynomials as Model Functions
 Conditional on given values of m and p, ckm(X; p) in definition (6) has the form


 of a linear predictor (see Section 2.1) in terms of the covariate vector H(X) and of
 the parameter vector t. Viewed thus, ckm(X; p) is a particularly suitable candidate
 for the model functionf(X) of Section 2.1, the statistical properties of linear models
 being of course better than those of non-linear models.


 For modelling a data set of size n using fractional polynomials, we propose to
 determine the 'best' value of m and of the power vector p by criteria to be discussed
 in Section 3.4. Candidate values of p are all possible m-tuples selected with replacement
 from a fixed set Y. Experience so far suggests that Y =t - 2, - 1, - 0.5, 0, 0.5, 1,
 2, .. ., max(3, m)J, which includes all conventional polynomials of degree less than
 or equal to m, is sufficiently rich to cover many practical cases adequately. For m = 2,
 use of this Y generates four quadratics in powers of X, namely with p = (- 2, - 1),
 ( - 1, - 0.5), (0.5, 1) and (1, 2), a quadratic in lnXwhen p = (O, 0), and other curves
 which have shapes different from those of conventional low degree polynomials (see
 Fig. 1).


 As with conventional polynomials, the degree m is selected either informally on
 a priori grounds or by increasing m until no worthwhile improvement in the fit of
 the best fitting fractional polynomial is judged to have occurred (see below).
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 3.4. Deviance and Model Choice
 We assume that all models are to be fitted by maximum likelihood. For given m,


 the best power vector - = (p1, . .*, -m) is that associated with the model with the
 highest likelihood or equivalently with the lowest deviance D. Thus -p may be
 regarded as the maximum likelihood estimate (MLE) of p over the restricted parameter
 space based on Y. We use the simple definition D = - 2 x log-likelihood, which does
 not include a term representing the log-likelihood of the saturated model. Suppose
 that the elements of p are allowed to vary continuously, rather than being restricted
 to Y. Then 4im(X; p) is a non-linear model with parameters p and t. Let p be the
 full MLE of p. Using an obvious notation, the quantity D(m, p) -D(m, p)
 asymptotically has a x2-distribution on m degrees of freedom (DF). Since
 D(m, j) >D(m, p), the statistic D(m, p) -D(m, p) provides an (asymptotically
 conservative) test of a given value of p. It may be used as a guide to the adequacy
 of the conventional polynomial of degree m against fractional polynomial alternatives


 of the same degree. Specifically, when m = 1, the criterion D(1, 1) - D(1, P)> X ;.IO
 (the 90th percentile of x2 with 1 DF, i.e. 2.7) furnishes a test with a significance level
 of about lOWo for p = 1 (linearity) against p ? 1 (monotonic alternatives) which may
 be used in an initial investigation of non-linearity.


 In practice, for general m the likelihood surface is often flat near (and sometimes
 far from) the MLE p, so there are likely to be several fractional polynomial models
 with similar deviances. As a working rule, we suggest choosing models with values of
 p such that D(m, p) -D(m, p) < as the best fitting among those of degree m.


 When deciding whether model(s) with degree m are adequate or whether degree
 m + 1 is required, we note that two extra parameters (a power and a regression
 coefficient) are estimated when m is increased by 1. Therefore D(m, p) - D(m + 1, p)
 is asymptotically distributed as x2 on 2 DF when the degree m model is adequate.
 (p refers implicitly to degree m or to degree m + 1 as appropriate.) We therefore suggest
 the criterion D(m, p) - D(m + 1, p)> X2.0.9o (= 4.7) as a rule for preferring models
 with degree m + 1 to those with degree m. We expect the probability of a type I error
 associated with this rule to be near (but not exactly) 100/o; it is investigated by using
 simulation in Section 8.1.


 For normal error models with small samples (n < 100, say), we suggest using
 appropriate critical points from the F,^ 2-distribution instead of those of the
 x2-distribution for both criteria. For comparing models with degree m, each with
 a constant (Q), the DF for F are vP = m and V2= n - 2m - 1; for comparing degree
 m with m+1, we take PI1=2 and v2=n-2m-3.


 When working with fractional polynomial models, it is convenient to use the deviance
 D(1, 1) associated with the straight line model c1 (X; 1) (i.e. m = 1, p = 1) as a base-
 line for reporting the deviances of other models. Thus we define the gain G for a
 model on a given data set as the deviance for +1(X; 1) minus that for the model in
 question:


 G=G(m, p)=D(1, 1)-D(m, p).


 Since G moves in the opposite direction to D, a larger gain indicates a better fit.
 Once m and acceptable models of degree m have been selected as just described,


 the final choice must depend mainly on the appearance of the curves in relation to
 the data, especially at the extremes of X, and, where relevant, the plausibility of the
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 curve when extrapolated beyond the observed range of X. Non-statistical considerations
 (mainly, the science of the problem) may also need to be taken into account.


 3.5. Multiple Covariates
 First, suppose that prior reasoning and/or preliminary modelling have identified


 a set of k continuous covariates X and c categoric (without loss of generality, binary)
 covariates Z that are wanted in a final model. We wish to find a satisfactory
 combination of power vectors Pi, . *, Pk and degrees ml, . . ., mk. The proposed
 procedure is iterative and is closely related to backfitting (see, for example, Breiman
 and Friedman (1985)). The ordering of the covariates is arbitrary. First we fit the
 multiple-regression model whose linear predictor is


 ml k c


 711=:o+ E (IjHjj(Xj)+ E f3Xj+ EyjZjl
 j=1 j=2 j=1


 choosing ml, -I and HI (X,) in the usual way. (In other words, all the relationships
 between Y and the covariates are initially taken as straight line, except possibly that


 between Y and X1.) At step 2, we fix the functions Hlj(X1) (but not the coefficients
 * iml) and fit the model


 m2 ml k c


 _q2 =to + E 42jH2j(XD)+ , 41 jH1j(X ) + , OjXj + f 'YjZj,
 j=1 j=1 j=3 j=1


 re-estimating the (lj, fj and 'yj and obtaining M2, P2 and H2(X2) as usual.
 Continuing in this way, the first iteration is complete when we reach flk. The model
 comprises fractional polynomial terms only; it no longer includes the term E f3Xj.
 The second iteration is similar. At the first step, the model contains the constant 40
 and terms in H2(X2), . . ., Hk(Xk) and Z, and a new HI (X,) is determined as
 described above. Subsequent steps are analogous. Convergence is attained when the


 fractional polynomial functions HI (X,), . . ., Hk(Xk) do not change from one
 iteration to the next.


 We suggest the following variant of the above algorithm as a strategy for
 simultaneous selection of covariates and fractional polynomial powers. It is based
 on our experience that the conditional relationships between Y and the Xs in multiple-
 covariate models are not often sufficiently complex to require fractional polynomials
 with m > 2. This is probably due to the low signal-to-noise ratio typically found in
 such data sets. The algorithm is a type of stepwise regression, much like that described
 by Hastie and Tibshirani (1990), pages 260-261. When considering variable Xi at
 each iteration, we only consider mi < 2. We choose min= 2 if the fit of the pi-model
 for min= 2 is significantly better than the pi-model for mi = 1. Similarly for mi = 1, we
 only choose pi =pi in preference to pi= 1 if Pi is a significantly better fit according
 to the criterion described in Section 3.4. Finally, if pi = 1 is obtained, we omit Xi (at
 this iteration) if the resulting increase in deviance is not statistically significant.
 Likewise, at each step we omit Zi if the increase in deviance is not significant. Any
 omitted variables are retested at the next iteration. (Of course, if variable selection
 is not required, the last step may be skipped.) Convergence is achieved when the set
 of fractional polynomial functions (and omitted variables) does not change. Greater
 stringency may be introduced by adopting a lower significance level for the tests.
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 4. Examples for Normal Errors Models


 4.1. Mandible Length
 In a study of fetal size (Chitty et al., 1993), a large number of ultrasonographic


 fetal measurements were made from the 15th week of gestation onwards. Our data
 set comprises measurements of mandible length and gestational age X in n = 158 fetuses
 of gestational age 28 weeks or less (see Table 1 and Fig. 2). Nine measurements were
 made with X> 28, but at the request of the clinicians they were not included in the
 analysis for two reasons. First, the technique was difficult to perform and excessive
 measurement error was suspected. Second, such fetuses were regarded as a highly
 selected group.


 There is a strong relationship between mandible length and X with evidence that
 the variance increases with X (see Fig. 2). Investigation showed that, for Y=
 ln(mandible length), Y given X is approximately homoscedastic and normally
 distributed. Table 2 shows the gains G for various fractional polynomial models with
 m < 2; for m = 2, the insensitivity of G to the choice of model is marked. The best
 model with m = 1 has - = - 1. It has a gain of 77.51 and fits almost as well as the
 best model with m =2, namely p=(-2, 1) for which G = 78.07. The preferred
 model is obviously 01(X; - 1), i.e. Y seems linear in 1/X. Judging by the lack of
 systematic patterns among the residuals, the fit of the model is good. The MLE of
 the origin parameter v in equation (8) is 0.8 with an approximate 95Wo confidence
 interval of (- 3.0, 3.7), so the choice t = 0 is satisfactory.


 It is interesting that, among conventional polynomials, a cubic (for which G = 78.81)
 is required to produce a fit as good as that of k1 (X; - 1). A quartic (with G = 78.95) is
 not significantly better. Fig. 3 shows what happens when the two models c1 (X; - 1)
 and a cubic in X are extrapolated to X= 34 weeks. The nine excluded fetuses with
 X> 28 weeks are indicated by the symbol + . The cubic model, whose fit is almost
 indistinguishable from that of +1 (X; - 1) for X? 28, behaves wildly for X> 28,
 whereas the fractional polynomial gives sensible results, fitting the additional points
 reasonably well. Fig. 3 also confirms the approximate homoscedasticity of Y.


 We also used the method of Altman (1993) to model the standard deviation (SD)
 of mandible length as a straight line function of X, taking (fitted SD)-2 as weights
 in fractional polynomial regression. The best m = 1 power was 0.5. The gains for
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 Fig. 2. Mandible length and gestational age for 158 fetuses
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 TABLE 1


 Mandible length L and gestational age X for n = 167 fetusest


 X L X L X L X L X L X L
 (weeks) (mm) (weeks) (mm) (weeks) (mm) (weeks) (mm) (weeks) (mm) (weeks) (mm)


 12.3 8 16.3 15 18.3 20 20.3 28 22.9 28 25.0 32
 12.4 9 16.3 15 18.3 20 20.4 24 23.0 27 25.1 33
 12.7 11 16.4 15 18.4 19 20.4 26 23.0 30 25.3 37
 12.7 11 16.4 18 18.6 21 20.6 27 23.0 31 25.4 33
 12.9 10 16.4 19 18.6 23 20.6 31 23.1 29 25.9 28
 13.1 11 16.6 17 18.6 24 20.7 23 23.3 29 25.9 28
 13.3 9 16.6 19 19.0 19 20.7 23 23.3 29 26.0 31
 13.3 11 16.7 17 19.0 20 20.7 25 23.3 31 26.0 34
 13.6 12 16.7 18 19.0 23 20.7 25 23.4 33 26.6 26
 14.0 11 16.7 19 19.1 20 20.7 27 23.6 28 26.7 40
 14.0 11 16.9 19 19.3 19 21.0 24 23.6 30 26.9 37
 14.0 13 17.0 17 19.3 21 21.0 27 23.6 31 27.0 39
 14.3 16 17.0 21 19.3 22 21.1 24 23.7 28 27.0 41
 14.4 16 17.1 20 19.3 23 21.3 29 23.9 28 27.1 32
 14.6 13 17.1 21 19.4 21 21.4 26 23.9 28 27.6 40
 14.7 14 17.3 18 19.6 21 21.4 27 24.0 30 27.7 35
 14.7 15 17.4 18 19.6 24 21.4 31 24.0 34 27.7 40
 15.0 13 17.4 19 19.7 23 21.6 28 24.1 31 27.9 37
 15.0 15 17.4 19 19.9 23 21.6 29 24.3 29 28.4 38
 15.1 12 17.6 17 20.0 22 21.9 30 24.4 28 28.4 44
 15.1 13 17.6 23 20.0 23 22.0 25 24.4 36 29.0 41
 15.3 13 17.7 25 20.0 23 22.1 28 24.7 28 29.4 38
 15.3 14 17.9 19 20.0 23 22.3 31 24.7 33 29.7 45
 15.6 17 18.0 21 20.1 23 22.6 24 24.7 35 32.0 41
 15.9 17 18.1 21 20.1 25 22.7 28 24.7 35 32.1 32
 16.1 17 18.1 21 20.3 23 22.7 30 24.9 31 32.9 35
 16.1 18 18.1 24 20.3 24 22.9 25 25.0 28 33.6 42
 16.3 14 18.3 18 20.3 24 22.9 27 25.0 29


 tData in italics (nine values for which X> 28) are considered unreliable.


 TABLE 2


 Gain values for fractional polynomial models for the mandible data


 m=l m=2 m=2 (continued)


 p G P p2 G Pi p2 G


 - 2 60.20 - 2 - 1 77.83 0 0.5 76.73
 - 1 77.51 -0.5 77.95 1 76.23
 -0.5 69.13 0 78.02 2 75.03
 0 51.07 0.5 78.06 3 73.62
 0.5 26.87 1 78.07 0.5 1 75.08
 1 0.00t 2 77.96 2 72.88
 2 - 52.97 3 77.74 3 70.27
 3 - 98.69 - 1 -0.5 77.78 1 2 70.24


 0 77.76 3 66.17
 0.5 77.74 2 3 56.19
 1 77.71
 2 77.67
 3 77.63


 -0.5 0 77.50
 0.5 77.32
 1 77.11
 2 76.64
 3 76.10


 tBy definition.
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 Fig. 3. Extrapolated fit for the mandible data (shown on a log-scale) using two models: c fractional
 polynomial Xl (X; - 1); --------- cubic polynomial


 +(X; 0. 5) and 02 (X; p-) were 4.04 and 4.23 respectively, so f(X; 0. 5) is a somewhat
 better fit than a straight line and m = 2 is not needed.


 4.2. Immunoglobulin-G
 Isaacs et al. (1983) aimed to establish reference centiles for the serum concentration


 of certain immunoglobulins in children aged from 6 months to 6 years. We consider
 immunoglobulin-G (IgG). Fig. 4 is a plot of IgG concentration in grams per litre against
 age in years (X) for n = 298 children. The relationship of IgG with age is rather
 weak, with some visual evidence of positive skewness (see Fig. 4). We follow Isaacs
 et al. (1983) and take the response variable Y to be the square root of IgG
 concentration, a transformation which appears to eliminate the skewness. A small
 amount of heteroscedasticity is present (the variance of Y is somewhat smaller in the
 centre of the range of X than at the extremes) but we judged it insufficient to have
 much effect on the estimation of the trend in Y.


 The best fractional polynomial for m = 1 is q51 (X; 0), its gain of 10.13 indicating
 a significantly better fit than that of the straight line model k1 (X; 1). For m =2, the
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 Fig. 4. IgG and age for 298 children
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 Fig. 5. Fits for IgG data: (a) 02(X; 2, 2) ( ), quartic (-------); (b) +2(X; 2, 1) ( ), cubic
 (-)


 best fractional polynomial has p( 2, 2) and G = 18.11. Among conventional
 polynomials, a quartic (for which G= 19.87) is required to give a fit that is comparable


 with that of 02(X2; p) (see Fig. 5(a)). The quartic shows the usual waviness and 'end
 effects' that are often associated with high degree polynomials. The fractional
 polynomial model is clearly preferable. The MLE of the shift parameter r is 0.10
 with a 95Wo confidence interval of (- 0.70, 0.38), so t =0 is acceptable.


 For comparison, the full curve in Fig. 5(b) depicts the model used by Isaacs et al.
 (1983), a quadratic in X12 or (in our notation) +2(X; 0.5, 1). The broken curve
 shows the cubic model +3(X; 1, 2, 3), considered by Isaacs et al. (1983) as an
 alternative but rejected by them because of the clinically implausible rise near X= 6
 years. The gains for these two models are 8.08 and 9.87 respectively, so c2(X; p)
 is preferable. We believe that the apparent end effect (the sharp increase in Y) for
 low values of Xis real; a plot of Y against ln X shows a smooth trend from the earliest
 ages, and a lowess fit shows a similar pattern. However, the plausibility of any final
 model requires non-statistical (clinical) confirmation.


 4.3. Two Continuous Covariates: Diabetes Data
 The diabetes data come from a study of 84 children (Sochett et al., 1987). Data


 on an unspecified subset of 43 children are given in full by Hastie and Tibshirani
 (1990), p. 304. They used the data to exemplify generalized additive modelling. The
 aim was to investigate the dependence of Y, the logarithm of C-peptide concentration


 (a protein secreted together with insulin), on age (XI) and base deficit (a measure
 of acidity). Base deficit is always negative, so for fractional polynomial modelling we
 take X2 to be minus base deficit. Other predictors were studied by Sochett et al.
 (1987) but they were not given by Hastie and Tibshirani and are not considered here.


 The stepwise algorithm of Section 3.5 converged after two iterations. The initial


 and final deviances were 73.05 and 62.25. The model selected was c/ (XI; - 1) and
 X, (X2; 0) with gains of 8.62 and 3.06 for each term respectively. Increasing the
 degree to m = 2 for each covariate would have reduced the deviance of the overall
 model by only 2.89. Fig. 6 shows partial residual plots for each covariate, before
 (i.e. using m = 1 and p = 1) and after transformation. The partial residuals for age
 (top left-hand plot) show clear curvature, which is corrected by the reciprocal
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 Fig. 7. IYF data: (a) lowess estimate with bandwidth 0.8 together with original (X, 1') pairs randomly
 'j ittered' vertically; (b) lowess ( ~) with fitted curves from logistic regression on 02(X - ,-1


 --- -) and on a quadratic polynomial in X (-----)


 The relationship between the lowess-estimated probability of pregnancy and the
 E2 concentration X is non-monotonic (see Fig. 7(a)). The best powers for m = 1 and
 m = 2 in a logistic regression analysis are - 2 and - = (- 1, - 1), with G= 2.25 and
 7.12 respectively, favouring m =2. As expected from the plot, the base-line model
 k1 (X; 1) is a poor fit, with a deviance equalling (to two decimal places) that of the
 grand mean model. Arguing from the properties of the distribution of X in the two
 response groups (Y= 0 and Y= 1), Royston (1992) obtained a model which was a
 quadratic in lnX, in our notation +2(X; 0, 0). The gain for this model is 6.60, close
 to that of +2(X; p). Despite having G only 2.83 lower than that of q2(X; p), the
 conventional quadratic model +2(X; 1, 2) is not a good fit, as may be seen in Fig.
 7(b), which includes the fitted curves for k2 (X; 1, 2) and for +2 (X; p).
 The curve for the latter model is very close to lowess. The curve (not shown) for


 02(X; 0, 0) is near to that for +2(X; p) but is a slightly less good fit visually. The
 estimated values of X (pmol-1') for which the probability of pregnancy is
 maximized are about 6600 for lowess, 6150 for +2(X; p), 6750 for O2(X; 0, 0) and
 7750 for +2(X; 1, 2). We have not attempted to calculate confidence intervals for
 these estimates.


 5.2. Myelomatosis Trial
 MacLennan et al. (1988) described the fifth Medical Research Council trial of


 treatments for myelomatosis, a type of leukaemia. Patients were randomly allocated
 to receive a new four-drug regimen (ABCM) or conventional therapy (M7). The main
 outcome variable was the survival time (in days) from randomization to death. The
 following continuous covariates were measured at randomization: age (X1),
 haemoglobin (X2), creatinine (X3), serum fl2-microglobulin or SB2 (X4), calcium
 (X5), albumin (X6) and immunoglobulin-M (IgM) (X7). For reasons stated in Section
 3.1, we took = -0.1 for X7 and analysed IgM+0.1 rather than IgM. A three-
 category disease severity index was also calculated. Each patient received one of two
 treatments at random. Some survival times were censored; however, each patient was
 followed up for at least 2.5 years (913 days). We define Y= 1 if the patient died between
 0 and 913 days, Y= 0 otherwise. We build a logistic regression model for the probability
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 Fig. 8. Partial residual plots for the SB2 data: 0, +, partial residuals; , fitted function of X4
 for the six-covariate logistic regression model including +2(X4; -2, 3) fitted to the complete sample;
 --------, fitted function +1 (X4; - 1) omitting the 15 cases (marked with +) for which X4>40


 of death, Pr(Y= lIX), in terms of X1, . . ., X7 and three categorical (binary)
 covariates: treatment (Z1), severity index ?2 (Z2) and severity index > 3 (Z3).


 After exclusion of missing data on covariates (mainly albumin), 544 of the original
 592 patients remain, of whom 283 died (Y= 1). The stepwise procedure described
 in Section 3.5 converges after two iterations. The deviances of the current model at
 the start of each iteration are 666.81 (10 terms), 655.08 (six terms) and 656.58 (five
 terms) respectively, 666.81 corresponding to the initial model


 7 3


 E ojXj+ E jZj.
 1 1


 The final model comprises 42(X4; -2, 3), X5, X6, Z1 and Z2; the remaining
 variables are omitted by stepwise elimination. The gain associated with the model
 n4 = 2, p4 = (-2, 3), compared with m4 = 1, p4 = 1, is substantial (14.14); the gain for
 the model m4 = 1, p4 = - 1, is 9.14.


 High values of SB2 (X4) are known to be associated with poor prognosis, and in
 fact all patients with values above 40mgl-1 died. We therefore investigated the
 possible presence of bias which may occur in fitted logistic regression models when
 regions of covariate values are associated with Y-values of 0 or 1 only (see, for example,
 Hastie and Tibshirani (1990), pages 164-165). Fig. 8 shows a partial residual plot
 for SB2. The residuals are calculated as r = (y - )/fjt(1 - j4), where ,u is the estimate
 of Pr(Y= lIX, Z) for an observation y of Y. The (partial) fitted values are i=
 t^ + ^4 + 1 42A94 and the plotted points are r+ 71. In the pure region of Y= 1 (where
 SB2 > 40), the residuals (here shown as + ) are all positive and track the fitted function.
 In fact, further investigation showed that the M4 =3 model k3 (X4; 0, 3, 3) is
 apparently a better fit than +2(X4; -2, 3). However, this model has even more
 abrupt behaviour, turning upwards rapidly when SB2>40.


 We were concerned about the end effects shown in Fig. 8, so we repeated the stepwise
 analysis omitting the 15 patients with SB2 > 40. The procedure again converges after
 three iterations, selecting the same variables as before, except that SB2 now appears
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 as c/1(X4; - 1), with an associated gain of 15.10. The broken curve in Fig. 8 shows
 the fitted function of X4. It follows the m4 =2 function closely for X4 ?40 but is
 much flatter for higher values. A larger sample would be needed to settle the question
 of which fractional polynomial is the more appropriate; the true function may lie
 between the two. However, the possible effects of pure regions of Y= 1 or Y= 0 at
 the extremes of covariate ranges must be borne in mind when fitting flexible functions
 such as fractional polynomials. The partial residual plot is a useful tool for diagnosing
 such problems.


 6. Example for Cox Regression Modelling: Leg Ulcer Trial


 In a clinical trial of two treatments of leg ulcer (Smith et al., 1992), the response
 variable Ywas the number of days from diagnosis to complete healing. Nine covariates
 out of an initial 24 were considered to be biologically plausible candidates for inclusion
 in a final model: these were initial ulcerated area (X1), number of months since
 onset of the ulcer (X2), age (X3), diastolic blood pressure (X4), height (X5), ankle
 pressure (X6), body weight (X7), presence or absence of deep vein involvement
 (Z1) and treatment difference (Z2). Thus there were seven continuous covariates
 (k= 7) and two categorical covariates (c = 2). A secondary aim of the study was to
 develop a prognostic index for estimating healing time for the individual patient
 (Skene et al., 1992), so prediction of Y in terms of the patient's values of X and Z
 was required. The sample size was 200; 17 cases were excluded because covariate
 information was missing, leaving n = 183 cases for analysis. 91 of the healing times
 were censored.


 The number of months since onset (X2) has several values of 0. To permit the use
 of fractional polynomials, we adopt the suggestion of Section 3.1 and shift X2 by
 1 ( = - 1), redefining X2 as the number of months plus 1. The reductions in
 deviance compared with the no-covariate model on fitting each continuous covariate
 separately are 66.30, 18.70, 9.31, 7.40, 2.99, 2.42 and 0.04, so X1 (ulcerated area)
 appears to offer the greatest scope for fractional polynomial modelling. The stepwise
 procedure of Section 3.5 converges after one iteration. The final model comprises


 c1(X1; 0.5), k1(X2; 0), +1(X3; -2), X4 and Z1; the remaining four variables are
 rejected by stepwise elimination. The initial and final deviances are 730.64 and 718.39.
 The gains for X1, X2 and X3 are 3.69, 13.20 and 2.94 respectively, so the greatest
 improvement in fit occurs through X2 rather than X1. Although there is little to be


 gained by using / J(XI; p) with p ?1, use of p = 0.5 has some justification as it
 changes the dimension of X1 from that of an area to that of a linear measurement
 and reduces the deviance by over 3 for no increase in the complexity of the model.
 However, for X3 use of p= -2 has no apparent biological meaning and only
 marginally improves the fit compared with p = 1, so may not be worthwhile. When
 the model is refitted using only the five covariates selected, an additional nine cases
 are included and the gains for X1, X2 and X3 become 3.95, 14.61 and 2.85,
 reinforcing the above conclusions.


 Examination of the profile deviance function for the origin parameter r with respect


 to the five-parameter model including +1 (X2; ?, t, 0) gives P = - 1.1 and a 95 Wo
 confidence interval for r of (- 16, - 0.011). So, although a negative value of r (i.e.
 a positive shift) is required for X2, the actual value is not critical.
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 Fig. 9. Gain plotted againstpl for the fractional polynomial model (X) (- -) and for +2(X) with
 eight values of P2 ( , P2 ?; -----P2 < 0): (a) mandible length data (P2-labels for P < 0. 5 have
 been suppressed for clarity); (b) IVF data


 7. Plots of Gain


 When assessing competing fractional polynomial models of degree 1 or 2, it is often
 informative to plot G against the chosen powers for m = 1, here denoted Pi rather
 than p. For the m = 2 models, G may be plotted against Pi on the same graph as a
 sheaf of curves indexed by the chosen values of P2. For m= 1, the plotted curve
 (assuming suitable interpolation) essentially depicts the profile deviance function
 for Pi when Pi is regarded as an adjustable parameter of the non-linear model
 40 + (IXP1. If the curve has a peak, the value of PI corresponding to the maximum
 G is the MLE 61, so the plot gives an idea of how close -1 is to AI. For m = 2, the
 family of curves indexed by P2 illustrates graphically the power vectors (PI, P2)
 which give high values of G (indicating a good fit) and those which are associated
 with a less good fit. Often the pattern of curves is complex, indicating, as would be
 expected in many cases, that the underlying likelihood surface is far from the parabolic
 shape associated with, for example, the parameters of linear models with normal errors.


 Fig. 9 gives examples of gain plots for the mandible length data (Section 4.1) and
 for the IVF data (Section 5). The curves in Fig. 9 have been created by cubic spline
 interpolation between the values of G corresponding to the eight chosen values of
 p, and are therefore only approximations to the true curves. Fig. 9(a) clearly shows
 that 41 (X; p) with - = - 1 is as good a fit (in terms of G) as any of the degree 2
 models. Many of the latter fit about equally well (see also Table 2). For the IVF data,
 Fig. 9(b) shows that 41 (X) is a poor fit compared with +2(X), at least over the range
 [ -2, 3] for p1. The G-curve for m= 1 has no peak in [-2, 3] and rises as p
 becomes increasingly negative; in fact, the MLE 'I -- 6.


 8. Simulation and Bootstrapping


 8. 1. Simulation
 We investigated the type I error rates associated with the model selection rules


 described in Section 3.4. Data were simulated from the straight line model


 Y=X+ e- (9)
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 TABLE 3


 Estimated type I error rates for model selection rules based on the F-distribution


 Distribution of X a HA: m=J, p=J HB: m=J


 n n
 20 50 100 20 50 100


 Uniform 0.1 0.000 0.000 0.000 0.112 0.108 0.106
 0.5 0.086 0.038 0.008 0.076 0.090 0.120
 1.0 0.108 0.078 0.078 0.050 0.056 0.084


 Exponential 0.1 0.000 0.000 0.000 0.078 0.102 0.092
 0.5 0.070 0.028 0.012 0.080 0.110 0.116
 1.0 0.104 0.088 0.072 0.044 0.046 0.094


 with independent errors c N(O, a2). Fractional polynomial models with m = 1 and
 m = 2 were fitted. Type I errors were considered in relation to two null hypotheses:
 HA: m = 1, p = 1 (the alternative being m = 1, p ? 1), and HB: m = 1 (as opposed to
 m=2). In each case, p was estimated by p. 90th percentiles of the F1n3- and
 F2, -5-distributions were used as critical values to test HA and HB respectively.


 For each run, we fixed a and standardized the realization of Xto have unit variance
 as follows. To make the distribution of X either symmetric or positively skewed, values
 were chosen to be equally spaced on either a uniform or an exponential scale. Writing


 qi= i/n (i=, ..., n) and E=qiI/n=I(n+ 1)/n, we took xi=(1/12)"-1/2qi for the
 uniform case and xi* = expf4(qi - q)j, xi = xi* var(x*) - 1/2, for the exponential case. For
 each combination of n=20, 50, 100, u=0.1, 0.5, 1.0 and distribution of X, we
 simulated 500 realizations of Yi, . . *, Yn from model (9) by using pseudorandom
 normally distributed residuals. The rejection rates of HA and HB were noted. The
 results are given in Table 3.


 For hypothesis HA, the type I error increases sharply with a, apparently
 approaching the nominal level (0.1) for noisy data. For HB, the type I error rates
 are generally fairly close to nominal, presumably because in this case -p is a
 reasonable approximation to p for models with m = 2. For the models examined here,
 both tests tend, as expected, to be conservative.


 8.2. Bootstrapping
 We investigated the reliability of fractional polynomial modelling in one instance


 by bootstrap analysis of the IgG data set (see Section 4.2). We wished to quantify
 the variations in p, and consequently in fitted curve shapes and in estimated
 confidence intervals, that would occur with resampling. Fitted values ii and residuals
 e were computed after fitting the model 02(X; - 2, 2) to the original data. Bootstrap
 samples y* were obtained by randomly selecting (with replacement) a vector e* of
 n residuals from e and forming y* = j1 + e*. Power vectors 1p* and fitted values ^ *
 were found by fitting fractional polynomial models with m = 2 to (y*, x) in the usual


 way. We also calculated 9070 confidence intervals for 9 in two ways: in standard
 fashion from the original data (ignoring the estimation of p) and by using the empirical
 5th and 95th centiles of the bootstrap estimates '9
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 TABLE 4


 Frequencies of bootstrap estimates p * = (Pi, P2 )
 for the IgG data


 P2 Frequencies for the following
 values of P1:


 -2 -J -0.5


 -0.5 1 0 0


 0 2 0 0


 0.5 13 0 0
 1 29 0 0


 2 59 2 0


 3 61 26 7


 200 bootstrap samples were taken. Table 4 gives the resulting frequencies of p*.
 Models with p* - (-2, 2) and (-2, 3) were chosen most often (in 60Wo of cases).


 Pi was always negative, reflecting the apparent dip in Y at the lowest ages. Fig.
 10(a) shows the curves for the five most common models in Table 4, obtained by
 fitting the models to the original data. The differences between the curves are minor
 and are greatest when X> 5. This is reflected by the confidence intervals for 27 (see
 Fig. 10(b)). The bootstrap intervals are very similar to the conventional intervals,
 except for a slight widening at the extreme right of the range of X.


 9. Discussion


 9. 1. Introduction
 The use of regression models which include continuous covariates is widespread,


 but it has long been recognized that conventional polynomials often fit poorly.
 However, it seems that few low dimensional parametric alternatives to, or extensions
 of, conventional polynomials have been suggested. Existing alternatives such as cubic
 splines and nonparametric smoothers often work well but have drawbacks: they are
 computationally intensive, they do not yield compact expressions for prediction, they
 cannot be fitted by using standard regression software and they may be difficult to
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 Fig. 10. Bootstrap analysis of the IgG data: (a) raw data and the five most common fractional
 polynomial models selected in 200 bootstrap samples and fitted to the original data; (b) 90/o pointwise
 confidence limits for ', calculated by conventional ( ) and empirical bootstrap (--------) methods
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 explain to the non-expert user. The absence of a simple method that gives a good
 representation of curved relationships may be one reason for the common practice,
 especially in medical statistics, of converting continuous variables into ordinal variables
 with two or more categories.


 Although fractional polynomials have been used by various researchers on an ad
 hoc basis (e.g. Isaacs et al. (1983) and Guo et al. (1988)), we have found only indirect
 mention of them in standard text-books on regression. For example, Snedecor and
 Cochran (1967) mention the addition of 'terms in >X, logX or 1/X . .. if the data
 had required it', but elaborate no further. Draper and Smith (1981) discuss briefly
 reciprocal, logarithmic and square-root transformation of covariates but do not pursue
 the topic. Atkinson (1985) describes how constructed variables may be used to detect
 the need for transformation of covariates but does not consider fractional polynomials
 as such. Although describing a transform both sides methodology, Carroll and Ruppert
 (1988) do not discuss fractional polynomials.


 9.2. Discussion Issues
 9.2.1. Choice of model


 It is reasonably straightforward to test between non-nested fractional polynomial
 models of the same or of different degree, e.g. by constructing an encompassing model
 (Mizon and Richard, 1986). We have not done so, preferring the simpler heuristic
 approach of comparing deviances. In practice, by either approach, several models
 may be formally indistinguishable, particularly when R2 (the index of determination)
 and the signal-to-noise ratio are small. In Section 3.4, we outlined other criteria for
 choosing one model from a set of contenders. When several models fit equally well,
 our main considerations are parsimony, the visual acceptability of the curve in relation
 to the data and the scientific appropriateness of the model (see Section 1). We avoid
 black box approaches wherein the algorithm (or software) takes the major modelling
 decisions on behalf of the user.


 9.2.2. Choice of powers
 The set L? of powers for fractional polynomials that we have suggested is tentative.


 There may be a case for including or substituting others, probably in the range
 [ - 1, 1] and particularly for m = 1 models. For example a cube root (3) transfor-
 mation may make sense if the variable has the dimensions of a volume. We do not
 think that non-integer powers outside [ - 1, 1] will be found useful. One reason
 that we have included 3 in ? is because we have found that the linear-cubic curve
 02(X; 1, 3) sometimes improves on a quadratic (Altman, 1993). If Y changes rapidly
 near X= 0, the power - 3 might be useful.


 As noted in Section 3.1, when m > 1 equal powers give rise to models which include
 products of powers and log-terms. For reasons that are unclear, the best models include
 equal powers more often than might be expected. Several examples appear in Sections
 4 and 5, such as - = (- 1, - 1) for the IVF data.


 9.2.3. End effects and extrapolation
 Conventional polynomials often generate artefacts at the extremes of X. Our


 experience indicates that such end effects are less common and less marked with
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 fractional polynomials, though models with negative powers, which have a singularity
 at X= 0, may have inappropriately large slopes for X near 0. The absence of end
 effects in the fitted curve is one of the criteria guiding preference among several models
 that fit about equally well (for example, see Table 2 and Fig. 3). The bootstrap analysis
 of the IgG data is reassuring in that all the models selected by resampling give similar
 curve shapes, and in particular confirm the behaviour of k2(X; p) at the extremes
 of X.


 We would not extrapolate any curve beyond the observed range except in special
 circumstances such as short-term forecasting. However, such things are sometimes
 done. The dramatically poor performance of the cubic polynomial in this role is
 illustrated in Fig. 3, where the fractional polynomial does much better. A fractional
 polynomial with only negative powers (as in Fig. 3) has asymptote 40 as X-+ oo and
 is potentially suitable for modelling data in which limiting behaviour is expected.


 9.2.4. Heterogeneity of variance
 The examples of models with normal errors described in Section 4 were chosen


 because the response variable Y was reasonably homoscedastic. If heteroscedasticity
 is present but is not allowed for, estimates of standard errors are inflated. If the
 distribution of Y is skewed, a transformation of Y may both stabilize the variance
 and remove the skewness (Box and Cox, 1964). If the errors are believed to be normally
 distributed, the variance or SD may be modelled explicitly. However, model fitting
 and selection are complicated by the interplay between the weights needed for the
 modelling of E(Y) and the estimation of the variance function. Modelling the variance
 (or SD) is critical for obtaining valid normal-based quantile estimates, such as reference
 intervals in medicine (Royston, 1991; Altman, 1993). We shall describe elsewhere the
 use of fractional polynomials for constructing such intervals.


 9.2.5. Multiple covariates
 We have suggested a stepwise procedure for selecting fractional polynomial models


 when several candidate covariates are available. Two issues still await formal proof:
 convergence of the algorithm and independence of the final model on the order of
 fitting of each covariate. On all the data sets that we have tried, the algorithm has
 converged in at most three iterations irrespective of the order of fitting. We believe
 the reason for the rapid convergence is that only the functional forms of the covariates,
 not the individual regression coefficients, are required to converge.


 In some cases, our procedure may result in models that are more parsimonious
 (and arguably more valid) than those produced by standard stepwise approaches. If
 the true relationship between Y (conditional on other Xs) and an X is non-linear but
 a straight line model is fitted, some of the non-linearity may be carried by other Xs,
 causing them to be selected. In our approach, those Xs may not be required. An
 example occurs in the leg ulcer data (Section 6). A conventional stepwise Cox regression


 analysis on the original covariates produces a six-term model X1, X2, X3, X4, ZI,
 Z2, with a deviance of 737.15. Here Z2 is a binary covariate representing a treatment
 effect; the deviance reduction on omitting it from the model is 4.05 (P=


 0.04). The chosen fractional polynomial model comprises c/ (X,; 0.5), k1(X2; 0),
 41 (X3; -2), X4, Z1, and has a deviance of 718.39, a reduction of 18.76 for the loss
 of one term. The inclusion of treatment (Z2) reduces the deviance by 1.99 (P= 0.16).
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 Thus in this example the clinical conclusions from the study could be radically altered
 by the modelling approach adopted.


 A further use of the stepwise procedure is to check the variables in multiple-regression
 models for non-linearities. For example, Fentiman et al. (1994) studied predictors
 of bone mineral content in 1849 naturally or artificially post-menopausal women,
 some receiving hormone replacement therapy (HRT). A conventional stepwise
 regression model comprises four continuous covariates (age, height, weight and months
 of HRT), one ordered categorical covariate (number of children, modelled as
 continuous) and one binary covariate (whether currently on HRT). After adding 1
 to both parity and months of HRT to avoid Os, the stepwise fractional polynomial
 procedure resulted in the same model. This finding increases confidence in the model,
 in that the power to detect non-linearities (if present) is likely to be high owing to
 the large sample size.


 9.2.6. Non-positive covariates and choice of origin
 A large class of variables, including most physical measurements and many other


 types as well, are intrinsically positive and may be used directly in fractional poly-
 nomials. Examples of non-positive variables include estimated regression slopes and
 differences (such as post-treatment minus pre-treatment values of a prognostic variable
 in a clinical trial). Our experience suggests that, provided that X- v > 0, the precise
 value of v chosen is not critical to the fit of the resulting fractional polynomial model
 in X- ?, presumably because p and v are highly correlated. A general rule for selecting
 reasonable (or initial) values of t would be useful and is a topic for further research.


 9.2.7. Fractional polynomials with m >2
 Although no example data set which requires m >2 has been given, we have


 encountered several data sets with k= 1 which need m = 3. An obvious strategy for
 finding satisfactory power vectors when m > 2 is to enumerate all m-tuples from Y
 and to select the model(s) with the lowest deviance. Although this approach is feasible
 for m = 3, the amount of computation is somewhat prohibitive for m> 3. An alternative
 approach is to augment the m-tuples which correspond to a few 'best' fractional
 polynomial model(s) of degree m with each power in 9 in turn, choosing the resulting
 best model(s) of degree m + 1 in the usual way. We know that this approach is
 unsatisfactory for m = 2; for example, our experience is that the best power with m = 1
 rarely appears as a component of p for m =2. However, we hypothesize that the
 likelihood surface (with respect to p) will often be very flat for m >2, making the
 choice of p less critical than with m S 2. An alternative strategy is to fix some of the
 m powers and to vary the others systematically until a good fit is obtained. Another
 approach is to enumerate all m-tuples for m >2 from a smaller set of powers than
 before, e.g. from 9 = f - 2, - 1, 0, 1, 2}. In each case the computational burden and
 the potential overfitting would be reduced, but possibly at the cost of a significant
 loss of model flexibility in some cases.


 9.3. Further Points
 9.3.1. General modelling problems


 Certain general considerations apply to most modelling strategies and are not specific
 to the use of fractional polynomials. These issues include the selection of covariates
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 by stepwise or other methods, avoidance of overfitting by use of penalized likelihoods
 or deviances and the assessment of model performance (especially goodness of fit
 and expected prediction error). Each of these topics has its own literature and requires
 no particular comment with respect to fractional polynomial models.


 9.3.2. Relation to non-linear models
 If for given m the parameter vector p is treated as continuously varying in


 some or all of its components and its MLE is determined from the data, equation
 (6) becomes a non-linear model. For example, if we write X* = ln X then '1 (X) gives
 the exponential regression model E(Y) = O + j exp(piX*) often used to represent
 growth or decay, whereas 02(X) yields the double-exponential curve E(Y)=
 40 + 4j exp(p,X*) + 42 exp(P2X*).


 9.3.3. Extensions of fractional polynomial models
 Extensions of model (6) could involve other transformations X* of X. For example,


 X* = exp X could be used in place of X. However, although the family (6) using X*
 is location invariant for X, it is highly scale dependent. Investigation so far suggests
 that the use of X* = exp(X/s) or of X* = exp(- X/s), where s is the SD of sample


 values xl, . . ., xn, can generate useful models, particularly when Y is believed to
 tend to some lower or upper bound for large X. The possibilities are limitless. For
 example, models containing a mixture of fractional polynomials in X and in X* might
 be considered. We have occasionally found uses for fractional polynomials in lnX
 or in ln(X+ 1), especially for the former when Y rises or falls steeply at small values
 of X. As always, the choice must be guided by the known or postulated characteristics
 of the data and by the quality of the fit.


 9.4. Final Comments
 Statistical models approximate relationships between variables. In general the terms


 in the model, and their coefficients, lack a specific meaning. Rather, it is understood
 that the model is simply a convenient formula that gives a good description of the
 relationship within the space of the observed data. There is no particular reason, other
 than convention, why regression models should include only positive integer powers
 of the covariate(s). As we have shown, the use of fractional polynomials can give
 a better fit with fewer terms in the model. We have applied these models to many
 data sets in addition to the six examples considered in this paper. We usually find
 a model that is an improved fit in comparison with the conventional polynomial with
 the same number of terms. Because we include conventional polynomials within our
 family, we cannot obtain a worse fit. We do not suggest that fractional polynomial
 models should supplant existing methods; rather, they should be seen as a convenient
 addition to the applied statistician's toolbox.


 Copies of the raw data for examples 1-4 are available from the first author on
 request. Either send him a formatted PC-compatible floppy disc (any capacity) or
 send an e-mail message to him at proyston@rpms.ac.uk.


 Acknowledgements


 We thank L. Chitty, I. Fentiman, D. Isaacs, J. Lewis and I. MacLennan for the
 mandible, bone density, IgG, leg ulcer and myelomatosis data respectively. We are


This content downloaded from 142.150.190.39 on Mon, 08 Jun 2020 18:55:50 UTC
All use subject to https://about.jstor.org/terms







 452 ROYSTON AND ALTMAN


 grateful to Tim Cole and particularly to Peter Sasieni for helpful discussion, insight
 and clarification.


 References


 Afnan, M., Mastrominas, M., Dimitry, E. S., Davis, S. and Winston, R. M. L. (1993) The relationship
 between endometrial thickness and implantation rate following in-vitro fertilization and embryo
 transfer. Unpublished.


 Altman, D. G. (1993) Construction of age-related reference centiles using absolute residuals. Statist.
 Med., 12, 917-924.


 Atkinson, A. C. (1985) Plots, Transformations and Regression, pp. 177-180. Oxford: Oxford Scientific.
 Berkey, C. S. and Reed, R. B. (1987) A model for describing normal and abnormal growth in early


 childhood. Hum. Biol., 59, 973-987.
 Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations (with discussion). J. R. Statist.


 Soc. B, 26, 211-252.
 Box, G. E. P. and Tidwell, P. W. (1962) Transformation of the independent variables. Technometrics,


 4, 531-550.
 Breiman, L. and Friedman, J. H. (1985) Estimating optimal transformations for multiple regression


 and correlation (with discussion). J. Am. Statist. Ass., 80, 580-619.
 Carroll, R. J. and Ruppert, D. (1988) Transformation and Weighting in Regression. London: Chapman


 and Hall.
 Cheema, M. A. A. and Moussa, M. Y. (1992) Non-parametric regression in curve fitting. Statistician,


 41, 209-225.
 Chitty, L. S., Campbell, S. and Altman, D. G. (1993) Measurement of the fetal mandible-feasibility


 and construction of a centile chart. Prenat. Diag., 13, 749-756.
 Cleveland, W. S. (1979) Robust locally-weighted regression and smoothing scatterplots. J. Am. Statist.


 Ass., 74, 829-836.
 Copas, J. B. (1983) Plotting p against x. Appl. Statist., 32, 25-3 1.
 Count, E. W. (1942) A quantitative analysis of growth in certain human skull dimensions. Hum. Biol.,


 14, 143-165.
 (1943) Growth patterns of human physique: an approach to kinetic anthropometry. Hum. Biol.,


 15, 1-32.
 Draper, N. R. and Smith, H. (1981) Applied Regression Analysis, 2nd edn, pp. 221-222. New York:


 Wiley.
 Durrleman, S. and Simon, R. (1989) Flexible regression models with cubic splines. Statist. Med., 8,


 551-561.
 Fentiman, I. S., Wang, D. R., Allen, D. S., De Stavola, B. L., Moore, J. W., Fogelman, I. and Reed,


 M. J. (1994) Bone density of normal women in relation to endogenous and exogenous oestrogen.
 To be published.


 Guo, S., Roche, A. F. and Moore, W. M. (1988) Reference data for head circumference and 1-month
 increments from 1 to 12 months of age. J. Pediatr., 113, 490-494.


 Hastie, T. J. and Tibshirani, R. J. (1986) Generalized additive models (with discussion). Statist. Sci.,
 1, 297-318.


 (1990) Generalized Additive Models. London: Chapman and Hall.
 Isaacs, D., Altman, D. G., Tidmarsh, C. E., Valman, H. B. and Webster, A. D, B. (1983) Serum


 immunoglobulin concentrations in preschool children measured by laser nephelometry: reference ranges
 for IgG, IgA, IgM. J. Clin. Pathol., 36, 1193-1196.


 MacLennan, I. C. M., Kelly, K., Crockson, R. A., Cooper, E. H., Cuzick, J. and Chapman, C. (1988)
 Results of the MRC myelomatosis trials for patients entered since 1980. Hematol. Oncol., 6, 145-158.


 McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd edn, p. 16. London: Chapman
 and Hall.


 Mizon, G. E. and Richard, J. (1986) The encompassing principle and its application to testing non-
 nested hypotheses. Econometrica, 54, 657-678.


 Nelder, J. A. (1966) Inverse polynomials, a useful group of multi-factor response functions. Biometrics,
 22, 128-141.


 Poirer, D. J. (1973) Piecewise regression using cubic splines. J. Am. Statist. Ass., 68, 515-524.
 Reinsch, C. H. (1967) Smoothing by spline functions. Numer. Math., 10, 177-183.


This content downloaded from 142.150.190.39 on Mon, 08 Jun 2020 18:55:50 UTC
All use subject to https://about.jstor.org/terms







 FRACTIONAL POLYNOMIALS OF CONTINUOUS COVARIATES 453


 Royston, P. (1991) Constructing time-specific reference ranges. Statist. Med., 10, 675-690.
 (1992) The use of cusums and other techniques in modelling continuous covariates in logistic


 regression. Statist. Med., 11, 1115-1129.
 Silverman, B. W. (1985) Some aspects of the spline smoothing approach to non-parametric regression


 curve fitting (with discussion). J. R. Statist. Soc. B, 47, 1-52.
 Skene, A. I., Smith, J. M., Dore, C. J., Charlett, A. and Lewis, J. D. (1992) Venous leg ulcers: a


 prognostic index to predict time to healing. Br. Med. J., 305, 1119-1121.
 Smith, J. M., Dore, C. J., Charlett, A. and Lewis, J. D. (1992) A randomized trial of Biofilm dressing


 for venous leg ulcers. Phlebology, 7, 108-113.
 Snedecor, G. W. and Cochran, W. G. (1967) Statistical Methods, 6th edn. Iowa: Iowa State University


 Press.
 Sochett, E. B., Daneman, D., Clarson, C. and Ehrich, R. M. (1987) Factors affecting and patterns


 of residual insulin secretion during the first year of type I (insulin dependent) diabetes mellitus in
 children. Diabetology, 30, 453-459.


 Stone, C. J. (1985) Additive regression and other nonparametric models. Ann. Statist., 13, 689-705.
 Whittaker, E. T. (1923) On a new method of graduation. Proc. Edinb. Math. Soc., 41, 63-75.
 Wingerd, J. (1970) The relation of growth from birth to two years to sex, parental size and other factors,


 using Rao's method of the transformed time scale. Hum. Biol., 42, 105-131.


 Discussion of the Paper by Royston and Altman


 A. W. Bowman (University of Glasgow): It is a real pleasure to propose the vote of thanks for this
 paper, doubly so because I am also able to congratulate Rothamsted on its 150th birthday. In both
 cases there is a strong history of effective, innovative and applied statistical modelling, and these are
 histories worthy of congratulations.


 I find the historical perspective useful. The traditional origins, and much of the current practice,
 of statistics lie firmly in parametric models and their interpretation. The systematic framework for
 inference, and where appropriate the scientific basis for the model itself, are extremely important. At
 the other end of the spectrum, the fully nonparametric approach seeks to abandon all unnecessary
 constraints. In the best British tradition, the authors have sought to occupy the middle ground.


 From the perspective of the middle ground there is an admirable honesty in recognizing that the
 parametric shape of a model does not always have complete scientific validity. It is often simply a helpful
 approximation. The view presented by the paper of the difficulties with models at the nonparametric
 end of the spectrum is that we require computationally intensive, and non-standard, calculations. This
 view may be a little overstated since it is possible to write simple smoothing routines even in short
 MINITAB macros. Another view is that nonparametric approaches are difficult to explain. However,
 a local average is quite a simple concept. In comparing this with some of the fractional polynomial
 models used in the paper, where we have transformations of x and perhaps also a backfitting algorithm,
 the contrast is not quite so stark.


 The examples are helpful in exploring the essential differences between these approaches. The mandible
 growth data involve a high signal-to-noise ratio. There is also sensible information to build on, such
 as monotonicity, strong smoothness and a slowing of the rate of growth with age. The fractional
 polynomial result is not far from a traditional parametric model. However, a spline estimator with 5
 degrees of freedom is almost indistinguishable from this. Extrapolation highlights one essential difference.
 The local nature of the spline estimator gives it no guidance on how to proceed, whereas the fractional
 polynomial makes use of its in-built global structure. Of course, this global structure may or may not
 be correct. I would be interested to know from the authors' experience what the effects of perturbations
 of the data at one end of the design space can have on the model at the other end. It is clear from
 their examples that fractional polynomials are less subject to this than ordinary polynomials, but the
 effect must still be there in some form.


 With any models which we use, inference is one of the most important issues. There are two concerns
 about this which I would like to raise. The first is that the model selection algorithm proposed involves
 a choice of indices, a choice of polynomial degree and possibly also some iteration where more than
 one covariate is involved. This is in addition to the usual issues of selection of variables. I wonder whether
 the parametric origins of fractional polynomials may lead us into a false sense of security in thinking
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 that parametric forms of inference will easily apply. There is a large multiple-testing problem here. The
 authors have begun to address this issue through some simulations presented in the paper but it would
 be interesting to hear more about the stability of this kind of inference.


 A final small comment refers to the bootstrapping approach, which I find helpful. The stability of
 the shapes produced in Fig. 10 is reassuring. However, resampling is taking place from the fitted model,
 which has this shape embodied within it. That in itself is not a guarantee that this shape is reliably
 and correctly identified from the original data. In other words, there are issues of bias here, just as
 there are with nonparametric approaches.


 There is no intention here to champion one particular approach against another, but in considering
 the uses of each there is at least one possible guideline. Where we cannot easily see what the structure
 of the relationship between the response and a covariate is, there are strong attractions in at least starting
 at the nonparametric end of the spectrum. In the immunoglobulin example centiles can be estimated
 directly. (Eileen Wright, University of Glasgow, is developing smoothing techniques for this situation.)
 With logistic regression and survival data, smoothing can be helpful in displaying features of the regression
 structure. With survival data a running median can be constructed from a running Kaplan-Meier
 estimator.


 However, where there is strong prior indication of a high degree of structure, such as the monotonic
 or asymptotic behaviour of some of the examples, the middle ground for which the authors have argued
 does indeed give very useful extensions to the tools at our disposal.


 I propose the vote of thanks with great pleasure.


 D. R. Appleton (University of Newcastle upon Tyne): I am pleased to add my thanks to the authors
 for their paper, which I am sure many of the more applied statisticians among us will welcome as providing
 a useful framework for our analyses, but there are some aspects with which I take issue-less what
 the authors do than what they leave out of their modelling process.


 I came to medical statistics from mathematics via numerical analysis and computing. As a result I
 had modelled systems by differential and integral equations, and I had run Monte Carlo simulations
 before fitting my first linear model. Indeed, I found it difficult to accept the word 'modelling' as a
 description of what was being done in large areas of my new subject. Was polynomial regression any
 more than an exercise in matrix algebra? Did an autoregressive model really provide any insight into
 the mechanisms underlying the data? And what relationship to statistical modelling did 'exploratory
 data analysis' have?


 All that was 20 years ago, but I still retain a different view of modelling from many of my colleagues.
 Let me try to explain by turning from conceptual to physical models. We probably all know people
 who make models of steam-engines: indeed one of my friends is building a working scale model of
 a locomotive. It is most impressive, but if I want to explain to someone what a steam locomotive looks
 like or how it works I would be as well to show him a real one, because the model offers no simplification,
 no short-cuts to understanding. It is not parsimonious.


 However, there are beautifully made little models which look wonderful but which lack the most
 important feature of a locomotive-locomotion.


 Somewhere in the middle comes the model railway; the trains might run by electricity rather than
 steam, but they do go. This is the kind of model that I aim to build, but some of my colleagues seem
 to prefer those where the wheels do not go round. Those who smooth data rather than fit genuine models
 seem to have even less sophisticated tastes.


 Let me return to the paper under discussion. I shall take two of the examples and try to show how
 I would approach an analysis of the data. The mandible data are about growth, and so I see the model
 in terms of cell proliferation. Suppose that when a cell divides it produces two daughter cells which
 are either proliferative (P) cells or differentiated (Q) cells, and that the probability that they are
 proliferative decreases through a negative feed-back system dependent on the number of differentiated
 cells. I would like to take into account in my model the density of cells in the mandible and whether
 it changes shape during growth, but for the present let me just plot the cube root of the number of
 P + Q cells against time. My model is


 dP - 2a P, dtQ = 2a(l - 7) P, n = exp( - pQ)b, L = k(P+ Q)1'3.


 Apart from initial conditions there are four parameters, so I do not claim to be as parsimonious as
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 Altman and Royston, but I think that the modelling process gives more insight than L = exp(4.69 - 30.4/t).
 My fit is satisfactory, though I do not claim that it is the best for this model in any sense: I was more
 concerned to show that a good fit was available than to estimate parameters, and in any case I do not
 necessarily believe the form of the feed-back mechanism. (This is what I mean about my models running
 by electricity rather than steam.)


 An investigation of how variability in a parameter of the system would express itself in the observed
 data explains quite reasonably where the increasing variance might come from.


 For my second example I have constructed some simulated data which in general form are like the
 authors' oestradiol data, and which like theirs can be fitted apparently satisfactorily by relating the
 logit of the probability of success to a quadratic in another variable. But the probability of pregnancy
 in my system depends on not one but two hormones, increasing as the concentration of each increases;
 these two concentrations are negatively correlated in the population, often a consequence of negative
 feed-back. I believe that using the method of fractional polynomials on these data would lead us to
 draw (at least by implication) a qualitatively erroneous conclusion, namely that the probability of success
 was maximal when a variable was near some 'target value'.


 I would like to say more about assessing the adequacy of a model by comparing it with the results
 of different models, and indeed to go on at length about what kind of models we as statisticians should
 be building, but my real task is to thank the speakers for giving me both opportunity and motivation
 to express some of my views on modelling, and I gladly second the vote of thanks.


 The vote of thanks was passed by acclamation.


 A. C. Atkinson (London School of Economics and Political Science): This stimulating paper provides
 a nice mix of theory and data analysis. I shall discuss transformations and diagnostics for the example
 on mandible length.


 Fig. 11(a) is a plot of the data with a fitted straight line. The line seems to describe well the relationship
 between y and x but the variance increases with y. Taking logarithms of the response, as do the authors,
 produces homoscedastic errors but destroys linearity. However, these two can be achieved by transforming
 both sides of the model, a technique of Carroll and Ruppert (1988) mentioned in Section 9.1.


 Let the linear predictor be t7 = a + Ox. If the normalized power transformation of Box and Cox (1964)
 is applied to response and model we have to fit


 yX-l _ +


 where y is the geometric mean of the observations. Let the residual sum of squares from fitting this
 model for fixed X be R (X). The profile log-likelihood is


 Lm;Dx(X) = - (n/2) log R (X) + constant,
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 Fig. 11. Transforming both sides of a straight line relationship for the data on mandible length: (a) length against
 age and fitted linear relationship; (b) relative profile log-likelihood Lm (X) and asymptotic 95 % confidence interval;
 (c) log(length) against age and fitted linear relationship
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 which is maximized by X. This is equivalent to fitting by least squares the model


 yx= nx+ X-1 C.


 If this model has residual sum of squares S(X), R (X) = S(X)/(Xfi- 1)2.


 Fig. 11(b) is a plot of Lm.ax(X) for the first 158 observations of the mandible data. The value of X
 is 0.110, with 95 % confidence interval for X (- 0.186, 0.419). Taking logarithms of both sides is therefore
 justified. The fitted model is plotted in Fig. 11(c) on the log-scale for y, showing the properties that
 the authors laud in their Fig. 3. Fig. 1(a) shows the fit on the original y-scale. A query for the authors
 is whether, in this case, their incorrect transformation of just the response has led to the need for an


 unnecessarily complicated model.
 The transform both sides model is readily fitted by using non-linear least squares. The Gauss-Newton


 method converges rapidly since the parameter estimates change by less than 20% over the range of X
 in Fig. 11(b). Diagnostics for the transform both sides model are an extension of those for response
 transformation. Atkinson (1994) derives the constructed variable for the transformation parameter and
 gives examples of constructed variable plots and of the use of deletion statistics similar to those of Atkinson


 (1986).
 A last point on transformations is just to caution against the uncritical use of the shifted power


 transformation of the response. As Atkinson et al. (1991) showed, unbounded likelihoods can result,
 although the recommendation in Section 3.1 of a shift of half the rounding interval of the observed
 values will often be sensible. However, these problems do not apply to shifted power transformations
 of the explanatory variables.


 G. J. S. Ross (Rothamsted Experimental Station, Harpenden): The family of curves here called
 'fractional polynomials' may be transformed to the familiar sums of exponentials by choosing x = log X


 as the independent variable. The special cases p1= 0 and Pi =pj correspond to terms in x and in x exp(Ox)
 respectively. Models of order (not 'degree', surely?) up to 2 with unknown values of the pj may be
 fitted by standard software (Ross, 1987; Payne et al., 1993) or by optimization of the residual sum
 of squares (Richards, 1961; Lipton and McGilchrist, 1963). Solutions with asymptotes are preferred,
 since mixtures of positive and negative exponentials do not extrapolate well. The models are only a
 subset of possible solutions of linear ordinary differential equations, and some data are better fitted
 by complex solutions equivalent to including terms in exp(0lx) cos(02x) and exp(0lx) sin(02x). The
 complete solution space is best studied via the coefficients of the differential equations, using stable
 parameterizations (Ross, 1990).


 The restriction to positive X causes problems if X has no natural origin, and if data are observed
 close to the assumed origin (where gradients may become infinite). Unlike ordinary polynomials and
 the commonly used non-linear models (exponentials, rational functions, logistic curves) power functions
 are functionally altered by a change in origin. If we transform X to X+ c, terms in XP generate a series
 of terms in XP- 1, XP-2, etc. which is finite in the ordinary polynomial case, but not in the fractional
 or negative case. A change of origin therefore changes the family being fitted.


 The authors do not attempt to estimate the p-values exactly but rely instead on searching a discrete
 grid of favoured values. This does not really reduce the numbers of parameters estimated, as they claim,
 but produces a suboptimal solution with a deviance difference whose distribution cannot be assumed
 to be x2.


 Section 3.4 misapplies the likelihood ratio test criterion by failing to allow for the re-estimated values


 of (j associated with pj. The estimation of u2 in the normal distribution case is not discussed, and ideally
 this should come from replicated observations, as in Table 1.


 Power laws have a long history, as in allometry (Brody, 1945) and fertilizer response (Nelson and
 Anderson, 1975; Turner et al., 1961). They cannot, however, produce a sigmoid curve similar to the
 logistic, which must seriously limit their applicability as general empirical functions.


 J. T. Kent (University of Leeds): One name which has been neglected in the paper is that of John
 Tukey and his work on exploratory data analysis. For example, Tukey emphasizes the importance of
 transformations, both on x and y, in regression analysis. The authors recognize the use of transformations
 in their examples, but the topic deserves greater prominence in their general methodology. A second
 point emphasized by Tukey, and already raised by some of the other discussants, is the use of a shift
 in origin. For example, it can make a difference whether log x or log(x + c) is used. The introduction
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 of a shift in origin affects the whole modelling approach with fractional polynomials and deserves more
 attention.


 A separate issue concerns the interpretation of gain. If there are models Ho and H1, with the
 maximized log-likelihoods given by 10 and 11, then the gain is defined in the paper to be twice the
 difference in the log-likelihoods. It is interesting to note that the gain is related to the squared multiple
 partial correlation coefficient, at least under a regression model with normal errors, by the formula


 p2 = 1 - exp[ - 2(l1 - lo)J. Further, this formula can be used to define a measure of correlation in more
 general regression models (Kent, 1983; Kent and O'Quigley, 1988).


 M. J. R. Healy (Harpenden): This is a particularly suitable paper to be read at Rothamsted Experimental
 Station. Much of modern statistical development has consisted in escaping from under the gigantic shadow
 cast by R. A. Fisher. Fisher's first statistical adventure at Rothamsted was the crop-weather study of
 1921 which involved the fitting of a large number of quintic polynomials. He must have been the first
 to undertake such an exercise and his example surely explains why polynomials have dominated the
 curve fitting scene ever since. The fact that they commonly fit the data very badly (this was certainly
 the case in Fisher's study, though this is not apparent from the published paper) has seldom seemed
 to be of concern. Fractional polynomials promise to provide a far wider repertory of curve shapes,
 and for the pragmatic uses that the authors propose their lack of explanatory power does not seem
 to be a disadvantage.


 Peter J. Diggle (Lancaster University): I feel that some of the connections between this paper and
 Hastie and Tibshirani's work on generalized additive models could have been given greater emphasis.
 In particular, for a nonparametric smoother there is a well-established concept of 'equivalent degrees
 of freedom' (Hastie and Tibshirani (1990), chapter 3). I suggest that a fractional polynomial model
 of degree m should be considered as having 2m + 1 parameters (including the pi, i= 1, . . ., m). Could
 the authors compare the deviances for their selected models with the corresponding deviances for a
 generalized additive model with equivalent degrees of freedom 2m + 1? My guess is that on this criterion
 the generalized additive model would do at least as well as the fractional polynomial.


 On a more general point, one advantage which the authors claim for their methods over nonparametric
 smoothing is that the latter 'may be difficult to explain to the non-expert user'. I find this a common,
 but depressingly faint-hearted attitude for a statistician to take. If I am ill, I expect my doctor to treat
 me with the best treatment available, rather than to use only treatments whose precise biochemical mode
 of action she can explain to me. By the same token, if my doctor seeks my help as a statistician, I would
 wish to use the best available statistical methodology to answer her questions. And, if I am answering
 her questions, as opposed to 'analysing the data' for unspecified purposes, I should be able to explain
 the answers to her in the same terms that she posed the questions. To take a specific example, consider
 the immunoglobulin-G investigation. Given the stated clinical objectives, it would seem that a set of
 smooth reference curves fitted to the data would answer the doctor's question, and it then becomes
 a proper matter for statisticians to debate (and, we hope, one day to resolve) the matter of how to
 fit such curves to data. The doctor then needs to understand how to plot an individual child's data
 against these reference curves, and to interpret the results. I do not see why the doctor needs to understand,
 or even to be told, the algebraic formulae for the curves.


 C. A. Glasbey (Scottish Agricultural Statistics Service, Edinburgh): I thank the authors for a stimulating
 paper, and for making available some of the data. I would like to make several points.


 (a) There is a danger in using a standard computer package to fit these models because standard
 errors will be too small if no account is taken of the uncertainty in p. Ross (1990), section 5.4.1,
 for example, considered this problem briefly. What would the authors recommend if standard
 errors (SEs) or confidence envelopes are required?


 (b) Isotonic regression provides another way of smoothing data, if the underlying relationship is
 monotonic. The isotonic fits to the first two data sets show good agreement with the fractional
 polynomial models. In particular, the initial trend in the fit of +2(X; -2, 2) to the immuno-
 globulin-G (IgG) data is confirmed (Fig. 12).


 (c) Where X-values are replicated (either exactly or approximately), as in the first two data sets, model-
 free estimates of the error variance can be obtained, against which the fit of any model can be
 tested. Interestingly, for the mandible length data, the within-replicate mean-square error of 0.0065
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 Fig. 12. IgG data and regression models data; ---- isotonic regression, , (X; -2, 2);..
 a2(X; 0.5, 1)


 is significantly less than the mean-square error of 0.0093 for 41 (X; -1). Moreover, no other
 smooth curve seems to do any better. Why is this; are there positive associations between fetuses
 measured at the same age?


 (d) I have a suggestion for why equal powers occur. The model


 Y = ~0 + ~I Xt"') + ~2XCP2)


 is a solution of the second-order differential equation


 2d2 y d Y
 d21 dX


 where


 PI,P2 1-


 f 2 j 4 2 2


 With this alternative parameterization, pi and P2 can either both be real or they can be a complex


 conjugate pair. In the latter case the model is


 y= ~0 + Xql t ~ cos(q2 In X) + ~2 sin(q2 In X),


 where qs and q2 are the real and imaginary parts of p and P2 ( If the differential equation is fitted
 to the in vitro fertilization data, for which the authors obtained l il =P2 1, we find that


 as tm e X o2nX) a1 sn22X


 isand ltino the rersintrsecod-rderX cs Iifrntial eqatindX sn22IX
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 (e) It is not true, as stated in Section 9.2.4, that heteroscedasticity always inflates SEs. Ordinary least
 squares estimation is no longer fully efficient, but the SEs can be biased either upwards or
 downwards, as is equally the case if observations are autocorrelated (Glasbey, 1988).


 The following contributions were received in writing after the meeting.


 J. C. Bishop, F. D. J. Dunstan and B. J. Nix (University of Wales, Cardiff): This is a very interesting
 paper which provides a clear framework for fitting more general models than the conventional polynomials
 to time-dependent data. We would like to raise three points. Firstly we felt that one of the main
 advantages, cited by the authors, would be in producing models with asymptotes. We have tried the
 method on a considerable number of data sets and have been surprised to find that in most cases the
 models produced were still dominated by polynomial functions, so that the asymptotic behaviour did
 not materialize.


 Secondly, the authors made the valid point that polynomials can give unusual shapes at the end of
 the data set. On some data sets we found that this was true of fractional polynomials at the start of
 the data set. For example, Fig. 13 shows a set of data, provided by Health Promotion Wales, on cholesterol
 in women. The optimal model had m = 2 and pi = (- 2, - 0.5) and is shown by the broken curve. The
 gain over a model with m = 1 was significant. Here there is an apparent effect at young ages which
 does not accord with clinical experience; the model was too sensitive to the few slightly raised values
 at low ages. The model with greatest gain which gave a 'sensible' fit included quadratic and cubic terms
 and is shown by the full curve, the best of degree 1 is shown with a dotted curve. As the authors say,
 a careful study of the fitted model is required; it is not enough simply to regard a technique of this
 type as a black box method.


 Finally the example involving gestational age assumed that the gestational age is known exactly. In
 practice all methods currently used for estimating it are subject to error and estimates of the model
 parameters which do not take this into account might be biased. We have analysed a set of over 5000
 measurements of maternal serum alpha-fetoprotein (MSAFP) collected in a screening programme for
 Down syndrome when the estimated gestational age is between 15 and 20 weeks. During that period
 MSAFP is increasing rapidly and in Bishop et al. (1994) we show that substantial biases can arise if
 the possible errors in gestational age are not taken into account. There we propose a method for
 incorporating an error structure into the model fitting which we believe to be of value in such cases.


 T. J. Cole (Medical Reseach Council Dunn Nutrition Centre, Cambridge): Like all good ideas, the
 concept of fractional polynomial regression looks very obvious in retrospect, and also very familiar.
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 Fig. 13. Serum cholesterol in adult women against age: -- -, model of degree 2 with greatest gain;.*- , best
 model of degree 1; , model with greatest gain giving a 'sensible fit'
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 As the authors show, the method has been mentioned often in the literature, but only on an ad hoc
 basis. It is also striking that many previous applications of the method (and the authors' own first example)
 have been to infant and child anthropometry.


 Throughout early life up to the start of puberty, growth velocity falls monotonically with age, so
 that age trends in anthropometry during this period are well modelled by a second-degree fractional
 polynomial. Extending the age range to include puberty tends to be more difficult, owing to the pubertal
 growth spurt, but it could perhaps be achieved by using a higher degree model. However, this would
 involve a substantial computing cost. Either way, the method is certain to be very valuable for deriving
 age-related reference ranges, particularly if combined (in the normal case) with the method described
 by Altman (1993) for modelling the standard deviation.


 The authors do not state explicitly how they identify the best fractional polynomial model of a given
 degree, but it is presumably by grid search. This could be made more efficient by recognizing for example
 that the best two powers for m = 2 are usually on either side of the best power for m = 1, which would
 restrict the search space considerably. This is so for all but one of the examples in the paper. Extending
 this principle to higher degree models might make the fitting more tractable.


 Arising from this, if the optimal model uses powers at the extremes of those available (i.e. - 2 or
 3), this ought to be a sign that the set of powers should be extended. I encountered this when fitting
 a degree 2 model to the essentially deterministic relationship between smoothing spline parameter a
 and equivalent degrees of freedom edf. The data appear in Fig. 3 of Cole and Green (1992) and were
 fitted there as a linear function of log et on log edf. However, the best model for m = 1 uses p = - 0.5
 (i.e. /Iedf) rather than p = 0, and for degree 2 with the conventional set of powers gives p =(-2,
 0.5), providing a gain of 34.9 over m 1. However, widening the set of powers leads to the solution
 p = ( - 5, 0), with a gain of 57.1 over m =1 and 22.2 over the restricted set solution for m = 2. The optimal
 solution provides an effectively perfect fit to the data.


 Trevor Hastie (AT&T Bell Laboratories, Murray Hill) and Robert Tibshirani (University of Toronto):
 We appreciate the authors' efforts and their scholarly paper but wonder whether their proposed methods
 will find much use by modern data analysts. It was the shortcomings of polynomial modelling that
 led us and others to focus instead on nonparametric smoothers.


 A major drawback of polynomials is their non-localness. Since the authors' procedure is not linear
 in the response values, it is a little difficult to measure the influence of individual data values.
 Fig. 14 shows one possible influence measure for the data of Section 4.3 (we ignore age for this illustration)
 and compares the authors' procedure (Figs 14(a)-14(c)) with smoothing splines (Figs 14(d)-14(f)).


 In Fig. 14(a), the largest influence for the fit at the left-hand end comes from the data point at the
 far right! In Figs 14(d)-14(f) the influences are largest near the target point x0 and smaller far away.
 Part of the point of this example is to show that nonparametric smoothers such as smoothing splines,
 with fixed (and even low) degrees of freedom, can cover a large range of functions without getting into
 the difficulties that we see here.


 Another drawback of polynomials is the need to choose an origin for each predictor x: xP is only
 defined in general for x) 0. If min(x) < 0, the authors seem to suggest transforming x to x - min(x) + p
 where p has a small positive value. Otherwise x is used as it is. But this procedure does not work well
 in general, as the example described in Fig. 15 shows. In this simple example the fit improves if we
 take more terms, i.e. take m > 1, but then we could offset this effect with a more complicated underlying
 function. This becomes more serious with multiple predictors, since the analyst might have to choose
 an origin for each predictor. For nonparametric smoothers this issue does not arise: there is no need
 to translate predictor values, and any reasonable smoother is invariant under such translations.


 Finally, we disagree with the apparent motivation for the authors' proposals: that nonparametric
 smoothers are local and hence do not yield simple prediction equations and that they are computationally
 intensive with suitable software not yet generally available. They are local, but as demonstrated above:
 that is their virtue. Smoothing software is now available in many packages, and fitting and predictions
 can be done quickly and easily on personal computers. Some major packages do not yet offer
 nonparametric regression, but that should not be the major concern of researchers. We must develop
 the best solutions to problems and lead (rather than follow) the developers of statistical software.


 Peter Sasieni (Imperial Cancer Research Fund, London): What functions can be approximated by
 fractional polynomials (FPs) (Section 3.2)? Further insight comes from the analytical properties of FPs.
 Although an FP of degree m has 2m + 1 degrees of freedom (one per parameter), it is constrained in
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 the number of points with zero first derivative (proposition 1, below). For instance, y = 0 + (lx(w) is
 monotone on x> 0, but any three points (xi, y1) with 0 <x1 <x2<x3 and (Y3 -Y )/(Y2 -Yi)>1 lie on
 such a curve. Similarly, any non-constant function in +2(X; M, p) has at most one stationary point in
 X> 0. Thus FPs are not recommended for approximating functions with multiple turning points.
 Exploratory investigation of the number of turning points before using the authors' methodology is
 recommended, since even two turning points (requiring m > 3) could be problematic in small samples.


 Intuitively approximation of an FP with powers Pi and P2 by an FP with similar powers q1 and q2
 will be reasonable and the constraints described above may contribute to this: hence the observed flat
 likelihoods, which in turn partly explain why artefacts at the extremes of X may be avoided. Suppose
 that we force a curve through three points determined by a local fit to the data around the quartiles


 of X. Then, subject to at most one turning point, some curve from +2(X; M, p) (with p E 2) passes
 through any two additional points, one at each end of the X-range. Our perception of how well a curve
 may be extrapolated depends on the difference between the curve and the extension along its tangent.
 Formally, compare f(x+ 6) with f(x) + 6 f' (x): for small 6, this is dominated by 6(2 f"(x)/2. My
 perception is in angles rather than slopes. Thus instead of f " consider the derivative


 tan f ' (x) - (X)
 dx 1+fI()


 The authors' candidate solution set #consists of functions whose deviance is within 2.7 of the minimum.


 Choose f to minimize the curvature, I f"(x) I (or the change in angle I f"(x)/[ 1 +f f (X)2 II), over 3r,
 where x is the maximum and/or the minimum of the X-range depending on the direction(s) of
 extrapolation. Formally, maximize a penalized likelihood.


 Proposition 1.


 (a) A non-constant FP of degree m is constrained to have at most m - 1 stationary points in x> 0.
 (b) Given any 2m + 1 points in the half-plane x> 0 that can be joined by a (differentiable) mapping


 of x with at most m - 1 stationary points, there exists a unique FP of degree m (with p E Wm)
 passing through them.


 C. B. Stride (University of Warwick, Coventry):


 Comment on example 4.1-relationship between gestational age X and mandible length Y
 The authors have given us a valuable and thoroughly practical method. What a pity it is that the


 first example (Section 4.1) seems a perfect example of a case where we should not use non-linear regression!


 0


 CE


 0)


 C


 C4


 15 20 25


 X =Gestational Age (weeks)


 Fig. 16. Relationship between gestational age and mandible length.: linear model Y= a + bX+ +E,
 log a= e +fX; - . -, fractional polynomial model Y= exp(a + bX)
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 The plot in Fig. 2 gives a very good fit to a straight line, so why upset the linearity by taking the logarithm
 of mandible length, and then by trying to approximate the resulting exponential curve by fractional
 polynomials? Surely this is far too high a price to pay for stabilizing the variance. The proposed model
 Y= exp(a + bX'-), for what looks like a straight line, appears bizarre.


 The residuals obtained when fitting a normal linear model Y= a + bX increase with X, which suggests
 that the standard deviation a of Y should be modelled as an increasing function of X-this is quite
 natural since Y is a growth phenomenon. Thus the model Y= a+ bX+ Ea, with E a standard normal
 residual, gives a convincing fit with a log-linear variance log a= e +fX. The fitted residuals E give a
 normal Q-Q plot, which is just as good as that obtained by the authors' residuals on the log-scale.
 Y may be log-normal, but this is not evident from the data. Admittedly, we need more than ordinary
 least squares to fit the model, but it was performed quickly and simply on a widely available statistical
 computer package.


 The principal difference between the two models occurs at large X (see Fig. 16). The only way to
 justify the curve of the fractional polynomial model is by using data, which were, for good reason,
 omitted at the model fitting stage. If the results for X> 28 were initially discarded owing to their supposed
 unreliability and inaccuracy, it is surely a fallacy to use them to vindicate a model created without them.
 Such a model could be sensible if a horizontal asymptote is needed, but do we want growth essentially
 to stop at around 40 weeks? For neither model would extrapolation outside the range of the data be
 justified.


 Keming Yu (The Open University, Milton Keynes): A good estimate should be optimal or approximately
 optimal for a given method. The cubic spline, for example, minimizes the weighted sum


 n


 Sx (g) = E [yi - g(xi)2 + X g (X)2 dx


 where the true g is defined by the usual model yi = g(xi) + Ei. The kernel estimator g, another alternative
 estimator of g above that also has arg mina[E(Y- a)), is defined as


 g = arg min K


 Now, regarding fractional polynomials, as good and convenient alternative estimators of g, what is
 the method to make them optimal or approximately optimal? Is there such a method? If the estimator
 is just a conventional polynomial, i.e. the power of the fractional polynomials is restricted to the set
 of integers, the question is easy to answer. However, according to the authors, a good fit, sometimes,
 is given by a fractional polynomial with a power term of non-integer value. My general impression,


 both from the examples in the paper and other experience, is that if the distribution of errors Ei is
 symmetric a polynomial fit g with all terms integer powers always satisfies or approximately satisfies
 g= arg mina [E[p(Y- a))] for the model above, where p() is a convex function. However, the
 fractional polynomial estimator should be a better fit if the distribution of Ei is non-symmetric, and
 this is just the situation often met in practice in spite of the theoretical assumption. The reason that
 a fractional polynomial is sometimes a better alternative in practice could be explained by considering
 this. For a good method to receive wider application, the question should be addressed further.


 The authors replied later, in writing, as follows.


 We thank all those who have contributed to the discussion, both verbally and in writing. Unfortunately,
 we do not have space to respond to all their points. We consider comments on our paper under the
 next three headings.


 Methodological points
 Dr Bowman is concerned about possible effects of outliers and of overfitting with fractional polynomial


 (FP) models, especially in multiple regression. Essentially, these aspects are a potential problem with
 all modelling exercises, not specific to FPs. One possible approach (which we have not yet explored)
 is the use of robust regression. Also, the effects of outliers in Y will differ from those of outliers in
 X; the latter could be looked at by using suitable regression diagnostics, though it is not clear at present
 how to accommodate the implicit 'extra' estimation of the power vector p. Further work is required.
 Regarding overfitting, in practice multiple-regression data sets often have considerable 'noise', leading
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 to little power to detect slight curvature. When fitting FP models it might be useful to restrict fits with
 k> 1 to second- or even first-degree (m = 1) models. Also the set -? of powers could be reduced.


 Both Mr Ross and Dr Glasbey point out that our m = 2 models are subsets of possible solutions to
 ordinary differential equations. Although we do not dispute their algebra, we are not clear that this
 is a useful insight into FP models. Dr Glasbey's imaginary roots solution, which takes the form


 Y= 40 + Xql t fJ cos(q2 ln X) + t, sin(q2 ln X)1,


 only resembles an m = 2 model with repeated powers in regions of X-space in which the cosine and sine
 functions are approximately linear.


 Mr Ross, Professor Kent and Dr Hastie and Dr Tibshirani are concerned about the necessity to choose
 an origin for X, particularly when X is not positive. Unlike conventional polynomials or most
 nonparametric methods, FP functions do depend on the origin. This can be an advantage in that it
 extends the types of model that can be fitted. In particular, when the minimum of X is close to the
 origin of X, models which include negative powers give considerable flexibility to fit data whose slope
 changes rapidly in that region of X. The immunoglobulin-G (IgG) data set is an example of such
 behaviour. The most common case in our experience is when min(X) = 0, in which case our suggestion
 of adding the rounding interval before analysis seems to work well in cases that we have tried. In general
 there is high correlation between the choice of origin and choice of fractional powers. Altering the origin
 slightly affects the fit very little.


 Mr Ross notes that using a grid of powers does not reduce the number of parameters estimated;
 however, we do not claim a reduction. He also states that in Section 3.4 we have misapplied the likelihood
 ratio test. We do not think so, since the {s are estimated both for fixed p and for p models. Thus m
 extra parameters are estimated, one per power.


 Dr Glasbey is concerned that standard errors of regression coefficients are too small since estimation
 of p has not been allowed for. We agree, but the residual degrees of freedom (DF) could be adjusted
 to allow for this. Generally the effect on confidence intervals (CIs) etc. will be small, unless the residual
 DF are very small. We are somewhat more concerned about the effect of estimation of p on the precision
 of the fitted values rather than on the regression coefficients, since the latter depend on the powers
 anyway. Bootstrap analysis of IgG showed that the CI for the fitted values was only very slightly narrower
 than it would be if estimation of the powers was taken into account. This may not hold in other cases,
 but resort can be made to bootstrapping to check.


 Dr Bowman and Dr Hastie and Dr Tibshirani note that one of the implications of FP models being
 global rather than local is that the fit at a given value of X will be influenced by points far away. This
 is a general characteristic of many non-local parametric models. In the example chosen by Dr Hastie
 and Dr Tibshirani (base deficit in the diabetes data), which shows the 'distant influence' effect, the


 FP model 41 (0) is only weakly supported by the data; a straight line is almost as good a fit. In any
 case, as already noted, the development of diagnostics appropriate to FP models is desirable to warn
 the user about influential values.


 When several FP models fit about equally well (a common finding discussed further below), Dr Sasieni
 suggests selecting that which minimizes the curvature in order to maximize the performance of the model
 in extrapolation. If extrapolation is the main aim, this may be sensible, but we think it unlikely that
 this will often be the case.


 Ms Bishop and colleagues note 'end effects' in the best m = 2 model which they fitted-to their cholesterol
 data. We would emphasize that the choice of model is not a 'black box' affair, and that often (as in
 this case) there will be other models with similar deviances whose shape is much more plausible. It is
 vital to appraise the fit critically. Although negative powers are very useful when the data show marked
 curvature near to the origin, their use may be inappropriate otherwise, as this example shows.


 Mr Yu asks whether FP functions represent the optimal solution to a mathematically posed fitting
 problem. We do not know the answer to this (but see 'Further points' below).


 Example-specific points
 We are surprised at how many discussants chose to reanalyse the mandible data, ignoring the other


 available data sets that have more complex curve shapes. Professor Atkinson and Mr Stride find our
 FP model for mandible length unnecessarily complicated, claiming that a straight line will suffice. In
 fact, there is significant, though slight, curvature in the relation, so (depending on the aim of the analysis)
 a straight line can be improved on. Thus we do not agree with Professor Atkinson's suggestion that
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 we have used an incorrect transformation. Because of the heteroscedasticity, we need to model both
 the mean and the variance of mandible length, which is not necessarily straightforward. In the paper,
 we transformed Y to allow us to concentrate on modelling the mean. In the published analysis (Chitty


 et al., 1994), we modelled the mean by using 41 (0.5) and the standard deviation as a straight line,
 adopting the absolute residuals method (Altman, 1993) mentioned by Dr Cole. These two models give
 virtually identical results.


 Dr Glasbey wonders why the within-replicate variance for log-mandible-length is significantly lower
 than the residual variance from the FP regression analysis. We have no explanation, though we note
 that the P-value is 0.006, so could conceivably be a chance effect. No such effect is found in the IgG data.


 Ms Bishop and colleagues suggest that bias in estimating the gestational age in the mandible length
 example may affect the results. We think that this bias is not germane to practical use, since actual
 data will have similar gestational errors to the trial data.


 General points
 We agree with Dr Bowman and Dr Hastie and Dr Tibshirani that software for nonparametric model


 fitting is now reasonably widely available, and that nonparametric regression methods are likely to be
 implemented in other packages in time. However, we cannot agree that the complicated prediction
 equation which arises from nonparametric models is not a problem. A prediction equation may be needed
 for use by others, for example, for comparing the fits of rival models on new or simulated data. Another
 example is use of a prognostic index for a disease or use of a clinical reference interval, where low
 dimensional parametric methods allow a centile to be calculated from the prediction equation for any
 given individual. For clinical use the underlying equations of reference centiles for fetal size, similar
 to those derived for mandible length but for measurements such as abdominal circumference (Chitty
 et al., 1994), are commonly programmed into ultrasound machines, allowing a centile to be specified
 for new observations. Nonparametric regression methods do not give a concise prediction equation.


 Dr Bowman and Professor Diggle ask what advantage an m = 2 FP model has over a spline smooth
 with the same DF. Although we do not claim global preference for our approach, we can see two
 advantages (in addition to the availability of an explicit prediction equation, as just discussed). First,
 our fitted curves are very smooth, which may not be so for nonparametric fits (nor for isotonic regression
 as shown by Dr Glasbey). Second, there may be several models of the same degree which fit almost
 equally well, which allows us to choose the one which appeals most according to non-statistical criteria.
 Once the equivalent DF have been chosen, the generalized additive model (GAM) approach yields only
 a single model. Thus for example there is no way of customizing the fit to accord with prior knowledge
 of how the model should behave (e.g. presence of asymptotes). We have begun to explore the comparison
 of the two approaches to the same data sets, but it is too soon to make any general comments.


 Dr Bowman prefers to start with nonparametric models and to work towards parametric models.
 We entirely agree with this approach, and in fact used it with the in vitro fertilization (IVF) data. Again
 the approach taken depends on the purpose of the analysis. Dr Appleton prefers scientific (e.g. biological)
 to statistical models. We understand this point, but in many cases no scientific rationale is available,
 or time may limit what can be done. Statistical models are at best convenient approximations to reality,
 and obviously where strong prior knowledge about the likely functional form is available, it should
 be used. Nevertheless statistical models still have a role in checking the predictions of scientific theories
 by teasing out (albeit approximately) the information present in the data.


 Mr Ross notes that FP models cannot generate sigmoid curves, which he says limits their usefulness.
 They can be extended to do so (work in progress), though we are not necessarily suggesting that that
 would always be the best approach.


 We have nothing to add to Dr Cole's comments; we agree with them. We have also found that low
 degree FPs can give an excellent fit to deterministic relationships and we shall present our findings
 elsewhere (Altman and Royston, 1994). Regarding the observation of Ms Bishop and colleagues that
 expected asymptotic behaviour in real data sets was not reflected in the FP models chosen, we can only
 say that we have not seen any of the data; we would be happy to look at selected data sets if these
 authors would supply them to us.


 Dr Sasieni suggests that one should explore the number of turning points before fitting FP models,
 to anticipate the necessary degree. That seems sensible, but we are not clear how to do it, especially
 when there are several covariates in the model; the use of GAMs might be one way.


 Mr Stride criticizes a perceived attempt to vindicate the model for mandible length by reference to
 data known to be unreliable. This is a logical point, but the extrapolation produced by the FP model
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 41 (X; - 1) is consistent with known characteristics of growth of other bones where reliable data are
 available throughout pregnancy. As we say in the paper, we would not in general attempt to extrapolate
 beyond the range of the data unless there were strong prior reasons for believing it to be valid.


 In Fig. 15, Dr Hastie and Dr Tibshirani present some simulated data and show how altering the origin
 affects the fit of a simple model with m = 1. We do not see this as a valid criticism of FP models, as
 a model with m = 2 gives an excellent fit to these data (and is virtually indistinguishable from the fit
 of a GAM with the same DF). They remark that 'the fit improves if we take more terms, i.e. take m > 1,
 but then we could offset this effect with a more complicated underlying function' applies to any smoother.
 As noted above, the ability to change the origin is an advantage of the FP approach. We think that
 Hastie and Tibshirani overstate the problem of needing to specify the origin. We are most concerned
 with reflecting the behaviour of real (as opposed to artificial) data; in practice, we usually need to move
 the origin only when zero values of X occur, and then our simple suggestion to increase X by the rounding
 or counting interval works well.


 Further points
 We are surprised that no discussant mentioned models with m > 2. We now have several examples


 of data requiring such models, including one with k> 1 covariates; we shall discuss these elsewhere
 (Royston and Altman, 1994a).


 Excluding the constant an FP model of degree m has 2m DF. Since preparing our paper we have
 realized that we can also specify FP models with odd DF by mixing specified and floating powers of
 X. Specifically we have been exploring models which are forced to include a term in X. Thus the
 constrained second-degree model has Pi = 1 and P2 determined in the usual way by comparing deviances;
 this model has 3 DF. These models are frequently not significantly worse than the unconstrained m = 2
 models, which have 4 DF. For example, in the IgG example in the paper, the gain G for the best m = 2
 model p = (- 2, 2) is 18.11, whereas the best 3 DF model with p ( - 2, 1) has G= 16.54; similarly, the
 best 3-DF model for the IVF data, also p = (- 2, 1), has G = 6.96, only 0.15 lower than that of the best
 4-DF model. In each case, the fitted functions change little with the addition of 1 DF to the model.


 A key issue in discussing the relative merits of various models is the purpose of the analysis. In some
 cases we require a close fit to the data to make reliable predictions (such as for the mandible data).
 In other cases, notably in most multiple-regression analyses, the aim is often more of adjustment and
 so a close fit is not as crucial. Also, such data often have considerable noise, and so constrained modelling
 of (possibly) curved relationships may be appropriate, perhaps with a limit of 3 DF. This may be especially
 true when the data are less visible (see Dr Bowman's comments), i.e. in logistic and Cox regression.


 Our motivation for developing FP models was the poor fit often obtained with conventional
 polynomials, as noted by Professor Healy. We were careful in the paper not to claim or suggest that
 FP models should replace nonparametric methods-see the last sentence of the penultimate paragraph
 of Section 9. We see them as an adjunct to other methods; in particular, we like the idea of proceeding
 from an exploratory fit (e.g. using lowess or a GAM) to a parsimonious parametric fit. We accept that
 FP models are less flexible than nonparametric models, but we do not think that they are less valuable;
 they simply have different strengths and weaknesses.


 A somewhat more general test of curvature than that of Section 3.4, one that is sensitive to non-


 monotonic relationships, is to fit the model 02(X; 1, 1) and to test the term in Xln X (Hosmer and
 Lemeshow, 1989).


 We welcome the interest shown in the mathematical properties of our models, and hope that others
 (Glasbey, Yu and Sasieni) will explore them further.


 Lastly, we agree with Dr Hastie and Dr Tibshirani that we need to develop the 'best' solutions to
 statistical problems, but there are many criteria for judging what is best. As we have indicated, the
 choice will depend on the context. We also agree that software is crucial; we have developed a set of
 routines for fitting FP models in Stata, which in due course will be published in Royston and Altman


 (1994b).
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